JP2013104034A - Fiber-reinforced composite material and method for producing fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material and method for producing fiber-reinforced composite material Download PDF

Info

Publication number
JP2013104034A
JP2013104034A JP2011250288A JP2011250288A JP2013104034A JP 2013104034 A JP2013104034 A JP 2013104034A JP 2011250288 A JP2011250288 A JP 2011250288A JP 2011250288 A JP2011250288 A JP 2011250288A JP 2013104034 A JP2013104034 A JP 2013104034A
Authority
JP
Japan
Prior art keywords
fiber
composite material
carbon fiber
resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011250288A
Other languages
Japanese (ja)
Other versions
JP5884426B2 (en
Inventor
Tomoyuki Horiguchi
智之 堀口
Satoru Shimoyama
悟 下山
Kentaro Kajiwara
健太郎 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011250288A priority Critical patent/JP5884426B2/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to CA2855747A priority patent/CA2855747A1/en
Priority to EP12849929.0A priority patent/EP2781538B1/en
Priority to KR1020147009351A priority patent/KR102041989B1/en
Priority to PCT/JP2012/079451 priority patent/WO2013073546A1/en
Priority to CN201280056447.XA priority patent/CN103930473B/en
Priority to US14/356,534 priority patent/US10072130B2/en
Priority to TW101142544A priority patent/TWI561562B/en
Publication of JP2013104034A publication Critical patent/JP2013104034A/en
Application granted granted Critical
Publication of JP5884426B2 publication Critical patent/JP5884426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To create a fiber-reinforced composite material in which carbon fibers are randomly oriented so as to reduce unevenness in mechanical property, and which has excellent mechanical characteristics and a high fiber volume content, by forming a carbon fiber sheet comprising carbon fibers randomly oriented as single fibers and having high apparent density, and reliably impregnating a resin into the sheet.SOLUTION: The fiber-reinforced composite material comprises carbon fibers and a resin, wherein the carbon fibers are randomly oriented as single fibers and constitute a sheet having apparent density of 0.25-1.5 g/cm, the sum of the percentages of COO groups and C-O groups in C1s peak measured by ESCA in the carbon fiber surfaces of the sheet surface is ≥5%, and the fiber volume content of the carbon fibers is 20-80%.

Description

本発明は、繊維強化複合材料にかかるものであり、より詳細には、熱可塑性や熱硬化性の樹脂と強化繊維とからなる繊維強化複合材料、およびその製造方法に関する。   The present invention relates to a fiber reinforced composite material, and more particularly, to a fiber reinforced composite material composed of a thermoplastic or thermosetting resin and a reinforced fiber, and a method for producing the same.

強化繊維とマトリックス樹脂からなる繊維強化複合材料は、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから航空機等の他、一般産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced composite materials consisting of reinforced fibers and matrix resins have high specific strength, specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. It is also attracting attention for industrial use, and its demand is increasing year by year.

繊維強化複合材料としては、強化繊維としてノンクリンプ連続繊維を使用して一方向配列繊維シートを作成し、これと樹脂とからプリプレグを作成したものが知られている(たとえば、特許文献1)。一方向に繊維を配列すると繊維を高密度に充填できることから、優れた力学特性を有する高い繊維体積含有率の複合材料とすることができる。さらに、必要とする力学物性を高精度に設計することが可能であり、しかも力学物性のバラツキが小さい等の特徴を有することから、航空機等に広く活用されている。ただし、繊維を一方向に精度よく配列させるには高度な制御技術が必要となり、生産速度が遅くコスト高になる等の課題がある。   As a fiber reinforced composite material, a unidirectionally aligned fiber sheet is produced using non-crimp continuous fibers as reinforcing fibers, and a prepreg is produced from this and a resin (for example, Patent Document 1). When the fibers are arranged in one direction, the fibers can be filled with a high density, so that a composite material having a high fiber volume content and excellent mechanical properties can be obtained. Furthermore, the required mechanical properties can be designed with high accuracy, and the variation in the mechanical properties is small, so that it is widely used in aircraft and the like. However, in order to arrange fibers in one direction with high accuracy, advanced control technology is required, and there are problems such as low production speed and high cost.

そこで、連続繊維とは異なり、5〜50mm程度の強化繊維をランダムに配向させた繊維強化樹脂シートが知られている(例えば、特許文献2)。かかるシートは、成型が容易で比較的コストが安いことから、特に一般産業資材用途に普及しつつある。しかし、当該文献に記載の技術は、先に連続繊維束に樹脂を含浸した後裁断し、ついで面内擬似等方性を得るためにランダムに配向させる、いわゆるチョップドストランドマットに関する技術であり、繊維束はランダムに配向しているものの、単繊維レベルでランダムに配向しているものではない。   Therefore, unlike continuous fibers, a fiber-reinforced resin sheet is known in which reinforcing fibers of about 5 to 50 mm are randomly oriented (for example, Patent Document 2). Since such a sheet is easy to mold and relatively low in cost, it is becoming popular especially for general industrial materials. However, the technique described in the document is a technique related to a so-called chopped strand mat, in which a continuous fiber bundle is first impregnated with a resin and then cut and then randomly oriented to obtain in-plane pseudoisotropy. Although the bundles are randomly oriented, they are not randomly oriented at the single fiber level.

一方、炭素繊維がランダムに配向したシートとしてから樹脂を含浸させることは一般に困難であることが知られており、該炭素繊維シートへの樹脂の含浸性を向上させるために、樹脂を熱可塑性繊維としてあらかじめ炭素繊維と混合しておく技術が知られている(例えば、特許文献3)。   On the other hand, it is known that it is generally difficult to impregnate a resin after a carbon fiber is randomly oriented sheet. In order to improve the impregnation property of the resin into the carbon fiber sheet, the resin is used as a thermoplastic fiber. A technique of mixing with carbon fiber in advance is known (for example, Patent Document 3).

なお、特許文献4では、炭素繊維を表面処理することで、補強材としてマトリックスとの親和性を高めることが記載されている。   In Patent Document 4, it is described that the affinity with a matrix as a reinforcing material is enhanced by surface-treating carbon fibers.

特開2004−277955号公報JP 2004-277955 A 特開平9−155862号公報JP-A-9-155862 特開2002−212311号公報Japanese Patent Laid-Open No. 2002-212311 特開平6−166953号公報Japanese Patent Laid-Open No. 6-166953

上述したように、当該特許文献2に記載の技術はチョップドストランドマットの技術であり、繊維束がランダムに配向しているものの、単繊維状態でランダムに配向しているものではない。力学物性のバラツキを小さくするためには、繊維束がランダム化した状態よりも、単繊維状態でランダム化している方が好ましい。しかし、単繊維状態でランダム化する場合は、特許文献2のように繊維束に含浸してから樹脂含浸繊維束をランダム化する方法と異なり、一般に単繊維状態でランダム化したシート、例えば不織布形状とした後に樹脂を含浸することになるが、そうすると上述したように樹脂と接する繊維表面積の増加や基材の嵩高性等の影響により、含浸性は非常に悪くなる。   As described above, the technique described in Patent Document 2 is a chopped strand mat technique in which fiber bundles are randomly oriented, but are not randomly oriented in a single fiber state. In order to reduce the variation in mechanical properties, it is preferable that the fiber bundle is randomized in a single fiber state rather than in a random state. However, when randomizing in a single fiber state, unlike a method of randomizing a resin-impregnated fiber bundle after impregnating the fiber bundle as in Patent Document 2, generally a sheet randomized in a single fiber state, for example, a nonwoven fabric shape After that, the resin is impregnated. However, as described above, the impregnation property is extremely deteriorated due to the increase in the surface area of the fibers in contact with the resin and the bulkiness of the substrate.

また、単繊維がランダム化すると嵩高くなるため、繊維束がランダム化する場合と比較して繊維充填密度が低下し、優れた力学特性を有する高い繊維体積含有率とすることが困難であった。特に剛性の高い炭素繊維は単繊維のランダム化と共に嵩高くなる傾向がより顕著となり、見かけ密度が低くなって高い繊維体積含有率の複合材料を得ることが困難となる。本発明者らは、高い繊維体積含有率とするために鋭意努力を続け、繊維体積含有率を高くするためには、基材となる炭素繊維シートそのものの見掛け密度を高くする必要があることを見出したが、見かけ密度の高い炭素繊維シートを得ることの困難性に加え、樹脂の流路である炭素繊維間の隙間が狭まるため、さらに、樹脂の含浸性が悪くなることが判った。   In addition, when the single fiber is randomized, it becomes bulky, so the fiber packing density is lower than when the fiber bundle is randomized, and it is difficult to achieve a high fiber volume content with excellent mechanical properties. . In particular, carbon fibers with high rigidity tend to become more bulky with the randomization of single fibers, and the apparent density becomes low, making it difficult to obtain a composite material with a high fiber volume content. The present inventors have continued diligent efforts to achieve a high fiber volume content, and in order to increase the fiber volume content, it is necessary to increase the apparent density of the carbon fiber sheet itself as a base material. As found, in addition to the difficulty in obtaining a carbon fiber sheet having a high apparent density, the gap between the carbon fibers, which are the resin flow paths, is narrowed.

さらに、特許文献2においては、強化繊維として具体的に記載されているのはガラス繊維であり、炭素繊維についての具体的な記載はない。本発明者らが試みた炭素繊維の場合、ガラス繊維と比較して樹脂の含浸性が悪くなることが判った。   Furthermore, in Patent Document 2, glass fibers are specifically described as reinforcing fibers, and there is no specific description about carbon fibers. In the case of the carbon fiber which the present inventors tried, it turned out that the impregnation property of resin worsens compared with glass fiber.

ここで、特許文献3では、炭素繊維シートに樹脂を含浸させる手段について検討されている。しかし、炭素繊維を集束させ、さらに樹脂も繊維化させて炭素繊維シートに混合させているものの、炭素繊維の重量含有率が40%以上(炭素繊維の密度1.75、ナイロン6の密度1.14で換算した場合の体積含有率が30%以上)であるとやはり含浸不良となるなど、大きく改善できるものではなかった。   Here, in patent document 3, the means to impregnate resin to a carbon fiber sheet is examined. However, although the carbon fibers are bundled and the resin is also fiberized and mixed in the carbon fiber sheet, the carbon fiber weight content is 40% or more (carbon fiber density 1.75, nylon 6 density 1. If the volume content when converted to 14 was 30% or more), the impregnation was still poor, and it could not be improved greatly.

上記のとおり、炭素繊維がランダムに配向した、高い見かけ密度の炭素繊維シートに樹脂を含浸することは困難であった。   As described above, it was difficult to impregnate the resin into a high apparent density carbon fiber sheet in which carbon fibers were randomly oriented.

本発明の課題は、力学物性のバラツキを小さくすべく炭素繊維がランダムに配向し、かつ、優れた力学特性を有する高い繊維体積含有率の繊維強化複合材料を創出することにある。そのために、単繊維状態でランダムに配向し、高い見かけ密度を有する炭素繊維シートとした上で、樹脂を着実に含浸させるものである。   An object of the present invention is to create a fiber-reinforced composite material having a high fiber volume content, in which carbon fibers are randomly oriented in order to reduce variation in mechanical properties and have excellent mechanical properties. For this purpose, the resin is steadily impregnated with a carbon fiber sheet that is randomly oriented in a single fiber state and has a high apparent density.

本発明者らは単繊維がランダムに配向し、高い見かけ密度を有する炭素繊維シートとし、かつ、樹脂を着実に含浸させるため、上記の知見を基に以下のように考えた。ガラス繊維と炭素繊維で含浸性が変わることや、炭素繊維の表面積や繊維間の隙間が含浸性に影響を与えることから、炭素繊維表面の状態に着目したものである。   In order to obtain a carbon fiber sheet in which single fibers are randomly oriented and have a high apparent density and to steadily impregnate the resin, the present inventors have considered as follows based on the above findings. Since the impregnation property is changed between glass fiber and carbon fiber, and the surface area of carbon fiber and the gap between the fibers influence the impregnation property, attention is paid to the state of the carbon fiber surface.

ここで、特許文献4では、炭素繊維表面にCOO基を有するとマトリックスとの親水性が高められることが記載されている。しかし、特許文献4に記載の炭素繊維シートの見かけ密度は低いものである他、実際に樹脂を含浸した記載はない。   Here, Patent Document 4 describes that the hydrophilicity of the matrix is enhanced when the carbon fiber surface has a COO group. However, the carbon fiber sheet described in Patent Document 4 has a low apparent density, and there is no description that the resin is actually impregnated.

炭素繊維表面と樹脂との親和性が高められると却って樹脂流路に付着し、含浸性は悪くなるのではないかとも考えられたが、実際は驚くべきことに含浸性は著しく向上することを見出した。   It was thought that if the affinity between the carbon fiber surface and the resin is increased, it will adhere to the resin flow path and the impregnation property may deteriorate, but surprisingly, it was surprisingly found that the impregnation property is remarkably improved. It was.

これは、単繊維状態でランダムに配向し、高い見かけ密度を有する炭素繊維シートに適用した場合、樹脂の流路は非常に狭いものであり、樹脂との親和性が細い流路への樹脂の導入を促進させたのではないかと考えられる。   This is because, when applied to a carbon fiber sheet that is randomly oriented in a single fiber state and has a high apparent density, the flow path of the resin is very narrow, and the affinity of the resin to the flow path is narrow. It is thought that the introduction was promoted.

本発明は上記課題を解決するため、以下の構成を有する。すなわち、本発明の繊維強化複合材料は、炭素繊維と樹脂とからなる繊維強化複合材料であって、炭素繊維は単繊維状態でランダムに配向し、該炭素繊維が見かけ密度が0.25〜1.5g/cmのシート形状を構成し、該シート表面の炭素繊維表面におけるESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上であり、かつ、炭素繊維の繊維体積含有率が20〜80%であることを特徴とするものである。 In order to solve the above problems, the present invention has the following configuration. That is, the fiber-reinforced composite material of the present invention is a fiber-reinforced composite material composed of carbon fibers and a resin, and the carbon fibers are randomly oriented in a single fiber state, and the carbon fibers have an apparent density of 0.25 to 1. A sheet shape of 0.5 g / cm 3 , the sum of the ratio of COO groups and C—O groups in the C1s peak measured by ESCA on the carbon fiber surface of the sheet surface is 5% or more, and carbon The fiber volume content of the fiber is 20 to 80%.

また、本発明の繊維強化複合材料の製造方法は、炭素繊維シートの表面にある炭素繊維の表面のESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上である炭素繊維シートに樹脂を含浸し、繊維体積含有率20〜80%とすることを特徴とするものである。   Further, in the method for producing a fiber-reinforced composite material of the present invention, the sum of the ratios of COO groups and C—O groups in the C1s peak measured by ESCA on the surface of the carbon fiber on the surface of the carbon fiber sheet is 5% or more. The carbon fiber sheet is impregnated with a resin to have a fiber volume content of 20 to 80%.

本発明により、力学物性のバラツキを小さくすべく炭素繊維がランダムに配向し、かつ、優れた力学特性を有する高い繊維体積含有率の繊維強化複合材料を創出することができる。   According to the present invention, it is possible to create a fiber-reinforced composite material having a high fiber volume content, in which carbon fibers are randomly oriented so as to reduce the variation in mechanical properties and have excellent mechanical properties.

本発明でいう炭素繊維は、ポリアクリロニトリル(以下、PANと略す)系、ピッチ系、レーヨン系、フェノール樹脂系などの炭素繊維を挙げることができるが、強度に優れる点でPAN系炭素繊維が好ましい。炭素繊維は開繊した状態である方が、樹脂が含浸されやすく、接着性が優れる点で好ましい。特に、繊維体積含有率が20%以上となると、樹脂の含浸性が大きく低下するため、炭素繊維は開繊していることが好ましい。   Examples of the carbon fiber referred to in the present invention include polyacrylonitrile (hereinafter abbreviated as PAN), pitch, rayon, phenol resin, and the like, but PAN-based carbon fibers are preferred in terms of excellent strength. . It is preferable that the carbon fiber is in an opened state because the resin is easily impregnated and the adhesiveness is excellent. In particular, when the fiber volume content is 20% or more, the impregnation property of the resin is greatly reduced. Therefore, the carbon fiber is preferably opened.

本発明では、炭素繊維が繊維束として集束しているものではなく、単繊維状態でランダムに配向しているものである。繊維束ではなく、単繊維であることによって、力学物性のバラツキを抑制できる。反面、一般に高い繊維体積含有率を得ることが困難となり力学物性が低下するものの、本発明により高い繊維体積含有率を達成することで両立することができる。また、繊維を一方向に制御せず、ランダムに配向させることによって、より低コストに基材を製造することが可能となる。また、成型性が良好になるほか、擬似等方性が得られやすいという効果を奏する点でも好ましい。   In the present invention, the carbon fibers are not bundled as fiber bundles, but are randomly oriented in a single fiber state. Variations in mechanical properties can be suppressed by using single fibers instead of fiber bundles. On the other hand, although it is generally difficult to obtain a high fiber volume content and mechanical properties are lowered, it is possible to achieve both by achieving a high fiber volume content according to the present invention. Moreover, it becomes possible to manufacture a base material at lower cost by orienting fibers at random without controlling them in one direction. In addition, the moldability is good, and it is also preferable in that it has an effect that pseudo isotropic property is easily obtained.

単繊維状態でランダムに配向しているかどうかは、炭素繊維複合材料の表面を走査型電子顕微鏡にて無作為に5箇所とり、300倍で観察して繊維が3本以上揃って束状になっている繊維束が1箇所以下であることにより確認することができる。なお、ランダムに配向しているとは、繊維が一方向に揃って配向していない配向状態をいう。   Whether or not it is randomly oriented in a single fiber state is determined by taking the surface of the carbon fiber composite material at random at five locations with a scanning electron microscope and observing it at 300 times to form a bundle of three or more fibers. It can be confirmed that the number of fiber bundles is 1 or less. In addition, being oriented randomly means an oriented state in which the fibers are not aligned in one direction.

炭素繊維は、少なくとも1本あたり1箇所の屈曲を有していることが好ましい。少なくとも1本あたり1箇所の屈曲を有することにより、力学特性のばらつきをより抑制することができる。   The carbon fibers preferably have at least one bend per one. By having at least one bend per piece, it is possible to further suppress variations in mechanical properties.

本発明でいう屈曲とは、単繊維が折り曲がった状態や、挫屈した状態をいい、スパンボンド法やメルトブロー法等で得られた繊維にみられるような、繊維全体が湾曲した形状とは異なるものである。単繊維1本あたり1箇所以上あることが好ましく、2箇所以上がより好ましく、5箇所以上がさらに好ましい。   Bending as used in the present invention refers to a state in which a single fiber is bent or a state in which the single fiber is bent, and is a shape in which the entire fiber is curved as seen in a fiber obtained by a spunbond method or a melt blow method. Is different. Preferably, there are one or more locations per single fiber, more preferably 2 locations or more, and even more preferably 5 locations or more.

屈曲箇所は、繊維強化複合材料の一部を切り出して樹脂を除いて得た炭素繊維シートから、炭素繊維を無作為に400本抽出し、1本あたりの屈曲箇所を数え平均することによって求める。   The bent portion is obtained by randomly extracting 400 carbon fibers from a carbon fiber sheet obtained by cutting out a part of the fiber-reinforced composite material and removing the resin, and counting and averaging the bent portions per one.

炭素繊維の数平均繊維長は特に限定されず、各種ランダム化の手段に応じて適宜最適な繊維長を選定することができるが、数平均繊維長が5mm以上であると高い強度を得ることができる点で好ましい。より好ましくは30mm以上、さらに好ましくは55mm以上である。また、200mm以下であるとランダム化しやすく、開繊が容易である点で好ましい。より好ましくは100mm以下である。炭素繊維の数平均繊維長は、繊維強化複合材料の一部を切り出して樹脂を除去することで得た炭素繊維シートから、無作為に炭素繊維を400本抽出し、光学顕微鏡もしくは走査型電子顕微鏡にてその長さを10μm単位まで繊維長を測定し、その平均により求めることができる。   The number average fiber length of the carbon fibers is not particularly limited, and an optimal fiber length can be appropriately selected according to various randomizing means. However, when the number average fiber length is 5 mm or more, high strength can be obtained. It is preferable in that it can be performed. More preferably, it is 30 mm or more, More preferably, it is 55 mm or more. Moreover, when it is 200 mm or less, it is preferable at the point which is easy to randomize and is easy to open. More preferably, it is 100 mm or less. The number average fiber length of the carbon fibers is obtained by randomly extracting 400 carbon fibers from a carbon fiber sheet obtained by cutting out a part of the fiber reinforced composite material and removing the resin, and using an optical microscope or a scanning electron microscope. The fiber length can be measured up to 10 μm and the average can be obtained.

本発明においては、炭素繊維表面のESCAで測定した該基材表面のC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上である。好ましくは10%以上、さらに好ましくは15%以上である。炭素繊維を酸化してCOO基、C−O基を導入することにより、樹脂が炭素繊維シートに含浸されやすくなり、前述のとおり、ランダムに配向したシートでありながら、ボイドを抑制しつつ高い繊維体積含有率の繊維強化複合材料とすることができる。また結果的に、繊維と樹脂との接着性を高めることができる。   In the present invention, the sum of the ratios of COO groups and C—O groups in the C1s peak of the substrate surface measured by ESCA on the carbon fiber surface is 5% or more. Preferably it is 10% or more, More preferably, it is 15% or more. By introducing COO groups and CO groups by oxidizing carbon fibers, the resin is easily impregnated into the carbon fiber sheet, and as described above, the fibers are randomly oriented and high in fiber while suppressing voids. A fiber-reinforced composite material having a volume content can be obtained. As a result, the adhesion between the fiber and the resin can be improved.

ここで、炭素繊維はシートの表面に存在する炭素繊維を任意に5点サンプリングし、以下の方法で得られた値の平均値を用いる。COO基、C−O基の比率は、炭素繊維基材をESCA(Electron Spectroscopy for Chemical Analysis)で測定し、以下の方法により求めた値を用いる。すなわち、C1sピークをピーク分割することにより、C1sピーク中に占めるCOO基、C−O基、C−C基の比率を求め、この値から、COO基とC−O基の比率の合計を算出する。ピーク分割は、C1sスペクトル測定にて得られるスペクトルの帯電補正を行うために、メインピークをC−C、C=C、CHxの結合エネルギーを示す284.6eVとし、C−O基のピーク位置を286.6eV、C=O基のピーク位置を287.6eV、COO基のピーク位置を288.6eVとし、ベンゼン環など共役系のπ−π*サテライト成分を285.9eVと290.8eVとし、C−C、C=C、CHxのピークの高さをC1sのメインピークの高さと同じになるようにして行う。そして、例えばCOO基比率は、COO基のピーク面積をC1sスペクトルのピーク全体の面積で除することにより求めることができる。同様にして、各C=O基、C−O基、C−C基比率を求めることができる。   Here, as the carbon fiber, carbon fiber present on the surface of the sheet is arbitrarily sampled at five points, and an average value obtained by the following method is used. The ratio of the COO group and the C—O group is a value obtained by measuring a carbon fiber base material with ESCA (Electron Spectroscopy for Chemical Analysis) and calculating by the following method. That is, by dividing the C1s peak into peaks, the ratio of COO groups, C—O groups, and C—C groups in the C1s peak is obtained, and the total ratio of COO groups and C—O groups is calculated from this value. To do. In the peak division, in order to correct the charge of the spectrum obtained by the C1s spectrum measurement, the main peak is 284.6 eV indicating the binding energy of C—C, C═C, and CHx, and the peak position of the C—O group is 286.6 eV, the peak position of the C═O group is 287.6 eV, the peak position of the COO group is 288.6 eV, the π-π * satellite components of the conjugated system such as a benzene ring are 285.9 eV and 290.8 eV, and C -The peak heights of C, C = C, and CHx are set to be the same as the height of the main peak of C1s. For example, the COO group ratio can be obtained by dividing the peak area of the COO group by the area of the entire peak of the C1s spectrum. Similarly, the ratio of each C═O group, C—O group, and C—C group can be determined.

また、炭素繊維にはサイジング材が付与されていても良い。サイジング材としては、たとえば、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂などの一種または二種以上を、溶液、エマルジョン、サスペンジョン等にしたものが例示できる。   Moreover, the sizing material may be provided to the carbon fiber. Examples of sizing materials include epoxy resins, epoxy-modified polyurethane resins, polyester resins, phenol resins, polyamide resins, polyurethane resins, polycarbonate resins, polyetherimide resins, polyamideimide resins, polyimide resins, bismaleimide resins, urethane-modified epoxy resins. Examples thereof include one, two or more of polyvinyl alcohol resin, polyvinyl pyrrolidone resin, polyether sulfone resin, etc. in solution, emulsion, suspension and the like.

本発明の複合材料は、炭素繊維と樹脂からなり、炭素繊維の体積含有率は20〜80%である。体積含有率が20%以上、好ましくは35%以上、より好ましくは40%以上であると、高い引張強度、引張弾性率を発揮することができる。また、80%以下、好ましくは70%、より好ましくは60%以下であると、繊維の破断を抑制し、強化繊維の物性をより高く発揮でき、比強度に優れる材料とすることができる。なお、繊維体積含有率は、JIS K 7075(1991)により求めることができる。   The composite material of this invention consists of carbon fiber and resin, and the volume content rate of carbon fiber is 20 to 80%. When the volume content is 20% or more, preferably 35% or more, and more preferably 40% or more, high tensile strength and tensile elastic modulus can be exhibited. Moreover, it is 80% or less, Preferably it is 70%, More preferably, it can be set as the material which can suppress the fracture | rupture of a fiber, can exhibit the physical property of a reinforced fiber more, and is excellent in specific strength. The fiber volume content can be determined according to JIS K 7075 (1991).

また、本発明の複合材料は、炭素繊維シートの見かけ密度が0.25〜1.5g/cmである。一般に炭素繊維がランダムに配向したシートは、炭素繊維の剛性により嵩高性を有し、単純に炭素繊維を堆積させてシート化した場合は本発明の見かけ密度とすることは困難である。上述のように、炭素繊維の体積含有率を20〜80%とするために嵩高い炭素繊維シートに対して強引に樹脂を含浸すると、炭素繊維の破断が起こったり、高圧プレス機が必要となる等、種々の問題が発生する。一方、後述する本願発明の製造方法によって、炭素繊維シートの見かけ密度を本発明の範囲とすることで、このような問題を抑制することが可能になる。なお、本発明の繊維強化複合材料における炭素繊維シートの見かけ密度は、炭素繊維と樹脂からなる繊維強化複合材料から、樹脂を除いて測定した値か、または、樹脂を含浸する直前の炭素繊維シートをそのまま測定した値、のいずれかを用いることができ、少なくとも一方が本発明の範囲であればよい。 In the composite material of the present invention, the apparent density of the carbon fiber sheet is 0.25 to 1.5 g / cm 3 . In general, a sheet in which carbon fibers are randomly oriented has bulkiness due to the rigidity of the carbon fibers, and when the carbon fibers are simply deposited to form a sheet, it is difficult to obtain the apparent density of the present invention. As described above, if the resin is forcibly impregnated into a bulky carbon fiber sheet in order to make the volume content of the carbon fiber 20 to 80%, the carbon fiber breaks or a high-pressure press is required. Various problems occur. On the other hand, such a problem can be suppressed by setting the apparent density of the carbon fiber sheet within the scope of the present invention by the production method of the present invention described later. The apparent density of the carbon fiber sheet in the fiber reinforced composite material of the present invention is a value measured by removing the resin from the fiber reinforced composite material made of carbon fiber and resin, or the carbon fiber sheet just before impregnating the resin. Can be used as long as at least one of them is within the scope of the present invention.

一般に炭素繊維強化複合材料をスタンパブルシートとして用いる場合、樹脂を除くと炭素繊維シートはいわゆるスプリングバックによって樹脂含浸前の厚みに回復する性質がある。スプリングバックが大きい場合、意図しない変形が起こりやすくなること、厚さが不均一となりやすくなること、等の問題があるため好ましくない。本発明では、炭素繊維シートの見かけ密度を本発明の範囲とすることで、このスプリングバックを抑制できるという効果を得ることができる。炭素繊維シートの見かけ密度が0.25g/cm以上、より好ましくは0.7g/cm以上であると、スプリングバックが小さく、成型コストを抑制することができる。 In general, when a carbon fiber reinforced composite material is used as a stampable sheet, when the resin is removed, the carbon fiber sheet has a property of recovering to a thickness before impregnation with the resin by so-called spring back. If the springback is large, unintended deformation is likely to occur and the thickness is likely to be non-uniform, which is not preferable. In this invention, the effect that this springback can be suppressed can be acquired by making the apparent density of a carbon fiber sheet into the range of this invention. When the apparent density of the carbon fiber sheet is 0.25 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, the spring back is small, and the molding cost can be suppressed.

見かけ密度は、繊維体積含有率に応じて調整するため、単純に高密度であれば良いというものではなく、目的とする体積含有率に相当する見かけ密度と同等かやや小さい程度とすることが好ましい。なお、1.0g/cm以下とすることは、圧縮による繊維の変形、強度の低下等を抑制できるため好ましい。 Since the apparent density is adjusted according to the fiber volume content, it is not simply a high density, and it is preferable that the apparent density is equal to or slightly smaller than the apparent density corresponding to the target volume content. . In addition, it is preferable to set it as 1.0 g / cm < 3 > or less since the deformation | transformation of the fiber by compression, the fall of intensity | strength, etc. can be suppressed.

樹脂を除く手段としては特に限定されず、樹脂を溶解・分解することができる溶液で処理する方法、JIS K 7075(1991)に記載される方法等を適用することができる。   The means for removing the resin is not particularly limited, and a method of treating with a solution capable of dissolving and decomposing the resin, a method described in JIS K 7075 (1991), and the like can be applied.

複合材料から樹脂を除いた後の、あるいは樹脂を含浸する前の炭素繊維シートの見かけ密度は、JIS L 1913 6.1(厚さ(A法))に準じて、20cm×20cmの試験片を5枚採取し、(株)大栄科学精機製作所製の全自動圧縮弾性・厚さ測定器(型式:CEH−400)を用いて、圧力0.5kPaの加圧下で10秒後における各試験片の厚さを10箇所測り、その平均値を厚さとして求めた後、この厚さと長さ(20cm×20cm)、重量から、少数第3位四捨五入して求める。なお、得られた5枚の見かけ密度の平均値を、本発明でいう炭素繊維シートの見かけ密度とした。   The apparent density of the carbon fiber sheet after removing the resin from the composite material or before impregnating the resin is determined according to JIS L 1913 6.1 (thickness (Method A)). Five samples were collected, and each test piece after 10 seconds under a pressure of 0.5 kPa using a fully automatic compression elasticity / thickness measuring instrument (model: CEH-400) manufactured by Daiei Kagaku Seisakusho Co., Ltd. Thickness is measured at 10 locations, and the average value is obtained as the thickness. Then, the thickness is obtained by rounding off to the third decimal place from the thickness, length (20 cm × 20 cm), and weight. In addition, the average value of the obtained five apparent density was made into the apparent density of the carbon fiber sheet as used in the field of this invention.

本発明で用いる樹脂としては、エポキシ樹脂、不飽和ポリエステル、メラミン、フェノール、ポリイミドなどの熱硬化性樹脂や、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアミド、ポリプロピレン、ポリエステルなどの熱可塑性樹脂等を挙げることができる。本発明では成形が容易でコスト的に有利であり、また、成型時の粘度が高くなり繊維の流動性が改善できる点で熱可塑性樹脂が好ましい。また、含浸性に優れる点で、熱可塑性樹脂の中でもポリアミドが特に好ましい。   Examples of the resin used in the present invention include thermosetting resins such as epoxy resins, unsaturated polyesters, melamine, phenol and polyimide, and thermoplastic resins such as polyether ether ketone, polyphenylene sulfide, polyamide, polypropylene and polyester. Can do. In the present invention, a thermoplastic resin is preferred because it is easy to mold and advantageous in terms of cost, and the viscosity at the time of molding becomes high and the fluidity of fibers can be improved. Of the thermoplastic resins, polyamide is particularly preferable because of its excellent impregnation property.

次に、本発明の繊維強化複合材料の製造方法を説明する。   Next, the manufacturing method of the fiber reinforced composite material of this invention is demonstrated.

炭素繊維を単繊維状態でランダムに配向させる方法としては、例えば繊維束を切断した後、シート化する方法や、単繊維をペレット化して成型する方法があげられるが、コストと強度を両立する点で、本発明では前者が好ましい。具体的には、例えば炭素繊維を切断して短繊維化した後、カードやクロスラッパーを用いた乾式法、抄造機を用いた湿式法、等で不織布ウェブ化する方法等、種々の不織布の製造方法を適用することができる。このとき、乾式法では開綿機、湿式法では叩解機、等を用いて十分に開繊してから不織布化ことが好ましい。不織布化した後に開繊することは一般に困難であるが、例えば超音波振動やサンドブラスト等による打開等の手段で行うことも可能である。   Examples of a method of randomly orienting carbon fibers in a single fiber state include, for example, a method of cutting a fiber bundle and then forming a sheet, and a method of forming a single fiber by pelletizing it, but the cost and strength are compatible. In the present invention, the former is preferable. Specifically, for example, various types of non-woven fabrics such as a method of forming a non-woven web by cutting a carbon fiber to make a short fiber and then forming a non-woven web by a dry method using a card or a cross wrapper, a wet method using a paper machine, etc. The method can be applied. At this time, it is preferable to use a cotton spreader in the dry method, a beating machine in the wet method, and the like to form a nonwoven fabric after sufficiently opening the fiber. Although it is generally difficult to open the fiber after making it into a non-woven fabric, it can also be performed by means such as ultrasonic wave vibration, sandblasting or the like.

繊維に屈曲を付与する方法としては、例えば、繊維のけん縮付与手段を採用することができる。けん縮を付与する方法としては、機械けん縮による形状付与や、芯鞘構造が偏芯タイプ、サイドバイサイド等の複合繊維、仮撚加工糸等の熱処理による形状付与等があげられる。   As a method for imparting bending to the fiber, for example, a crimping means for the fiber can be employed. Examples of a method for imparting crimp include shape imparting by mechanical crimping, shape imparting by heat treatment such as composite fiber having a core-sheath structure of an eccentric type, side-by-side, false twisted yarn, and the like.

機械けん縮による形状付与とは、直線状の繊維に対し押し込み式クリンパー等のけん縮付与装置によってけん縮を付与する方法や、2枚以上のギヤの間に繊維を導入して形状付与する方法等があり、ライン速度の周速差・熱・加圧によってけん縮数、けん縮率を制御することができる。   Shape imparting by mechanical crimping is a method of imparting crimp to a straight fiber by a crimping imparting device such as a push-in crimper, or a method of imparting a shape by introducing fibers between two or more gears. The number of crimps and the crimp rate can be controlled by the peripheral speed difference, heat, and pressurization of the line speed.

熱処理による形状付与とは、融点の異なる2つ以上の樹脂からなる複合繊維に、熱を加え、熱収縮率により繊維を3次元にけん縮させる方法がある。複合繊維の断面は、芯鞘構造の偏芯タイプ、左右成分の融点が異なるサイドバイサイドタイプが挙げられる。   Forming by heat treatment includes a method in which heat is applied to a composite fiber made of two or more resins having different melting points, and the fiber is crimped in three dimensions by a heat shrinkage rate. Examples of the cross section of the composite fiber include an eccentric type with a core-sheath structure and a side-by-side type in which the melting points of the left and right components are different.

本発明では、力学物性のばらつきを抑制するために、直線状の部分が存在する繊維であることが好ましく、これを容易に得ることができる点で機械けん縮が好ましく採用できる。   In the present invention, in order to suppress variations in mechanical properties, it is preferably a fiber having a linear portion, and mechanical crimping can be preferably employed because it can be easily obtained.

一般に炭素繊維の場合、屈曲付与によって繊維が破断する可能性が高いため、前駆体繊維に付与してから、焼成して炭素繊維とすることが好ましい。例えば、PAN系炭素繊維の場合、炭化前の耐炎糸に屈曲を付与し、ついで焼成することにより、屈曲を有するPAN系炭素繊維を得ることができる。また、ピッチ系炭素繊維の場合も、同様に、例えばピッチ前駆体繊維の状態で屈曲を付与した後、焼成することが好ましい。炭素繊維のうち、特にPAN系炭素繊維は、前駆体の耐炎糸の強度および破断伸度が高く、明確な屈曲付与が容易であるため、PAN系耐炎糸を用いたPAN系炭素繊維を得る方法は、本発明の好ましい製造方法である。   In general, in the case of carbon fiber, since there is a high possibility that the fiber breaks due to the bending, it is preferable that the carbon fiber is fired after being applied to the precursor fiber. For example, in the case of a PAN-based carbon fiber, a PAN-based carbon fiber having a bend can be obtained by imparting a bend to the flameproof yarn before carbonization and then firing it. Similarly, in the case of pitch-based carbon fibers, it is preferable to fire after applying bending in the state of, for example, pitch precursor fibers. Among carbon fibers, PAN-based carbon fibers, in particular, have high strength and elongation at break of the flame-resistant yarn of the precursor, and are easy to impart a clear bend. Therefore, a method of obtaining a PAN-based carbon fiber using a PAN-based flame resistant yarn Is a preferred production method of the present invention.

なお、PAN系耐炎糸を製造するためのPANの耐炎化は、通常、空気を4〜25mol%以上含む雰囲気中で、延伸比を0.8〜1.2、処理時間を10〜100分、温度を150〜350℃の範囲で行うことができる。PAN系耐炎糸の比重が1.3〜1.38の範囲となるように設定することが好ましい。   In addition, the flame resistance of PAN for producing the PAN-based flameproof yarn is usually 0.8 to 1.2 in an atmosphere containing 4 to 25 mol% or more of air, a treatment time of 10 to 100 minutes, The temperature can be in the range of 150 to 350 ° C. It is preferable to set so that the specific gravity of the PAN-based flameproof yarn is in the range of 1.3 to 1.38.

上述した耐炎糸をシート化し、ついでカレンダーやプレス機を用いて見かけ密度を調整し、炭素繊維シートの見かけ密度を0.25〜1.5g/cmとすることが好ましい。耐炎糸シートを焼成した後に、プレス機等で見かけ密度を調整しようとすると、既に剛直な繊維となっているため繊維に破断が生じ、期待する見かけ密度のシートを得ることは困難になる。 It is preferable that the flame resistant yarn is formed into a sheet, and then the apparent density is adjusted using a calendar or a press, so that the apparent density of the carbon fiber sheet is 0.25 to 1.5 g / cm 3 . If the apparent density is adjusted with a press or the like after the flame resistant yarn sheet is fired, the fiber already breaks and the fiber is broken, making it difficult to obtain a sheet having the expected apparent density.

耐炎糸シートの見かけ密度から炭素繊維シートの見かけ密度を一義的に定めることは、耐炎糸条件に影響されるため一般に困難ではあるが、例えば厚み方向に荷重をかけて焼成することで、耐炎糸シートの見かけ密度の±2割程度の見かけ密度を有する炭素繊維シートを得ることができる。   It is generally difficult to uniquely determine the apparent density of the carbon fiber sheet from the apparent density of the flame resistant yarn sheet because it is affected by the flame resistant yarn conditions. For example, by firing with a load in the thickness direction, the flame resistant yarn A carbon fiber sheet having an apparent density of about ± 20% of the apparent density of the sheet can be obtained.

なお、見かけ密度は目的の繊維体積含有率を考慮して設定することが好ましい。少なくともシートの空隙率が目標とする樹脂体積含有率と同じか、あるいは1.5倍以下とすることが好ましい。炭素繊維シートの見かけ密度が小さすぎる場合、樹脂は空隙にしか含浸することができず、目標とする繊維体積含有率を得ることが困難になる。樹脂を含浸することを想定して見かけ密度を制御することが好ましい。   The apparent density is preferably set in consideration of the target fiber volume content. It is preferable that at least the porosity of the sheet is the same as the target resin volume content, or 1.5 times or less. If the apparent density of the carbon fiber sheet is too small, the resin can only be impregnated into the voids, making it difficult to obtain the target fiber volume content. It is preferable to control the apparent density assuming that the resin is impregnated.

炭素繊維表面におけるESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上とするため、炭素繊維の表面処理を行う。表面処理は、シート形状とする前の繊維の状態で行っても、シート形状としてから行っても良いが、処理の効率化とコストの点では後者が好ましい。   Since the sum of the ratios of COO groups and C—O groups in the C1s peak measured by ESCA on the surface of the carbon fiber is 5% or more, the surface treatment of the carbon fiber is performed. The surface treatment may be performed in the fiber state before forming the sheet shape or may be performed after forming the sheet shape, but the latter is preferable in terms of efficiency of processing and cost.

表面処理方法としては、オゾンガスによる酸化やコロナ処理、プラズマ処理などの気相処理では、炭素繊維基材表面と内部の繊維で処理バラツキが生じる可能性が高いため、液相による酸化処理を行うことが好ましい。   As the surface treatment method, in gas phase treatment such as oxidation with ozone gas, corona treatment, plasma treatment, etc., there is a high possibility that treatment variation will occur between the carbon fiber substrate surface and internal fibers, so oxidation treatment by liquid phase should be performed Is preferred.

シート形状で表面処理を行う場合、シート内部の気泡の存在により処理斑が発生する場合があるため、これを積極的に除去することが好ましい。気泡の除去は、処理液の振動や攪拌、流動等で行うことができる。また、脱泡剤を付与することもできる。   When the surface treatment is performed in the form of a sheet, it is preferable to positively remove the processing spots due to the presence of bubbles in the sheet. The removal of the bubbles can be performed by vibration, stirring, flow, or the like of the processing liquid. Moreover, a defoaming agent can also be provided.

本発明において、表面処理を電解酸化で行うことは好ましい態様の一つである。電解酸化処理で用いる電解質に特に制限はないが、硫酸、硝酸、塩酸、炭酸、硝酸アンモニウム、硝酸水素アンモニウム、リン酸2水素アンモニウム、リン酸水素2アンモニウムなどの酸や、水酸化ナトリウム、水酸化カリウム、水酸化バリウムなどの水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、リン酸カリウム等の無機塩、マレイン酸ナトリウム、酢酸ナトリウム、酢酸カリウム、安息香酸ナトリウム等の有機塩、または、アンモニア、炭酸アンモニウム、炭酸水素アンモニウムなどのアルカリを単独または2種類以上の混合物を用いることができる。   In the present invention, it is one of preferred embodiments that the surface treatment is performed by electrolytic oxidation. There are no particular restrictions on the electrolyte used in the electrolytic oxidation treatment, but acids such as sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, ammonium nitrate, ammonium hydrogen nitrate, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, sodium hydroxide, potassium hydroxide , Hydroxides such as barium hydroxide, inorganic salts such as sodium carbonate, sodium bicarbonate, sodium phosphate and potassium phosphate, organic salts such as sodium maleate, sodium acetate, potassium acetate and sodium benzoate, or ammonia In addition, alkalis such as ammonium carbonate and ammonium hydrogen carbonate can be used alone or in a mixture of two or more.

電解液の濃度は、処理効率が損なわれない範囲であればよく、0.1〜2mol/リットル程度で行うことができる。   The density | concentration of electrolyte solution should just be a range which does not impair processing efficiency, and can be performed at about 0.1-2 mol / liter.

電解槽での酸化電気量は被表面処理炭素繊維トウの炭化度に合わせて最適化することが好ましく、複数の電解槽で電解処理を行うことが好ましい。また、マトリックス樹脂の含浸性に優れ、繊維の過剰な酸化による炭素繊維の強度低下を抑制できる点で、総電気量は5〜1000クーロン/g(炭素繊維1g当たりのクーロン数)であることが好ましく、10〜500クーロン/gの範囲にすることがさらに好ましい。   The amount of electricity oxidized in the electrolytic cell is preferably optimized in accordance with the carbonization degree of the surface-treated carbon fiber tow, and the electrolytic treatment is preferably performed in a plurality of electrolytic cells. Moreover, it is excellent in the impregnation property of the matrix resin, and the total amount of electricity is 5 to 1000 coulombs / g (the number of coulombs per gram of carbon fibers) in that the decrease in strength of the carbon fibers due to excessive oxidation of the fibers can be suppressed. Preferably, the range is 10 to 500 coulomb / g.

また、表面処理をオゾン水による酸化処理とすることもできる。オゾン水による酸化処理では、電解液を用いないため、電解質の残留による物性への影響がない点で好ましい。
オゾン水による酸化処理は、オゾンガスを純水に溶解した浴槽中に炭素繊維構造体を浸漬させるものである。オゾン水による酸化処理のコストパフォーマンスに優れる点で、オゾン水中のオゾン濃度は10mg/L〜110mg/Lであることが好ましく、より好ましくは30〜100mg/L、さらに好ましくは40〜90mg/Lである。
Further, the surface treatment can be an oxidation treatment with ozone water. Oxidation with ozone water is preferable because it does not use an electrolytic solution and therefore does not affect the physical properties due to residual electrolyte.
In the oxidation treatment with ozone water, the carbon fiber structure is immersed in a bath in which ozone gas is dissolved in pure water. The ozone concentration in the ozone water is preferably 10 mg / L to 110 mg / L, more preferably 30 to 100 mg / L, and even more preferably 40 to 90 mg / L in terms of excellent cost performance of the oxidation treatment with ozone water. is there.

また、同様の理由で、オゾン水浴槽中での処理時間は、1〜10分であることが好ましく、2〜7分であることがより好ましく、3〜5分であることがさらに好ましい。   For the same reason, the treatment time in the ozone water bath is preferably 1 to 10 minutes, more preferably 2 to 7 minutes, and further preferably 3 to 5 minutes.

このように処理することで、炭素繊維シートの表面にある炭素繊維の表面のESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上、好ましくは10%以上、さらに好ましくは15%以上である炭素繊維のシートとする。   By treating in this way, the sum of the ratios of COO groups and C—O groups in the C1s peak measured by ESCA on the surface of the carbon fiber on the surface of the carbon fiber sheet is 5% or more, preferably 10% or more. More preferably, the carbon fiber sheet is 15% or more.

ついで、得られた炭素繊維のシートに樹脂を含浸し、繊維体積含有率を20〜80%とする。含浸方法は、採用する成型方法に適した方法を適宜採用することができる。   Subsequently, the obtained carbon fiber sheet is impregnated with a resin, and the fiber volume content is set to 20 to 80%. As the impregnation method, a method suitable for the molding method to be employed can be appropriately employed.

実施例中の物性値は以下の方法で測定した。   The physical property values in the examples were measured by the following methods.

A.炭素繊維不織布の見かけ密度の測定
ナイロン6を溶解する蟻酸に複合材料を25℃で1時間浸漬した後、取り出して水洗し、室温で乾燥させた。ついで、JIS L 1913 6.1(厚さ(A法))に準じて、20cm×20cmの試験片を5枚採取し、(株)大栄科学精機製作所製の全自動圧縮弾性・厚さ測定器(型式:CEH−400)を用い、圧力0.5kPaの加圧下で10秒後における各試験片の厚さを10箇所測り、その平均値を厚さとした。この厚さと長さ(20cm×20cm)、重量から、見かけ密度を少数第3位四捨五入して求めた。得られた5枚の見かけ密度の平均値を、シートの見かけ密度とした。
A. Measurement of Apparent Density of Carbon Fiber Nonwoven Fabric After immersing the composite material in formic acid dissolving nylon 6 at 25 ° C. for 1 hour, the composite material was taken out, washed with water, and dried at room temperature. Next, in accordance with JIS L 1913 6.1 (thickness (Method A)), five 20 cm × 20 cm test pieces were collected, and a fully automatic compression elasticity / thickness measuring instrument manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd. Using (type: CEH-400), the thickness of each test piece after 10 seconds was measured under a pressure of 0.5 kPa, and the average value thereof was defined as the thickness. From this thickness, length (20 cm × 20 cm), and weight, the apparent density was determined by rounding off to the third decimal place. The average value of the apparent density of the five obtained sheets was taken as the apparent density of the sheet.

B.炭素繊維の配向
複合材料から無作為に5点サンプリングし、走査型電子顕微鏡にて300倍の倍率で表面観察した。このとき、繊維が3本以上揃って束状になっている部分が1箇所以下である場合、繊維束がない状態(単繊維状態)であるとした。
B. Carbon Fiber Orientation Five points were randomly sampled from the composite material, and the surface was observed with a scanning electron microscope at a magnification of 300 times. At this time, when the number of the bundles of three or more fibers is one or less, it is assumed that there is no fiber bundle (single fiber state).

C.COO基、C−O基比率
ESCA (X 線光電子分光法) にて、炭素繊維基材の表面に存在する炭素繊維および、炭素繊維基材を任意の面で切り、内部に存在する炭素繊維を下記の条件でC1sスペクトルを測定し、ピーク分割を行った。
C. COO group, CO group ratio ESCA (X-ray photoelectron spectroscopy) With carbon fiber existing on the surface of the carbon fiber substrate, the carbon fiber substrate is cut in an arbitrary surface, the carbon fiber present in the interior The C1s spectrum was measured under the following conditions, and peak splitting was performed.

ピーク分割は、スペクトルの帯電補正を行うために、C1sメインピークをC−C、C=C、CHxの結合エネルギーを示す284.6eVへ合わせ、C−O基のピーク位置を286.6eV、C=O基のピーク位置を287.6eV、COO基のピーク位置を288.6eV、ベンゼン環など共役系のπ−π*サテライト成分を285.9eVと290.8eVとし、C−C、C=C、CHxのピークの高さをC1sのメインピークの高さと同じになるようにしてピーク分割を行い、COO基、C−O基のそれぞれのピーク面積をC1sピーク全体の面積で除すことで得られた値をCOO基比率、C−O基比率とし、その和を求めた。
・装置: Quantera SXM(PHI 社製)
・励起X 線:monochromatic Al Kα1,2 線(1486.6 eV)
・X線径:200μm
・光電子脱出角度:45 度(試料表面に対する検出器の傾き)
・データ処理:スペクトル(ナロースキャン)のスムージング:9-point smoothing
・測定サンプル数:サンプリング間隔を1cm以上離して、表面および内部の面を各5点測定した。
・ピーク分割:Avantageデータシステム(Thermo Fisher Scientific社製)を用いて、C1sピークのピーク分割を行った。
In the peak division, the C1s main peak is adjusted to 284.6 eV indicating the binding energy of C—C, C═C, and CHx, and the peak position of the C—O group is set to 286.6 eV, C, in order to perform charge correction of the spectrum. The peak position of the O group is 287.6 eV, the peak position of the COO group is 288.6 eV, π-π * satellite components of the conjugated system such as a benzene ring are 285.9 eV and 290.8 eV, and C—C, C = C , CHx peak height is the same as the C1s main peak height, and peak division is performed, and the respective peak areas of the COO group and CO group are divided by the total area of the C1s peak. The obtained values were taken as the COO group ratio and the CO group ratio, and the sum was obtained.
・ Device: Quantera SXM (manufactured by PHI)
Excitation X-ray: monochromatic Al Kα1,2 line (1486.6 eV)
・ X-ray diameter: 200 μm
-Photoemission angle: 45 degrees (inclination of the detector with respect to the sample surface)
Data processing: Spectrum (narrow scan) smoothing: 9-point smoothing
-Number of measurement samples: The surface and the inner surface were measured at five points each with a sampling interval of 1 cm or more.
-Peak splitting: Peak splitting of the C1s peak was performed using an Avantage data system (manufactured by Thermo Fisher Scientific).

D.引張強度
JIS K 7161〜7164(1994)に記載の方法に準じて、試料面内で0°、15°、30°、45°、60°、75°、90°のそれぞれの方向にタイプ1BA形小型試験片を作成して引張破壊応力を測定した。全ての方向の引張破壊応力の平均を引張強度とした。
D. Tensile strength Type 1BA type in each direction of 0 °, 15 °, 30 °, 45 °, 60 °, 75 °, 90 ° within the sample surface according to the method described in JIS K 7161-7164 (1994) A small test piece was prepared and the tensile fracture stress was measured. The average of the tensile fracture stress in all directions was defined as the tensile strength.

E.繊維体積含有率(Vf)
JIS K 7075(1991)により測定した。
E. Fiber volume content (Vf)
It was measured according to JIS K 7075 (1991).

F.数平均繊維長
複合材料から樹脂を除き、炭素繊維シートとする。ついで、炭素繊維を無作為に400本抽出し(抽出中に破断した繊維を除く)、光学顕微鏡もしくは走査型電子顕微鏡にてその長さを10μm単位まで測定し繊維長とし、下式により数平均繊維長を得た。
数平均繊維長(Ln)=(ΣLi)/400
Li:測定した繊維長(i=1,2,3、・・・400)
G.屈曲数
繊維強化複合材料の一部を切り出して樹脂を除いて得た炭素繊維シートから、炭素繊維を無作為に400本抽出し、1本あたりの屈曲箇所を数え平均することによって求めた。
F. Number average fiber length Resin is removed from the composite material to obtain a carbon fiber sheet. Next, 400 carbon fibers were randomly extracted (excluding fibers that were broken during extraction), and the length was measured to the unit of 10 μm with an optical microscope or a scanning electron microscope to obtain the fiber length. The fiber length was obtained.
Number average fiber length (Ln) = (ΣLi) / 400
Li: measured fiber length (i = 1, 2, 3,... 400)
G. Number of bends Obtained by randomly extracting 400 carbon fibers from a carbon fiber sheet obtained by cutting out a portion of the fiber-reinforced composite material and removing the resin, and counting and averaging the number of bends per piece.

実施例1
アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のAN系繊維束を得た。得られたPAN系繊維束を240〜280℃の温度の空気中で、延伸比1.05で加熱し、PAN系耐炎糸(密度1.38g/cm)とした。
Example 1
Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an AN fiber bundle having a single fiber denier 1d and a filament number of 12,000 was obtained by a dry and wet spinning method. The obtained PAN-based fiber bundle was heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to obtain a PAN-based flame resistant yarn (density 1.38 g / cm 3 ).

次に、PAN系耐炎糸を押し込み式クリンパーにより捲縮糸とした。得られた捲縮糸の捲縮数は7.1/25mm、捲縮率は12.7%であった。この耐炎糸を数平均繊維長76mmに切断した後、カード、クロスラッパーを用いてウェブシートとし、ついでニードルパンチにて見かけ密度0.05g/cmのPAN系耐炎糸不織布とした。 Next, the PAN flame resistant yarn was crimped by a push-in crimper. The number of crimps of the obtained crimped yarn was 7.1 / 25 mm, and the crimp rate was 12.7%. This flame resistant yarn was cut into a number average fiber length of 76 mm, and then formed into a web sheet using a card and a cross wrapper, and then made into a PAN flame resistant yarn nonwoven fabric with an apparent density of 0.05 g / cm 3 by needle punching.

得られたPAN系耐炎糸不織布は、200℃に加熱したプレス機で圧縮し、見かけ密度0.78g/cmとした。 The obtained PAN-based flameproof nonwoven fabric was compressed with a press machine heated to 200 ° C. to give an apparent density of 0.78 g / cm 3 .

次いで窒素雰囲気中1500℃の温度まで昇温して焼成した後(炭素繊維の密度:1.80g/cm)、この炭素繊維不織布を炭酸水素アンモニウム水溶液(0.1モル/リットル)中に浸漬し、水溶液中で26KHzにて超音波処理しながら76クーロン/gの電気量となるように電解酸化処理を行い、水洗および乾燥を行った。電解酸化処理後の炭素繊維不織布の表面のC1sピーク中に占めるCOO基比、C−O基の比率の和をESCAにて測定した。このときの炭素繊維不織布の見かけ密度は0.72g/cmであった。 Next, after heating to a temperature of 1500 ° C. in a nitrogen atmosphere and firing (carbon fiber density: 1.80 g / cm 3 ), the carbon fiber nonwoven fabric is immersed in an aqueous ammonium hydrogen carbonate solution (0.1 mol / liter). Then, an electrolytic oxidation treatment was performed so that the amount of electricity was 76 coulombs / g while performing ultrasonic treatment at 26 KHz in an aqueous solution, followed by washing with water and drying. The sum of the COO group ratio and the C—O group ratio in the C1s peak on the surface of the carbon fiber nonwoven fabric after electrolytic oxidation treatment was measured by ESCA. The apparent density of the carbon fiber nonwoven fabric at this time was 0.72 g / cm 3 .

このPAN系炭素繊維不織布に密度が1.14g/cmのナイロン6を溶融含浸して、繊維体積含有率(Vf)40%の繊維強化複合材料を得た。得られた繊維強化複合材料の評価結果は表のとおりであり、樹脂の含浸性も良好で高い物性が得られることがわかった。また、この走査型電子顕微鏡で表面観察したところ、炭素繊維は単繊維状態でランダムに配向しており、ナイロン6を蟻酸で除去して炭素繊維不織布の見かけ密度を測定した結果、0.70g/cmであった。また、屈曲数は17.5個であった。 This PAN-based carbon fiber nonwoven fabric was melt impregnated with nylon 6 having a density of 1.14 g / cm 3 to obtain a fiber-reinforced composite material having a fiber volume content (Vf) of 40%. The evaluation results of the obtained fiber reinforced composite material are as shown in the table, and it was found that the resin impregnation property is good and high physical properties can be obtained. Further, when the surface was observed with this scanning electron microscope, the carbon fibers were randomly oriented in a single fiber state. As a result of measuring the apparent density of the carbon fiber nonwoven fabric by removing nylon 6 with formic acid, 0.70 g / cm 3 . Moreover, the number of bendings was 17.5.

実施例2
電気量を100クーロン/gとした以外は実施例2と同様に処理した。樹脂の含浸性は実施例1対比良好であり、また強度も若干向上した。
Example 2
The treatment was performed in the same manner as in Example 2 except that the amount of electricity was 100 coulomb / g. The impregnation property of the resin was better than that of Example 1, and the strength was slightly improved.

実施例3
樹脂含浸前の炭素繊維不織布の見かけ密度を0.52g/cm(樹脂を除去した後の炭素繊維不織布の見かけ密度を0.50g/cm)とし、繊維体積含有率(Vf)を20%とした以外は、実施例1と同様に処理した。得られた結果は、実施例1と比較してVf減少に対応して強度が若干低下した。
Example 3
The apparent density of the carbon fiber nonwoven fabric before impregnation with the resin is 0.52 g / cm 3 (the apparent density of the carbon fiber nonwoven fabric after removing the resin is 0.50 g / cm 3 ), and the fiber volume content (Vf) is 20%. The process was the same as in Example 1 except that. The obtained results showed a slight decrease in strength corresponding to the decrease in Vf compared to Example 1.

実施例4
樹脂含浸前の炭素繊維不織布の見かけ密度を0.26g/cm(樹脂を除去した後の炭素繊維不織布の見かけ密度を0.25g/cm)とした以外は、実施例3と同様に処理した。得られた結果は、実施例3と比較して強度が若干減少した。また、樹脂を除いた後にはスプリングバックが生じるとともに、破断した繊維片が観察された。
Example 4
The same treatment as in Example 3 was conducted except that the apparent density of the carbon fiber nonwoven fabric before impregnation with the resin was 0.26 g / cm 3 (the apparent density of the carbon fiber nonwoven fabric after removing the resin was 0.25 g / cm 3 ). did. As a result, the strength was slightly reduced as compared with Example 3. Moreover, after removing the resin, a springback occurred and a broken fiber piece was observed.

実施例5
樹脂含浸前の炭素繊維不織布の見かけ密度を0.26g/cm(樹脂を除去した後の炭素繊維不織布の見かけ密度を0.25g/cm)とした以外は、実施例1と同様に処理した。得られた結果は、実施例4と比較してVfが大きい分強度が増加したが、同じVfの実施例1と比較すると若干減少した。また、樹脂を除いた後にはスプリングバックが生じるとともに、実施例4よりも多く破断した繊維片が観察された。
Example 5
The same treatment as in Example 1, except that the apparent density of the carbon fiber nonwoven fabric before resin impregnation was 0.26 g / cm 3 (the apparent density of the carbon fiber nonwoven fabric after removing the resin was 0.25 g / cm 3 ). did. As a result, the strength increased as Vf increased compared to Example 4, but decreased slightly compared to Example 1 of the same Vf. Moreover, after removing the resin, a springback occurred, and more broken fiber pieces than in Example 4 were observed.

比較例1
実施例1において、PAN系耐炎糸を捲縮と切断をすることなく、そのまま連続的に焼成し、屈曲を有しないPAN系炭素繊維を得た。この炭素繊維を炭酸水素アンモニウム水溶液(0.1モル/リットル)中に浸漬し、水溶液中で26KHzにて超音波処理しながら76クーロン/gの電気量となるように電解酸化処理を行い、水洗および乾燥を行った。ついで、3mmに切断して捲縮のない炭素繊維短繊維とした後、抄造法によって見かけ密度0.05g/cmのウェブシートとした。ついで、密度が1.14g/cmのナイロン6を溶融含浸して、繊維体積含有率(Vf)40%の繊維強化複合材料を得た。得られた繊維強化複合材料の評価結果は表のとおりであり、実施例1と比較して強度が大きく低下した。
Comparative Example 1
In Example 1, the PAN-based flame resistant yarn was continuously fired as it was without crimping and cutting to obtain a PAN-based carbon fiber having no bending. This carbon fiber is immersed in an aqueous solution of ammonium hydrogencarbonate (0.1 mol / liter), subjected to electrolytic oxidation treatment so that the amount of electricity becomes 76 coulombs / g while being ultrasonically treated at 26 KHz in the aqueous solution, and washed with water. And drying. Next, after cutting to 3 mm to make carbon fiber short fibers without crimping, a web sheet having an apparent density of 0.05 g / cm 3 was formed by a papermaking method. Subsequently, nylon 6 having a density of 1.14 g / cm 3 was melt-impregnated to obtain a fiber-reinforced composite material having a fiber volume content (Vf) of 40%. The evaluation results of the obtained fiber reinforced composite material are as shown in the table, and the strength was greatly reduced as compared with Example 1.

また、走査型電子顕微鏡で表面観察したところ、炭素繊維は単繊維状態でランダムに配向しており、ナイロン6を蟻酸で除去したところ、繊維は破断して元の形状を保つことが出来なかった。   When the surface was observed with a scanning electron microscope, the carbon fibers were randomly oriented in a single fiber state, and when nylon 6 was removed with formic acid, the fibers were broken and the original shape could not be maintained. .

比較例2
実施例1において、PAN系耐炎糸を捲縮と切断をすることなく、そのまま連続的に焼成し、屈曲を有しないPAN系炭素繊維を得た。ついでエポキシ樹脂を2.0重量%付与して繊維を集束させた後、64mmに切断した。あとは実施例1と同様に処理して複合材料を得た。繊維体積含有率は40%であり正常に含浸できたが、強度は実施例1と比較して低いものであった。なお、見かけ密度は、比較例1と同様、炭素繊維はシート状となっていないため、樹脂を除去すると炭素繊維はばらばらとなり測定できなかった。
Comparative Example 2
In Example 1, the PAN-based flame resistant yarn was continuously fired as it was without crimping and cutting to obtain a PAN-based carbon fiber having no bending. Then, 2.0% by weight of epoxy resin was applied to focus the fibers, and then cut to 64 mm. The rest was processed in the same manner as in Example 1 to obtain a composite material. The fiber volume content was 40%, and the fiber could be normally impregnated, but the strength was lower than that of Example 1. The apparent density was not measured in the same manner as in Comparative Example 1, and the carbon fibers were not separated when the resin was removed.

また、走査型電子顕微鏡で表面観察したところ、炭素繊維が集束した状態を2個以上確認した。   Further, when the surface was observed with a scanning electron microscope, two or more carbon fibers converged were confirmed.

比較例3
電解処理をしないこと以外は実施例1と同様に処理した。見かけ上、目標の繊維体積含有率とすることができたが、界面に微細なボイドが存在するとともに、得られた複合材料の強度は非常に低いものであった。
Comparative Example 3
The treatment was performed in the same manner as in Example 1 except that the electrolytic treatment was not performed. Apparently, the target fiber volume content could be achieved, but fine voids were present at the interface, and the strength of the resulting composite material was very low.

比較例4
電解処理しないこと、樹脂を含浸する前の炭素繊維シートの見かけ密度を0.52g/cm(樹脂を除去した後の炭素繊維基材の見かけ密度を0.5g/cm)として、繊維体積含有率を20%とした以外は比較例1と同様に処理した。この繊維体積含有率であれば樹脂を含浸することができたが、空隙は多く、また強度も低いものであった。
Comparative Example 4
No electrolytic treatment, the apparent density of the carbon fiber sheet before impregnating the resin is 0.52 g / cm 3 (the apparent density of the carbon fiber substrate after removing the resin is 0.5 g / cm 3 ), and the fiber volume The same treatment as in Comparative Example 1 was performed except that the content rate was 20%. With this fiber volume content, the resin could be impregnated, but there were many voids and the strength was low.

比較例5
実施例1で得られた見かけ密度0.05g/cmのPAN系炭素繊維不織布を200℃に加熱したプレス機で圧縮して、見かけ密度を0.10g/cmとした。次いで、実施例1と同様に焼成、電解酸化処理した。このときの炭素繊維不織布の見掛け密度は0.07g/cmであった。
Comparative Example 5
The PAN-based carbon fiber nonwoven fabric with an apparent density of 0.05 g / cm 3 obtained in Example 1 was compressed with a press machine heated to 200 ° C. to make the apparent density 0.10 g / cm 3 . Next, firing and electrolytic oxidation treatment were performed in the same manner as in Example 1. The apparent density of the carbon fiber nonwoven fabric at this time was 0.07 g / cm 3 .

このPAN系炭素繊維不織布に密度が1.14g/cmのナイロン6を溶融含浸して、繊維体積含有率(Vf)40%の繊維強化複合材料を得た。得られた繊維強化複合材料の評価結果は表のとおりであり、実施例1と比較して強度が大きく減少した。 This PAN-based carbon fiber nonwoven fabric was melt impregnated with nylon 6 having a density of 1.14 g / cm 3 to obtain a fiber-reinforced composite material having a fiber volume content (Vf) of 40%. The evaluation results of the obtained fiber reinforced composite material are as shown in the table, and the strength was greatly reduced as compared with Example 1.

また、この走査型電子顕微鏡で表面観察したところ、炭素繊維は単繊維状態でランダムに配向していた。樹脂を除いた後には破断した繊維が多く存在し、シート形状を保っておらず、見かけ密度や屈曲数の測定は困難であった。   Further, when the surface was observed with this scanning electron microscope, the carbon fibers were randomly oriented in a single fiber state. After removing the resin, there were many broken fibers, the sheet shape was not maintained, and it was difficult to measure the apparent density and the number of bendings.

Figure 2013104034
Figure 2013104034

Claims (7)

炭素繊維と樹脂とからなる繊維強化複合材料であって、炭素繊維は単繊維状態でランダムに配向し、該炭素繊維が見かけ密度が0.25〜1.5g/cmのシート形状を構成し、該シート表面の炭素繊維表面におけるESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上であり、かつ、炭素繊維の繊維体積含有率が20〜80%である繊維強化複合材料。 A fiber-reinforced composite material composed of carbon fibers and a resin, wherein the carbon fibers are randomly oriented in a single fiber state, and the carbon fibers constitute a sheet shape having an apparent density of 0.25 to 1.5 g / cm 3. The sum of the ratios of COO groups and CO groups in the C1s peak measured by ESCA on the carbon fiber surface of the sheet surface is 5% or more, and the fiber volume content of the carbon fibers is 20 to 80% Is a fiber reinforced composite material. 炭素繊維がポリアクリロニトリル系炭素繊維である、請求項1に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 1, wherein the carbon fiber is a polyacrylonitrile-based carbon fiber. 炭素繊維の単繊維1本あたり、少なくとも1箇所の屈曲を有する請求項1または2に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 1 or 2, wherein each single fiber of carbon fiber has at least one bend. 前記シートが不織布である請求項1〜3のいずれかに記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 1, wherein the sheet is a nonwoven fabric. 炭素繊維の数平均繊維長が5〜200mmである請求項1〜4のいずれかに記載の繊維強化複合材料。 The number average fiber length of carbon fiber is 5-200 mm, The fiber reinforced composite material in any one of Claims 1-4. 樹脂が熱可塑性樹脂である請求項1〜5のいずれかに記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 5, wherein the resin is a thermoplastic resin. 炭素繊維シートに樹脂を含浸する繊維強化複合材料の製造方法であって、炭素繊維シートは炭素繊維が単繊維状態でランダムに配向し、見かけ密度が0.25〜1.5g/cmであり、表面にある炭素繊維の表面のESCAで測定したC1sピーク中に占めるCOO基、C−O基の比率の和が5%以上であり、炭素繊維の繊維体積含有率が20〜80%であることを特徴とする繊維強化複合材料の製造方法。 A method for producing a fiber reinforced composite material in which a carbon fiber sheet is impregnated with a resin, wherein the carbon fiber sheet is oriented randomly in a single fiber state and has an apparent density of 0.25 to 1.5 g / cm 3 . The sum of the ratios of COO groups and CO groups in the C1s peak measured by ESCA on the surface of the carbon fiber on the surface is 5% or more, and the fiber volume content of the carbon fiber is 20 to 80% A method for producing a fiber-reinforced composite material.
JP2011250288A 2011-11-16 2011-11-16 Fiber-reinforced composite material and method for producing fiber-reinforced composite material. Expired - Fee Related JP5884426B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011250288A JP5884426B2 (en) 2011-11-16 2011-11-16 Fiber-reinforced composite material and method for producing fiber-reinforced composite material.
EP12849929.0A EP2781538B1 (en) 2011-11-16 2012-11-14 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
KR1020147009351A KR102041989B1 (en) 2011-11-16 2012-11-14 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
PCT/JP2012/079451 WO2013073546A1 (en) 2011-11-16 2012-11-14 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
CA2855747A CA2855747A1 (en) 2011-11-16 2012-11-14 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
CN201280056447.XA CN103930473B (en) 2011-11-16 2012-11-14 The manufacture method of fiber reinforced composite material and fiber reinforced composite material
US14/356,534 US10072130B2 (en) 2011-11-16 2012-11-14 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
TW101142544A TWI561562B (en) 2011-11-16 2012-11-15 Fiber reinforced composite material and method for producing fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250288A JP5884426B2 (en) 2011-11-16 2011-11-16 Fiber-reinforced composite material and method for producing fiber-reinforced composite material.

Publications (2)

Publication Number Publication Date
JP2013104034A true JP2013104034A (en) 2013-05-30
JP5884426B2 JP5884426B2 (en) 2016-03-15

Family

ID=48623830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250288A Expired - Fee Related JP5884426B2 (en) 2011-11-16 2011-11-16 Fiber-reinforced composite material and method for producing fiber-reinforced composite material.

Country Status (1)

Country Link
JP (1) JP5884426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119321B2 (en) * 2012-03-21 2017-04-26 東レ株式会社 Fiber reinforced composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117411A (en) * 1991-04-23 1993-05-14 Teijin Ltd Fiber-reinforced thermoplastic resin sheet and its production
JPH06166953A (en) * 1992-11-25 1994-06-14 Osaka Gas Co Ltd Surface-treatment of carbon fiber and treated carbon fiber
JPH09155862A (en) * 1995-12-01 1997-06-17 Toyobo Co Ltd Fiber reinforced thermoplastic resin sheet
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117411A (en) * 1991-04-23 1993-05-14 Teijin Ltd Fiber-reinforced thermoplastic resin sheet and its production
JPH06166953A (en) * 1992-11-25 1994-06-14 Osaka Gas Co Ltd Surface-treatment of carbon fiber and treated carbon fiber
JPH09155862A (en) * 1995-12-01 1997-06-17 Toyobo Co Ltd Fiber reinforced thermoplastic resin sheet
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin

Also Published As

Publication number Publication date
JP5884426B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2013073546A1 (en) Fiber-reinforced composite material and process for producing fiber-reinforced composite material
JP5790643B2 (en) Fiber reinforced composite material
JP2009114578A (en) Carbon fiber strand and process for producing the same
JP2011157524A (en) Fiber-reinforced thermoplastic plastic, and method for manufacturing the same
CN115777032A (en) Carbon fiber bundle having sizing agent attached thereto
US20100266827A1 (en) Carbon fiber and composite material using the same
JP6871931B2 (en) Lightweight needled fabrics and their manufacturing methods and their use in diffusion layers for fuel cells
JP2010037667A (en) Method for producing carbon fiber web and carbon fiber web
KR102603178B1 (en) Carbon fiber bundle and its manufacturing method
JP5884426B2 (en) Fiber-reinforced composite material and method for producing fiber-reinforced composite material.
CN111801450A (en) Carbon fiber and method for producing same
CN109312497B (en) Carbon fiber bundle and method for producing same
JP6051529B2 (en) Carbon fiber base material, carbon fiber composite material, and production method thereof
JP6119321B2 (en) Fiber reinforced composite material
JP5662113B2 (en) Carbon fiber surface treatment method
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP5935299B2 (en) Fiber-reinforced composite material and method for producing fiber-reinforced composite material.
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP6522971B2 (en) Method of manufacturing fiber bundle
JP2006002294A (en) Nonwoven fabric of flameproof fiber, nonwoven fabric of carbon fiber and production method thereof
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2013202803A (en) Carbon fiber reinforced composite material
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
CN112840066A (en) Method for producing precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5884426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees