JPH0616595B2 - Transmission power control method - Google Patents
Transmission power control methodInfo
- Publication number
- JPH0616595B2 JPH0616595B2 JP62137147A JP13714787A JPH0616595B2 JP H0616595 B2 JPH0616595 B2 JP H0616595B2 JP 62137147 A JP62137147 A JP 62137147A JP 13714787 A JP13714787 A JP 13714787A JP H0616595 B2 JPH0616595 B2 JP H0616595B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission power
- transmission
- power control
- control information
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【発明の詳細な説明】 〔概 要〕 送信局の送信電力を平常時に充分な回線品質を保ち得る
に充分な値と為し、その回線に与えるフェージングに伴
う受信信号の変化度合が増大し、受信局における受信信
号の微係数が基準値を超えたことに応答して受信信号の
微係数が前記基準値より小さいときの送信局の送信電力
を、電波伝播の変化速度を補償するる充分な値だけ大き
な送信電力にして電波を受信局へ送信させる。DETAILED DESCRIPTION OF THE INVENTION [Outline] The transmission power of a transmitting station is set to a value sufficient to maintain sufficient line quality in normal times, and the degree of change in a received signal due to fading applied to the line increases, In response to the differential coefficient of the received signal at the receiving station exceeding the reference value, the transmission power of the transmitting station when the differential coefficient of the received signal is smaller than the reference value is sufficient to compensate the changing speed of radio wave propagation. Increase the transmission power by the value and transmit the radio wave to the receiving station.
〔産業上の利用分野〕 本発明は送信電力制御方式に関し、更に詳しく言えば、
低電力化等のための送信電力制御に受信信号の微係数を
用いた送信電力制御方式に関する。TECHNICAL FIELD The present invention relates to a transmission power control method, and more specifically,
The present invention relates to a transmission power control method that uses a differential coefficient of a received signal for transmission power control for power reduction and the like.
ディジタル多重無線通信等の無線通信網においては、送
信側から受信側へ所望の情報を伝送しようとする場合、
その情報を電波に乗せて送ることになる。その電波の受
信側で首尾よく受信させるためには、それに必要なだけ
の送信電力で前記電波を送信側から受信側へ輻射させな
ければならない。そして、その送信には送受信系の伝送
能力だけでなく、伝送媒体の状態をも考慮に入れて送信
電力を決めなければならない。又、送受信系が拘置され
ている地域における既設,未設を問わずその他の送受信
系の様子をも考慮に入れることが、その地域における各
種無心通信系を有るべき姿に整備する上で重要な事項で
ある。In a wireless communication network such as digital multiplex wireless communication, when transmitting desired information from a transmitting side to a receiving side,
The information will be sent on radio waves. In order for the reception side of the radio wave to be successfully received, the radio wave must be radiated from the transmission side to the reception side with the transmission power required for it. Then, in the transmission, the transmission power must be determined in consideration of not only the transmission capacity of the transmission / reception system but also the state of the transmission medium. In addition, it is important to consider the state of other transmission / reception systems regardless of whether they are existing or not in the area where the transmission / reception system is in custody in order to maintain various unmanned communication systems in that area. It is a matter.
従来のディジタル多重無線通信システムは第7図に示す
ように構成されていた。その送信側の変調器2において
変調された送信信号は送信器4でIF帯からRF帯へ周
波数変換される。送信器4の出力信号が電力増幅器14
で電力増幅されて送信アンテナ16から受信アンテナ3
0へ向けて輻射される。受信アンテナ30で受信された
信号は受信器32でRF帯からIF帯へ周波数変換され
た後、AGC増幅器34でAGC増幅されて復調器36
での送信信号の再生に供される。The conventional digital multiplex wireless communication system is constructed as shown in FIG. The transmission signal modulated by the modulator 2 on the transmitting side is frequency-converted from the IF band to the RF band by the transmitter 4. The output signal of the transmitter 4 is the power amplifier 14
Power is amplified by the transmitting antenna 16 to the receiving antenna 3
It radiates toward 0. The signal received by the receiving antenna 30 is frequency-converted from the RF band to the IF band by the receiver 32, and then AGC-amplified by the AGC amplifier 34 to be demodulated by the demodulator 36.
It is used for reproduction of the transmission signal in.
このような送受信系における送信電力は、受信側のAG
C増幅器34の利得調整機能がその上限近傍に至ったと
きにも、なお、回線品質を維持し得るに足りるだけ充分
な強さの電波を送信アンテナ16から輻射し得る或る定
められた値に、従来は設定されていた。The transmission power in such a transmission / reception system is the AG of the reception side.
Even when the gain adjusting function of the C amplifier 34 approaches the upper limit thereof, the radio wave having a sufficient intensity to maintain the line quality can be radiated from the transmitting antenna 16 to a predetermined value. , It used to be set.
しかしながら、上述のような送信電力の設定は、回線品
質の維持という観点からすればその限りでは肯定し得る
ものではあるが、電力の節減という見地に立てば長時間
に亘って不必要に大きな送信電力で情報の送信を行なっ
ていることになる。というのは、上述の如く設定される
送信電力は、年間において僅か5〜10時間程度しかな
い大きな回線損失(主として、フェージングによる損
失)のために、その他の時間帯においてはそのような大
きな送信電力を必要としないのにも拘らず、上述のよう
な大きな回線損失が生ずる時間帯において所望の回線品
質を維持させんとして定められているからである。However, the setting of the transmission power as described above can be affirmed from the viewpoint of maintaining the line quality, but from the viewpoint of power saving, the transmission power is unnecessarily large for a long time. It means that the information is transmitted by electric power. This is because the transmission power set as described above has a large line loss (mainly a loss due to fading) that lasts only about 5 to 10 hours a year, so that such a large transmission power is used in other time zones. This is because it is determined that the desired line quality is maintained in the time zone in which a large line loss occurs as described above, although the above is not required.
又、上述のような大きな送信電力では、送受信系の設置
地域に他の送受信系がない場合には問題ないが、そうで
ない場合にはその影響が生ずるので不都合を来す。Further, with the above-mentioned large transmission power, there is no problem if there is no other transmission / reception system in the area where the transmission / reception system is installed, but if it is not so, the influence occurs, which is inconvenient.
本発明は、斯かる問題点に鑑みて創作されたもので、受
信信号の変化速度が基準値以下のときは送信電力を小さ
い値とし、受信信号の変化速度が基準値超えたときのみ
送信電力を高めて通信品質の維持を図る送信電力制御方
式を提供することをその目的とする。The present invention was created in view of such problems, and when the rate of change of the received signal is equal to or lower than the reference value, the transmission power is set to a small value, and only when the rate of change of the received signal exceeds the reference value, the transmission power is set. It is an object of the present invention to provide a transmission power control method for improving communication quality and maintaining communication quality.
第1図は、本発明の原理構成図を示す。この図におい
て、2は送信局4の送信機であり、6はその送信電力レ
ベルを変えるための送信電力変更手段で、7は送信レベ
ル制御手段である。10,12は送受信アンテナであ
る。13は受信局16に、その受信機18に接続され、
受信信号の微係数が、電波伝播上から決められる基準値
より小さいとき第1の送信電力制御情報を出力し、大き
いと第2の送信電力制御情報を出力する送信電極制御情
報出力手段である。FIG. 1 shows the principle configuration of the present invention. In the figure, 2 is a transmitter of the transmitting station 4, 6 is a transmission power changing means for changing the transmission power level, and 7 is a transmission level control means. Reference numerals 10 and 12 are transmission / reception antennas. 13 is connected to the receiving station 16 and its receiver 18,
The transmission electrode control information output means outputs the first transmission power control information when the differential coefficient of the received signal is smaller than the reference value determined from radio wave propagation, and outputs the second transmission power control information when the differential coefficient is larger.
該送信電力制御情報出力手段13から前記無線通信方式
の系を介して送信局4の送信機18へ送られて来た第2
の送信電力制御情報に応答する前記送信レベル制御手段
7は、前記第1の送信電力制御情報のときの送信電力よ
りも、前記第2の送信電力制御情報を生ぜしめた前記電
波伝播の変化速度を補償するに十分な値だけ大きな電力
を前記送信電力変更手段6から出力させるようにして、
本発明は構成されている。The second transmitted from the transmission power control information output means 13 to the transmitter 18 of the transmission station 4 via the system of the wireless communication system.
The transmission level control means 7 that responds to the transmission power control information of is the change rate of the radio wave propagation that has generated the second transmission power control information rather than the transmission power at the time of the first transmission power control information. By making the transmission power changing means 6 output a power large enough to compensate for
The present invention has been constructed.
フェージング速度の比較的に小さく、受信信号の微係数
が基準値以下である状態での通信時には、送信電力変更
手段6は、送信電力制御情報出力手段13からフィード
バックされる第1の送信電力制御情報を受ける送信レベ
ル変更手段7により予め決められた比較的に低いレベル
の送信電力に設定されて送信局4の送信アンテナ10か
ら受信局16の受信アンテナ12に向けて電波が輻射さ
れ、所要の通信が行われる。During communication in a state where the fading speed is relatively small and the differential coefficient of the received signal is less than or equal to the reference value, the transmission power changing means 6 causes the transmission power control information output means 13 to feed back the first transmission power control information. The transmission level changing means 7 for receiving the signal sets the transmission power to a predetermined relatively low level, radiates radio waves from the transmission antenna 10 of the transmission station 4 to the reception antenna 12 of the reception station 16, and performs the required communication. Is done.
その通信回線を介して、受信局16で受信される受信信
号の微数数がフェージングにより基準値に対して大きく
なると、送信電力を高めるための第2の送信電力制御情
報が、送信電力制御情報出力手段13から発生され、受
信アンテナ12から送信アンテナ10、受信機18を介
して送信レベル制御手段7へにおいてされる。When the fractional number of the received signal received by the receiving station 16 via the communication line becomes larger than the reference value due to fading, the second transmission power control information for increasing the transmission power is the transmission power control information. It is generated from the output means 13 and transmitted from the reception antenna 12 to the transmission level control means 7 via the transmission antenna 10 and the receiver 18.
送信レベル制御手段7は、その第2の送信電力制御情報
に応答して送信電力レベルを上げるように送信電力変更
手段6の設定レベルの変更を生じさせる。そして、フェ
ージングの回復に伴って、送信レベル制御手段7により
低い送信電力レベルへ変えられる。The transmission level control means 7 changes the set level of the transmission power changing means 6 so as to raise the transmission power level in response to the second transmission power control information. Then, as the fading is restored, the transmission level control means 7 changes the transmission power level to a low level.
電波伝播の正常な期間が長く、その期間の送信電力は小
さいので、前述のような電波伝播の異常期間は、年間を
通じても短いから、異常時に送信電力を高めても、通信
に掛かる電力量は、少なくて済む。Since the normal period of radio wave propagation is long and the transmission power during that period is small, the abnormal period of radio wave propagation as described above is short throughout the year, so even if the transmission power is increased during an abnormality, the amount of power required for communication is , Less is required.
又、前述のような低送信電力においては、他系統への通
信妨害度合を低減できるし、その地域への電波配分を増
加させることができる。Further, at the low transmission power as described above, the degree of communication interference to other systems can be reduced and the radio wave distribution to the area can be increased.
第2図は本発明の一実施例を示す。この図において、4
1,161は送受信局、2,18は夫々、各送受信局の送
信機,受信機である。8は送信レベル制御回路で、14
はフェージング速度検出回路である。これら回路8,1
4は図面の明瞭化のため一方の送受信局にしか示してな
いが、各局毎に設けられる。FIG. 2 shows an embodiment of the present invention. In this figure, 4
1, 16 1 transceiver station, 2,18 are each transmitter of each transceiver stations, a receiver. 8 is a transmission level control circuit, 14
Is a fading speed detection circuit. These circuits 8, 1
4 is shown only for one transmitting / receiving station for the sake of clarity of the drawing, but is provided for each station.
送信機2及び送信レベル制御回路8の構成は第3図に示
されている。送信機2はIF増幅器22、ミキサ22、
送信局部発振器23、可変減衰器24及びRF増幅器2
5から成る(図中のfIf,fTL,fTの間には、|fT−f
TL|=fIfなる関係がある)。その可変減衰器24が
第1図の送信電力変更手段6の構成例を示し、これはア
ナログ電圧値に応じて決まる減衰量をRF信号に与えて
RF増幅器25へ入力させる、つまり送信電力レベルを
変えるためのものである。そのアナログ電圧は送信レベ
ル制御回路8から出力されるが、該回路8は受信機18
のAGC増幅器185の出力に接続された命令信号再生
回路20から出力される信号、例えば送信電力制御命令
のあるときの高レベル信号“1”に応じた減衰量低下の
ための、例えば減衰量なしにするためのアナログ号、な
いときには低レベル信号“0”に応じた減衰量増加のた
めのアナログ信号が出力される。The configurations of the transmitter 2 and the transmission level control circuit 8 are shown in FIG. The transmitter 2 includes an IF amplifier 2 2 , a mixer 2 2 ,
Transmitter local oscillator 2 3 , variable attenuator 2 4 and RF amplifier 2
5 (in the figure, between f If, f TL, and f T , | f T −f
TL | = f If . As the variable attenuator 2 4 shows a configuration example of a transmission power changing means 6 of FIG. 1, which is input to the RF amplifier 2 5 gives attenuation determined in accordance with the analog voltage value to the RF signal, i.e. the transmission power It is for changing the level. The analog voltage is output from the transmission level control circuit 8, which is connected to the receiver 18
Signal output from the instruction signal reproducing circuit 20 connected to the output of the AGC amplifier 18 5, for example, for the attenuation decreased in response to the high level signal "1" when a transmission power control command, for example, attenuation An analog signal for canceling, and an analog signal for increasing the attenuation amount according to the low level signal "0" are output when there is no analog signal.
受信機18の構成は第4図に示されている。この図にお
いて、受信機18はRF増幅器181、ミキサ182、
受信局部発振器183、IF帯域通過フィルタ(IFB
PF)184、AGC増幅器185から成る。AGC増
幅器185は出力1及び出力2を有し、出力1は復調器
(図示せず)へ接続され、出力2は命令信号再生回路2
0へ接続されている。The structure of the receiver 18 is shown in FIG. In this figure, the receiver 18 comprises an RF amplifier 18 1 , a mixer 18 2 ,
Reception local oscillator 18 3 , IF band pass filter (IFB
PF) 18 4 and AGC amplifier 18 5 . AGC amplifier 18 5 has an output 1 and output 2, output 1 is connected to a demodulator (not shown), output 2 command signal reproduction circuit 2
Connected to 0.
フェージング速度検出回路14はフェージング速度を信
号微係数で検出して送信電力制御命令を出力するもの
で、その出力信号は自局の送信機2を介して対向局へ送
信されるように構成されてる。フェージング速度検出回
路14は上述受信機18のAGC増幅器185のAGC
制御電圧を受ける微分回路141,絶対値発生回路142,
比較回路143,ノット回路144から成る。絶対値発生
回路142は一方の入力に微分回路141の出力を受け、
他方の入力に零電圧を受ける演算増幅器1421、演算増
幅器1421の非反転出力及び反転出力にカソードを接続
したダイオード1422,1423、ダオード1422,14
23のアノードを動作電源Vに接続する抵抗1424から成
り、絶対値発生回路142の出力はダイオード1422,
1423と抵抗1424との接続点となる。The fading speed detection circuit 14 detects the fading speed with a signal differential coefficient and outputs a transmission power control command, and the output signal thereof is configured to be transmitted to the opposite station via the transmitter 2 of the own station. . Fading speed detection circuit 14 AGC of the AGC amplifier 18 5 above the receiver 18
Differentiating circuit 14 1 receiving the control voltage, absolute value generating circuit 14 2 ,
It is composed of a comparison circuit 14 3 and a knot circuit 14 4 . The absolute value generation circuit 14 2 receives the output of the differentiation circuit 14 1 at one input,
Operational amplifier 14 21 , which receives a zero voltage at the other input, diodes 14 22 and 14 23 having cathodes connected to the non-inverting output and the inverting output of the operational amplifier 14 21 , and diodes 14 22 and 14
A resistor 14 24 connecting the anode to the operating power supply V 23, the output of the absolute value generating circuit 14 2 is diode 14 22,
14 23 and the resistor 14 24 are connected.
上述構成の下における送信電力制御態様を以下に説明す
る。The transmission power control mode under the above configuration will be described below.
今、送受信局41,161の送信レベル制御回路8は、送
受信局41,161間の受信信号の微係数、即ちフェージ
ング速度が予め決められた値以下にある状態において、
送信レベルを予め決められた値以上にするに充分な比較
的に低い送信電力レベルでアンテナ10又は12から電
波の対向局に向けて輻射させるように設定されているも
のとする。Now, the transmission level control circuit 8 of the transceiver station 4 1, 16 1, the derivative of the received signal between the transmitting and receiving stations 4 1, 16 1, i.e., the fading speed in a state in the following predetermined values,
It is assumed that the antenna 10 or 12 is set to radiate radio waves toward the opposite station at a relatively low transmission power level that is sufficient to make the transmission level equal to or higher than a predetermined value.
このような設定にあるとき、送信機2への周波数fIfの
IF入力信号はIF増幅器21で増幅されてミキサ22
へ入力され、その信号と共に送信局部発振器23からの
周波数fTの局部発振信号を受けるミキサ22において
周波数変換されてRF信号(|fT−fTL|=fIf)に
変えられる。このRF信号はRF増幅器25で増幅され
て、アンテナ10へ供給される送信電力レベルが上述し
たレベルとなるように、送信レベル制御回路8からのア
ナログ信号によりその振幅が減衰されてRF増幅器25
へ入力される。かくして、送信電力レベルを上述レベル
とした電波が所要の通信を行なうべく対向局に向けて輻
射される。In such a setting, the IF input signal of the frequency f If to the transmitter 2 is amplified by the IF amplifier 2 1 to be mixed by the mixer 2 2
Input to, RF signals are frequency converted in the mixer 2 2 which receives a local oscillation signal of a frequency f T from the transmission local oscillator 2 3 together with its signal is changed to (| = f If | f T -f TL). This RF signal is amplified by the RF amplifier 25 and its amplitude is attenuated by the analog signal from the transmission level control circuit 8 so that the transmission power level supplied to the antenna 10 becomes the above-mentioned level. 5
Is input to. Thus, a radio wave whose transmission power level is the above level is radiated toward the opposite station to perform the required communication.
対向局161のアンテナ12で受信され、RF増幅器1
81で増幅されたRF信号はミキサ182へ入力され、
そのRF信号は該信号と共に受信局部発振器183から
の周波数fRL=fTLの局部発振信号を受けるミキサ18
2において周波数変換されて周波数fIfのIF信号とさ
れ、IF帯域通過フィルタ184を介してAGC増幅器
185へ入力される。その出力1に増加されて出力され
たIF信号が図示しない復調器へ入力されて送信信号の
再生に用いられる。It is received by the antenna 12 of the opposite station 16 1, RF amplifier 1
The RF signal amplified by 8 1 is input to the mixer 18 2 ,
Mixer 18 the RF signal for receiving a local oscillation signal of a frequency f RL = f TL from the reception local oscillator 18 3 with the signal
In 2 the frequency is converted into an IF signal of frequency f If , which is input to the AGC amplifier 18 5 via the IF bandpass filter 18 4 . The IF signal increased to the output 1 and output is input to a demodulator (not shown) and used to reproduce the transmission signal.
AGC増幅器185のAGC制御電圧は微分回路141
で微分されてその電圧信号の微係数信号がそこから出力
される。この微係数信号は第6図に示すように受信信号
の微係数、即ちフェージング速度を反映した信号であ
る。その微係数信号は第6図からも判るように、正及び
負の値をとるので、絶対値発生回路142からその絶対
値を発生させる。その値が比較回路143でフェージン
グ速度のための基準電圧rと比較される。絶対値<rな
るとき高レベル“1”の2進信号が比較回路143から
出力される。従って、ナンド回路144からは“0”の
送信電力制御命令が出力される。この命令は自局161
の送信機2、アンテナ12を介して対向局41へ伝送さ
れ、その対向局41のアンテナ10、受信機18を介し
て送信レベル制御回路8へ与えられる。かくして、回路
8からの信号により送信電力レベルは回線品質を維持し
得るレベルに維持される。AGC control voltage of the AGC amplifier 18 5 differentiating circuit 14 1
And the differential coefficient signal of the voltage signal is output from there. This differential coefficient signal is a signal that reflects the differential coefficient of the received signal, that is, the fading speed, as shown in FIG. Its derivatives signal as can be seen from Figure 6, since a positive and negative value, to generate the absolute value from the absolute value generating circuit 14 2. Its value is compared in a comparison circuit 14 3 with a reference voltage r for the fading speed. When the absolute value <r, a binary signal of high level "1" is output from the comparison circuit 14 3 . Therefore, from the NAND circuit 14 4 is output transmit power control command "0". This command is sent to your own station 16 1
Is transmitted to the opposite station 4 1 via the transmitter 2 and the antenna 12, and is given to the transmission level control circuit 8 via the antenna 10 and the receiver 18 of the opposite station 4 1 . Thus, the signal from the circuit 8 maintains the transmission power level at a level capable of maintaining the line quality.
このような送受信状態において、フェージングに伴う受
信信号の変化速度が増大すると、上述のような設定送信
電力レベルで輻射されて対向局において受信する信号レ
ベル変化もその増大分だけ大きくなる。In such a transmission / reception state, if the rate of change in the received signal due to fading increases, the change in the signal level received at the opposite station radiated at the set transmission power level as described above also increases accordingly.
従って、上述の如くして微分回路141から出力される
微係数信号も大きくなる。その絶対値発生回路142か
らの信号は比較回路143から“0”の信号を出力せし
める。その結果として、ナンド回路144から“1”の
送信電力制御命令が出力される。この命令も、上述した
ところと同様にして、対向局へ伝送される。この場合に
おける受信機18から送信レベル制御回路8へ与えられ
る信号レベルは高レベル“1”とされる。送信レベル制
御回路8からは可変減衰器24に対し、そこでの減衰量
を低下せしめる、例えば減衰を与えないアナログ信号が
発生される。これにより、アンテナ10から輻射される
電波の送信電力レベルは高められ、対向局は回線品質を
所望の値に維持し得る受信レベルで電波を受信すること
ができる。Therefore, the larger the derivative signal outputted from the differentiation circuit 14 1 and as described above. The absolute value signal from the generating circuit 14 2 is allowed to output a signal of "0" from the comparator circuit 14 3. As a result, transmission power control command "1" from the NAND circuit 14 4 is output. This command is also transmitted to the opposite station in the same manner as described above. In this case, the signal level given from the receiver 18 to the transmission level control circuit 8 is a high level "1". To the variable attenuator 2 4 from the transmission level control circuit 8, allowed to reduce the amount of attenuation therein, the analog signal is generated, for example do not provide damping. As a result, the transmission power level of the radio wave radiated from the antenna 10 is increased, and the opposite station can receive the radio wave at a reception level that can maintain the line quality at a desired value.
フェージングに伴う受信レベル変化の復旧時における送
信電力レベルの低減は、“1”の送信電力制御命令の喪
失と共に生ぜしめられる。The reduction of the transmission power level at the time of restoration of the reception level change due to fading occurs with the loss of the transmission power control command of "1".
なお、上記実施例においては、送信電力制御のために2
進情報の“0”又は“1”を用いる例を示したが、他の
2進情報形式による送信電力制御、例えば多レベル調節
形式に変更するようにしてもよい。送信電力の変更は可
変電力増幅器の調節で生ぜしめてもよい。又、上述の送
信電力レベルの低減は或る時間遅れで生ぜしめられても
よい。It should be noted that, in the above-mentioned embodiment, the transmission power is controlled by 2
Although the example in which the binary information “0” or “1” is used has been shown, the transmission power control may be performed in another binary information format, for example, the multilevel adjustment format may be changed. The change in transmission power may be brought about by adjusting the variable power amplifier. Also, the reduction of the transmission power level mentioned above may occur with a certain time delay.
以上述べたように本発明によれば、従来からの知見から
すると大きな送信電力の下で送信しなければならない時
間は年間でも比較的に少ない時間に亘るに過ぎないか
ら、そのような時間の間だけ送信電力を上げて回線品質
を維持するとい本発明方式によれば、送信電力の大幅な
削減が得られるほか、他系統への通信妨害度合の低減及
びその地域への電波配分の増加も期待できる。As described above, according to the present invention, according to the conventional knowledge, the time required to transmit under a large transmission power is only a relatively small time even in a year. According to the method of the present invention, in which the transmission power is increased only to maintain the line quality, the transmission power can be significantly reduced, the degree of communication interference to other systems can be reduced, and the radio wave distribution to the area can be increased. it can.
第1図は本発明の原理構成図、 第2図は本発明の一実施例を示す図、 第3図は送信機及び送信レベル制御回路の構成図、 第4図は受信機の構成図、 第5図はフェージング速度検出回路図、 第6図は受信レベル変動曲線図、 第7図は従来のディジタル多重無線通信システムの構成
図である。 第1図乃至第5図において、 2は送信機、 4は送信局(送受信局41)、 6は送信電力変更手段(可変減衰器24)、 7は送信レベル制御手段(送信レベル制御回路8)、 10,12は送受信アンテナ、 13は送信電力制御情報出力手段(フェージング速度検
出回路14)、 16は受信局(送受信局161)、 18は受信機である。1 is a block diagram of the principle of the present invention, FIG. 2 is a diagram showing an embodiment of the present invention, FIG. 3 is a block diagram of a transmitter and a transmission level control circuit, FIG. 4 is a block diagram of a receiver, FIG. 5 is a fading speed detection circuit diagram, FIG. 6 is a reception level fluctuation curve diagram, and FIG. 7 is a configuration diagram of a conventional digital multiplex wireless communication system. 1 to 5, 2 is a transmitter, 4 is a transmission station (transmission / reception station 4 1 ), 6 is transmission power changing means (variable attenuator 2 4 ), and 7 is transmission level control means (transmission level control circuit). 8), 10 and 12 are transmission / reception antennas, 13 is transmission power control information output means (fading speed detection circuit 14), 16 is a reception station (transmission / reception station 16 1 ), and 18 is a receiver.
Claims (1)
増幅し、対向する受信局(16)に向けて輻射して所要
の通信を行う無線通信方式において、 前記送信局(4)に、前記送信機(2)内に設けられ、
送信電力を変えるための送信電力変更手段(6)及び送
信レベル制御手段(7)を設ける一方、 前記受信局(16)に、その受信機(18)に接続さ
れ、受信信号の微係数が、電波伝播上から決められる基
準値より小さいとき第1の送信電力制御情報を出力し、
大きいとき第2の送信電力制御情報を出力する送信電力
制御情報出力手段(13)を設け、 該送信電力制御情報出力手段(13)から前記無線通信
方式の系を介して送信局(4)の受信機(18)へ送ら
れて来た第2の送信電力制御情報に応答する前記送信レ
ベル制御手段(7)は、前記第1の送信電力制御情報の
ときの送信電力よりも、前記第2の送信電力制御情報を
生ぜしめた前記電波伝播の変化速度を補償するに十分な
値だけ大きな電力を前記送信電力変更手段(6)から出
力させることを特徴とする送信電力制御方式。1. A wireless communication system for amplifying a transmission signal by a transmitter (2) of a transmission station (4) and radiating the amplified signal toward an opposite reception station (16) to perform required communication. 4) is provided in the transmitter (2),
While the transmission power changing means (6) and the transmission level control means (7) for changing the transmission power are provided, the receiving station (16) is connected to the receiver (18) thereof, and the differential coefficient of the received signal is Outputs the first transmission power control information when it is smaller than the reference value determined from radio wave propagation,
A transmission power control information output means (13) for outputting the second transmission power control information when the transmission power is large is provided, and the transmission power control information output means (13) outputs the transmission power control information from the transmission station (4) via the system of the wireless communication system. The transmission level control means (7) that responds to the second transmission power control information sent to the receiver (18) has the second transmission power higher than the transmission power at the time of the first transmission power control information. The transmission power control method is characterized in that the transmission power changing means (6) outputs electric power that is large enough to compensate for the changing speed of the radio wave propagation that has caused the transmission power control information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62137147A JPH0616595B2 (en) | 1987-05-30 | 1987-05-30 | Transmission power control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62137147A JPH0616595B2 (en) | 1987-05-30 | 1987-05-30 | Transmission power control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63301629A JPS63301629A (en) | 1988-12-08 |
JPH0616595B2 true JPH0616595B2 (en) | 1994-03-02 |
Family
ID=15191915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62137147A Expired - Lifetime JPH0616595B2 (en) | 1987-05-30 | 1987-05-30 | Transmission power control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0616595B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5985931B2 (en) * | 2012-08-29 | 2016-09-06 | 京セラ株式会社 | Receiving apparatus and control method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53107214A (en) * | 1977-03-01 | 1978-09-19 | Fujitsu Ltd | Radio transmission-reception system |
JPS59132262A (en) * | 1982-11-29 | 1984-07-30 | シ−−コ−ル・ラブス・インコ−ポレ−テツド | Remote level control system |
JPS6166413A (en) * | 1984-09-10 | 1986-04-05 | Nippon Telegr & Teleph Corp <Ntt> | System for preventing interference wave |
-
1987
- 1987-05-30 JP JP62137147A patent/JPH0616595B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63301629A (en) | 1988-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6038428A (en) | Power control circuit for transmission apparatus | |
US6233438B1 (en) | Wide-range power control systems and methods for radio frequency transmitters and mobile radiotelephones | |
CA2088813C (en) | Automatic level control circuit for dual mode analog/digital cellular telephone | |
US4004224A (en) | Method for fade correction of communication transmission over directional radio paths | |
US4570265A (en) | Random frequency offsetting apparatus for multi-transmitter simulcast radio communications systems | |
KR100341069B1 (en) | Dynamic control of transmitting power at a transmitter and attenuation at a receiver | |
US6205189B1 (en) | Digital automatic gain control method and device for use in communication terminal of mobile radio communication system | |
US6718165B1 (en) | Apparatus and method for reducing nonlinear distortion in an automatic gain control system | |
JPH02246523A (en) | Transmission power controller for radio equipment | |
JPH11330870A (en) | Adaptive control method for amplifier linearizing device | |
JPS6377226A (en) | Communication system | |
US6904268B2 (en) | Low noise linear transmitter using cartesian feedback | |
JPH0616595B2 (en) | Transmission power control method | |
JP3012379B2 (en) | Transmission power control method | |
JPH0650831B2 (en) | Transmission power control method | |
US6701157B2 (en) | Transmitter circuit architecture and method for reducing in-band noise in point to multipoint communication systems | |
JPS583613B2 (en) | Satellite communication method | |
JPH0616594B2 (en) | Transmission power control method | |
JPH03198438A (en) | Transmission power control system | |
KR100718277B1 (en) | Automatic level controller of adjusting transmit power level | |
JPS63227222A (en) | Transmission power control system | |
JPH02104131A (en) | Transmitter | |
US6608997B1 (en) | Method and apparatus for varying the power level of a transmitted signal | |
JPS6354261B2 (en) | ||
JPH03280727A (en) | Transmission power control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080302 Year of fee payment: 14 |