JPH03280727A - Transmission power control system - Google Patents

Transmission power control system

Info

Publication number
JPH03280727A
JPH03280727A JP2082198A JP8219890A JPH03280727A JP H03280727 A JPH03280727 A JP H03280727A JP 2082198 A JP2082198 A JP 2082198A JP 8219890 A JP8219890 A JP 8219890A JP H03280727 A JPH03280727 A JP H03280727A
Authority
JP
Japan
Prior art keywords
level
amplifier
transmission power
bias voltage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082198A
Other languages
Japanese (ja)
Inventor
Takahiko Miyajima
宮嶋 孝彦
Mitsuhiro Baba
馬場 光浩
Masaaki Fukushi
福士 雅章
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2082198A priority Critical patent/JPH03280727A/en
Publication of JPH03280727A publication Critical patent/JPH03280727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

PURPOSE:To reduce the power consumption of a transmitter and to control the transmission power against the fluctuation of a reception level by decreasing a bias voltage of an amplifier normally and increasing a bias voltage of the amplifier at fading only. CONSTITUTION:When a reception level detection section at a receiver side detects a level reduction, the section sends control information to an interface circuit 51 of a sender side. A bias voltage control circuit 52 changes slowly a bias voltage of an amplifier from a steady-state value to a value at a high output by using control information received by the circuit 51. Moreover, upon the receipt of information representing the decrease in the reception level, an input level control circuit 54 changes the input level of the amplifier at a speed not causing a code error to increase the transmission power. furthermore, a distortion generating quantity control circuit 53 controls the distortion compensation circuit simultaneously. Thus, the power consumption is reduced without causing a code error to control the transmission power.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 固定マイクロ波通信において、送信機における消費電力
の低減並びに受信側における受信レベルの変化に応じて
送信側の送信レベルを制御することを特徴とした送信電
力制御方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] In fixed microwave communication, the present invention is characterized by reducing power consumption in a transmitter and controlling the transmission level on the transmitting side according to changes in the receiving level on the receiving side. The present invention relates to a transmission power control method.

〔従来の技術〕[Conventional technology]

現在の固定マイクロ波方式では、送信電力は法で許容さ
れている範囲の一定値しか出力することができないこと
もあって、送信電力制御方式は実用化されていない。一
方、衛星通信方式においては、降雨時に受信レベルの低
下により、送信電力増幅器のバイアスを変化させて、送
信電力を上げる方法が提案されている。例えば特開平1
−170227号によれば、地球局で受信されるビーコ
ン信号、パイロット信号等の信号レベルと基準レベルと
の比較により、増幅器のバイアス状態を2段階に切り替
え制御する方法である。
Current fixed microwave systems can only output a fixed value of transmission power within the legally permitted range, and therefore transmission power control systems have not been put into practical use. On the other hand, in the satellite communication system, a method has been proposed in which the bias of the transmission power amplifier is changed to increase the transmission power due to a drop in the reception level during rain. For example, JP-A-1
According to No. 170227, the bias state of an amplifier is switched and controlled in two stages by comparing the signal level of a beacon signal, pilot signal, etc. received at an earth station with a reference level.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

固定マイクロ波通信方式の場合、フェージングにより受
信レベルが低下するが、このフェージングは周波数選択
性フェージングであり、1つの無線局においである無線
チャネルの受信レベルが低下しても、同じルートにおけ
る他の無線チャネルの受信レベルとは一般に無関係であ
る。また逆方向に送信される電波の受信レベルとも無相
関である。このため、衛星通信方式における降雨時の受
信レベル低下の特性とは全く状態を異にする。
In the case of fixed microwave communication systems, the reception level decreases due to fading, but this fading is frequency selective fading. It is generally independent of the reception level of the wireless channel. It also has no correlation with the reception level of radio waves transmitted in the opposite direction. For this reason, the situation is completely different from the reception level drop characteristics during rain in the satellite communication system.

また固定ディジタルマイクロ波通信方式の場合周波数の
利用効率を上げるため、衛星通信方式と異なり振幅成分
にも信号情報が乗っていることや受信レベルの変化も降
雨の場合より高速に変化することから、高出力増幅器の
バイアス電圧及び入力レベルを、同時に且つ高速に制御
することは極めて難しい。さらに、固定ディジタルマイ
クロ波通信方式では、通常、増幅器の非直線性歪を補償
する回路が送信部に挿入されており、増幅器の動作点を
変える場合にはこの補償回路の制御も同時に実施する必
要があり、制御をさらに難しくしている。
In addition, in the case of fixed digital microwave communication systems, in order to increase frequency usage efficiency, unlike satellite communication systems, signal information is also included in the amplitude component, and the reception level changes faster than in the case of rain. It is extremely difficult to control the bias voltage and input level of a high-power amplifier simultaneously and at high speed. Furthermore, in fixed digital microwave communication systems, a circuit that compensates for the nonlinear distortion of the amplifier is usually inserted in the transmitting section, and when changing the operating point of the amplifier, it is necessary to control this compensation circuit at the same time. This makes control even more difficult.

また、現在の固定マイクロ波方式では、送信電力は法で
許容されている範囲の一定値しか出力することができな
いこともあって、フェージング時の受信レベル低下を考
慮し、かなりの余裕をもって送信レベルを設定している
。このため送信機の消費電力が大きくなることから、こ
の軽減対策が望まれている。
In addition, with the current fixed microwave system, the transmission power can only be output at a fixed value within the legally permitted range, so it is necessary to take into account the drop in reception level during fading, and to increase the transmission power level with a considerable margin. is set. As a result, the power consumption of the transmitter increases, and measures to reduce this are desired.

本発明は、固定マイクロ波通信方式において、以上の点
を踏まえ高速に変動するフェージングに対し、受信レベ
ルを監視し、送信側にこの情報を転送し、送信側で増幅
器のバイアス電圧を先ず制御し、その上で入力レベルを
制御する方法をとることにより、符号誤りを発生させる
ことな(且つ低消費電力化も兼ね備えた実用的な送信電
力制御方式を提供することを目的としている。
Based on the above points, the present invention monitors the reception level in a fixed microwave communication system against fading that fluctuates at high speed, transfers this information to the transmitting side, and first controls the bias voltage of the amplifier on the transmitting side. The purpose of this invention is to provide a practical transmission power control method that does not cause code errors (and also reduces power consumption) by controlling the input level based on the above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、受信側の受信レベル検出部において受信レベ
ルを監視していて、その結果に応じた情報を送信側に逐
次転送する。これを受けて、送信側では増幅器のバイア
ス電圧及び入力レベル等を以下に示す手順に従い制御し
、フェージング時のみ送信電力レベルをあげ、回線品質
を確保する。
According to the present invention, a reception level detection unit on the reception side monitors the reception level, and information according to the result is sequentially transferred to the transmission side. In response to this, on the transmitting side, the bias voltage and input level of the amplifier are controlled according to the procedure shown below, and the transmission power level is increased only during fading to ensure line quality.

■ まず、受信レベルが低下しある定められた受信レベ
ル(L1)より低下した場合、その情報(Ll情報)を
送信側へ転送する。送信側では高出力増幅器のバイアス
電圧をあげ、定められた時間継続して保持する。この保
持時間内にさらにLl情報がくれば、その時点からさら
にバイアス電圧を上げたまま一定時間継続保持する。
(1) First, when the reception level drops below a certain predetermined reception level (L1), that information (L1 information) is transferred to the transmitting side. On the transmitting side, the bias voltage of the high-output amplifier is increased and maintained for a specified period of time. If further Ll information comes within this holding time, from that point on, the bias voltage is further increased and held for a certain period of time.

この時、バイアス電圧の変化に伴う増幅器の入出力特性
の非直線性歪を補償するため、歪補償回路を合わせて制
御する。
At this time, a distortion compensation circuit is also controlled in order to compensate for nonlinear distortion of the input/output characteristics of the amplifier due to changes in the bias voltage.

■ さらに、受信レベルが低下し、定められた受信レベ
ル(L2)より低下した場合、その情報(L2情報)を
送信側へ転送する。送信側では高出力増幅器の入力レベ
ルをある定められたレベルまで上げる。この時、受信側
のAGC回路、復調器の動作特性に影響を与えないよう
にするため、必要な時定数をもって入力レベルの設定を
行う。また、入力レベル制御と合わせて歪補償回路の制
御も実施する。
(2) Further, when the reception level decreases and becomes lower than the predetermined reception level (L2), the information (L2 information) is transferred to the transmitting side. On the transmitting side, the input level of the high-output amplifier is raised to a certain level. At this time, the input level is set with a necessary time constant so as not to affect the operating characteristics of the AGC circuit and demodulator on the receiving side. In addition to input level control, it also controls the distortion compensation circuit.

■ 受信側で受信レベルが回復し、定められた受信レベ
ル(L3)に達した場合、その情報(L3情報)を送信
側へ転送する。送信側では高出力増幅器の入力レベルを
定常時のレベルまで下げる。この時、受信側のAGC回
路、復調器の動作特性に影響を与えないようにするため
、必要な時定数をもって入力レベルの設定を行う。
■ When the receiving level recovers on the receiving side and reaches the specified receiving level (L3), the information (L3 information) is transferred to the transmitting side. On the transmitting side, the input level of the high-output amplifier is lowered to the steady state level. At this time, the input level is set with a necessary time constant so as not to affect the operating characteristics of the AGC circuit and demodulator on the receiving side.

また、入力レベル制御と合わせて歪補償回路の制御も実
施する。このとき、受信レベルは送信レベルを上げてい
た分低下するが、送信側では引続き一定時間増幅器のバ
イアス電圧を上げたまま保持しておき、受信レベルがL
lより下がらなければバイアス電圧を定常時の値に戻す
In addition to input level control, it also controls the distortion compensation circuit. At this time, the receiving level will drop by the amount that the transmitting level has been raised, but on the transmitting side, the bias voltage of the amplifier will continue to be raised for a certain period of time, so that the receiving level will be low.
If it does not fall below l, the bias voltage is returned to its normal value.

■ なお、増幅器の入力レベルを上げ送信電力を制御し
ている場合、増幅器のバイアス電圧は常に高い値に選定
するよう制御するなど、誤動作防止の機能を具備する。
■ In addition, when controlling the transmission power by increasing the input level of the amplifier, a function to prevent malfunction is provided, such as controlling the bias voltage of the amplifier to always be selected at a high value.

以上の説明の参考のために、第1図に受信レベルの状況
に応じた送信側における増幅器の制御状態並びに送信レ
ベルの制御状態を示す。また、第2図に送信電力制御に
おける高出力増幅器の入出力特性の変化状態を示す。
For reference in the above explanation, FIG. 1 shows the control state of the amplifier on the transmitting side and the control state of the transmission level depending on the reception level situation. Furthermore, FIG. 2 shows how the input/output characteristics of the high-output amplifier change during transmission power control.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
することにする。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第3図は本発明を適用した無線通信装置の実施例を示す
ブロック図である。1と17はアンテナ2と18は送受
共用器、3と19は受信用高周波フィルタ、4と20は
周波数変換部、5と21は中間周波増幅部、6と22は
AGC部、7と23は復調器、8と24は受信レベル検
出部、9と25は送信用高周波フィルタ、10と26は
FET電力増幅部、11と27は歪補償回路部、12と
28は周波数変換部、13と29は中間周波増幅部、1
4と30は変調部、15と31は復調部、16と32は
送信電力制御部である。第4図は送信電力制御部16ま
たは32の詳細図であり、51は制御情報を翻訳し各制
御回路と接続するインタフェース回路、52は増幅器の
バイアス電圧を制御するバイアス制御回路、53は歪補
償回路を制御する歪発生量制御回路、54は入力レベル
制御回路である。 次に上記構成による無線通信装置の
動作について、送信側をA局、受信側をB局として説明
する。まず、アンテナ17に受信された受信入力信号は
送受共用器18、受信用高周波フィルタ19、周波数変
換部20を経て中間周波数帯(IF帯)に変換される。
FIG. 3 is a block diagram showing an embodiment of a wireless communication device to which the present invention is applied. 1 and 17 are antennas 2 and 18 are duplexers, 3 and 19 are reception high frequency filters, 4 and 20 are frequency conversion sections, 5 and 21 are intermediate frequency amplification sections, 6 and 22 are AGC sections, 7 and 23 are Demodulator, 8 and 24 are reception level detection sections, 9 and 25 are high frequency filters for transmission, 10 and 26 are FET power amplification sections, 11 and 27 are distortion compensation circuit sections, 12 and 28 are frequency conversion sections, 13 and 29 is an intermediate frequency amplification section, 1
4 and 30 are modulation sections, 15 and 31 are demodulation sections, and 16 and 32 are transmission power control sections. FIG. 4 is a detailed diagram of the transmission power control section 16 or 32, 51 is an interface circuit that translates control information and connects to each control circuit, 52 is a bias control circuit that controls the bias voltage of the amplifier, and 53 is a distortion compensation circuit. A distortion generation amount control circuit controls the circuit, and 54 is an input level control circuit. Next, the operation of the wireless communication device with the above configuration will be explained assuming that the transmitting side is station A and the receiving side is station B. First, a reception input signal received by the antenna 17 is converted to an intermediate frequency band (IF band) through a duplexer 18, a reception high frequency filter 19, and a frequency converter 20.

この中間周波数帯の受信信号はその後、中間周波増幅部
21、AGC部22を経て復調部23へ入力される。受
信レベル検出部24は受信電力レベルを示すAGC電圧
によって、送信レベルの制御情報を出力し、この制御情
報は復調部31にて主信号系列にビット付加することに
より作成される制御回路へ挿入され、変調部30、中間
周波増幅部29、周波数変換部28、歪補償回路部27
、FET電力増幅部26、送信用高周波フィルタ25、
送受共用器18、アンテナ17を経て、送信元であるA
局側へ転送される。A局側では、この制御情報は、アン
テナl、送受共用器2、受信用高周波フィルタ3、周波
数変換部4、中間周波増幅部5、AGC部6を経て復調
部7へ入力し、ここで主信号回線から分離される。送信
電力制御部16はこの分離された制御情報により送信電
力レベルを制御する。まず、インタフェース回路51に
より受信した制御信号に応じて各制?1111回路を制
御する。L1情報により、バイアス電圧制御回路52は
増幅器のバイアス電圧を定常時の値から高出力時の値に
ゆっくり変更して待機する0次にL2情報を受信した時
に、入力レベル制御回路54により増幅器の入力レベル
を、符号誤りを発生させない速度をもって変化させ、送
信電力を上げる。以上の送信電力制御部16における各
制御段階において、歪補償回路11内での非直線歪を補
償するため発生させる歪の振幅と位相成分を、歪発生量
制御回路53によって同様に制御する。
The received signal in the intermediate frequency band is then input to the demodulating section 23 via the intermediate frequency amplifying section 21 and the AGC section 22. The reception level detection unit 24 outputs transmission level control information using the AGC voltage indicating the reception power level, and this control information is inserted into a control circuit created by adding bits to the main signal sequence in the demodulation unit 31. , modulation section 30, intermediate frequency amplification section 29, frequency conversion section 28, distortion compensation circuit section 27
, FET power amplification section 26, high frequency transmission filter 25,
After passing through the transmitter/receiver duplexer 18 and the antenna 17, the source A
Transferred to the station side. On the A station side, this control information is input to the demodulator 7 via the antenna 1, the duplexer 2, the reception high frequency filter 3, the frequency converter 4, the intermediate frequency amplifier 5, and the AGC section 6, where it is input to the demodulator 7. Separated from signal line. The transmission power control unit 16 controls the transmission power level using this separated control information. First, each control is performed according to a control signal received by the interface circuit 51. 1111 circuit. Based on the L1 information, the bias voltage control circuit 52 slowly changes the bias voltage of the amplifier from the steady state value to the high output value and waits.0 Next, when the L2 information is received, the input level control circuit 54 changes the amplifier bias voltage to the high output value. To increase transmission power by changing the input level at a speed that does not cause code errors. In each control step in the transmission power control section 16 described above, the distortion generation amount control circuit 53 similarly controls the amplitude and phase component of the distortion generated to compensate for nonlinear distortion within the distortion compensation circuit 11.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、固定マイクロ波通信にお
いて、定常時は増幅器のバイアス電圧を下げて運用し、
非常に小さい時間率で発生するフェージング時にのみ増
幅器のバイアス電圧を上げる方法により、送信機の消費
電力を低減するとともに、フェージング等による高速の
受信電界レベルの変動に対して、従来の方法では適用で
きなかったバイアス電圧までを制御する送信電力制御方
式が可能となる。
As explained in detail above, in fixed microwave communication, the bias voltage of the amplifier is lowered during steady state operation.
By increasing the bias voltage of the amplifier only during fading, which occurs at a very small rate of time, the power consumption of the transmitter is reduced, and conventional methods cannot be applied to high-speed fluctuations in the received electric field level due to fading, etc. This enables a transmission power control method that controls bias voltage, which was not possible before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る制御手順を説明するフェージン
グ時の受信、送信レベル及び高出力増幅器の状態図、第
2図はこの発明に係る制御手順を説明する高出力増幅器
の入力特性及び状態図、第3図はこの発明に係る無線通
信装置の実施例を示すブロック図、第4図は送信電力制
御部の実施例を示すブロック図である。 1.17−−−−アンテナ、 2.18−−−一送受共
用器、 8.24−−−一受信レベル検出部、10.2
6−−−−FET高出力増幅器、16.32−−−一送
信電力制御部、 17.27−−−−歪補償回路部 ill 受信レベル τ (3)送信レベル 1゜ tμ3を計。 【ム 時間 S 【^ I’l1図 出力レベル 第2図
Fig. 1 is a state diagram of reception, transmission levels and high power amplifier during fading to explain the control procedure according to the present invention, and Fig. 2 is an input characteristic and state diagram of the high power amplifier to explain the control procedure according to the present invention. , FIG. 3 is a block diagram showing an embodiment of a wireless communication device according to the present invention, and FIG. 4 is a block diagram showing an embodiment of a transmission power control section. 1.17---Antenna, 2.18---One transmitter/receiver duplexer, 8.24---One reception level detector, 10.2
6---FET high output amplifier, 16.32---1 transmission power control section, 17.27---distortion compensation circuit section ill Reception level τ (3) Measure the transmission level 1°tμ3. [Mu time S [^ I'l1 Figure output level Figure 2

Claims (1)

【特許請求の範囲】[Claims] 固定マイクロ波通信方式における送信電力制御を行う方
式において、受信電力レベルがある定められたレベル(
L1)より低下した場合、送信側において電界効果トラ
ンジスタ(FET)を用いた高出力電力増幅器のバイア
ス電圧を切り換えるとともに増幅器の非直線歪補償の再
設定を実施して一定時間待機し、その間さらに受信電力
レベルがある定められたレベル(L2:L2<L1)よ
り低下した場合、高出力増幅器の入力レベル及び非直線
歪補償量を制御することにより、送信機の消費電力の低
減及び送信電力レベルを変化させることを特徴とした送
信電力制御方式。
In a method for controlling transmission power in a fixed microwave communication system, the received power level is set to a certain level (
If the voltage drops below L1), the transmitting side switches the bias voltage of the high-output power amplifier using a field-effect transistor (FET), resets the amplifier's nonlinear distortion compensation, and waits for a certain period of time. When the power level drops below a certain level (L2:L2<L1), the power consumption of the transmitter and the transmission power level can be reduced by controlling the input level of the high-output amplifier and the amount of nonlinear distortion compensation. A transmission power control method characterized by changing the transmission power.
JP2082198A 1990-03-29 1990-03-29 Transmission power control system Pending JPH03280727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082198A JPH03280727A (en) 1990-03-29 1990-03-29 Transmission power control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082198A JPH03280727A (en) 1990-03-29 1990-03-29 Transmission power control system

Publications (1)

Publication Number Publication Date
JPH03280727A true JPH03280727A (en) 1991-12-11

Family

ID=13767730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082198A Pending JPH03280727A (en) 1990-03-29 1990-03-29 Transmission power control system

Country Status (1)

Country Link
JP (1) JPH03280727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022143A1 (en) * 1991-06-03 1992-12-10 Motorola, Inc. Power control circuitry for achieving wide dynamic range in a transmitter
US5710981A (en) * 1995-05-23 1998-01-20 Ericsson Inc. Portable radio power control device and method using incrementally degraded received signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022143A1 (en) * 1991-06-03 1992-12-10 Motorola, Inc. Power control circuitry for achieving wide dynamic range in a transmitter
GB2271231A (en) * 1991-06-03 1994-04-06 Motorola Inc Power control curcuitry for achieving wide dynamic range in a transmitter
GB2271231B (en) * 1991-06-03 1996-01-03 Motorola Inc Power control curcuitry for achieving wide dynamic range in a transmitter
US5710981A (en) * 1995-05-23 1998-01-20 Ericsson Inc. Portable radio power control device and method using incrementally degraded received signals

Similar Documents

Publication Publication Date Title
US4495648A (en) Transmitter power control circuit
KR100312580B1 (en) Received power calculating method and mobile station
EP1127406B1 (en) High efficiency power amplifier
JP3415431B2 (en) Radio transceiver and its receiving high-frequency unit and control unit
JP2996170B2 (en) Gain control circuit
US6718165B1 (en) Apparatus and method for reducing nonlinear distortion in an automatic gain control system
JPH07131401A (en) Radio repeating installation
JPH11330870A (en) Adaptive control method for amplifier linearizing device
JPH03280727A (en) Transmission power control system
KR100338674B1 (en) Rx-amplifier control apparatus in wireless telephone set and method thereof
AU675973B2 (en) The apparatus for adjusting the efficiency of electric poweramplification
JP2002141832A (en) Spread spectrum communication system receiver
JP2001177426A (en) Communication unit
JPH0695651B2 (en) Wireless communication device
JP3110354B2 (en) Receiver
JPH10224293A (en) Mobile station transmission power controlling method and mobile communication system
JPH07226709A (en) Radio communication system
JPH0575571A (en) Transmission/reception equipment
JP3393874B2 (en) Automatic gain control method and automatic gain control circuit
JP2000307512A (en) Closed loop transmission power control device for mobile radio communication system
JP2590736B2 (en) Transmission output control method
JPH1169451A (en) Portable telephone set
JPH04165721A (en) Optimum transmission power setting system
JP2006512828A (en) Control technique for mobile handset transmit power
KR20010104057A (en) Device for controlling transmission power using pdm signal in mobile communication phone