JPH0616477B2 - Projection optics - Google Patents

Projection optics

Info

Publication number
JPH0616477B2
JPH0616477B2 JP58249093A JP24909383A JPH0616477B2 JP H0616477 B2 JPH0616477 B2 JP H0616477B2 JP 58249093 A JP58249093 A JP 58249093A JP 24909383 A JP24909383 A JP 24909383A JP H0616477 B2 JPH0616477 B2 JP H0616477B2
Authority
JP
Japan
Prior art keywords
change
magnification
lens
pressure
image plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58249093A
Other languages
Japanese (ja)
Other versions
JPS60136746A (en
Inventor
暁 安西
康一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP58249093A priority Critical patent/JPH0616477B2/en
Publication of JPS60136746A publication Critical patent/JPS60136746A/en
Priority to US07/120,232 priority patent/US4871237A/en
Publication of JPH0616477B2 publication Critical patent/JPH0616477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Variable Magnification In Projection-Type Copying Machines (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は投影光学系の結像性能を高精度に補正し得る投
影光学装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a projection optical apparatus capable of highly accurately correcting the imaging performance of a projection optical system.

(発明の背景) 縮小投影型露光装置(以下ステツパと呼ぶ)は近年超L
SIの生産現場に多く導入され、大きな成果をもたらし
ているが、その重要な性能の一つに重ね合せマツチング
精度があげられる。このマツチング精度に影響を与える
要素の中で重要なものに投影光学系の倍率誤差がある。
超LSIに用いられるパターンの大きさは年々微細化の
傾向を強め、それに伴つてマツチング精度の向上に対す
るニーズも強くなつてきている。従つて投影倍率を所定
の値に保つ必要性はきわめて高くなつてきている。現在
投影光学系の倍率は装置の設置時に調整することにより
倍率誤差が一応無視できる程度になつている。しかしな
がら、超LSIの高密度化に十分対応するためには、装
置の稼動時におけるクリーンルーム内の僅かな気圧変動
等、環境条件が変化した時の倍率誤差をも補正する必要
があり、また、投影レンズ系自体が露光エネルギーの吸
収により温度変化する時に生ずる倍率変動をも補正する
必要がある。しかも、一般には気圧変動等の環境条件の
変化や投影レンズ系自体の温度上昇による倍率変化に
は、結像面の変化も付随する。高解像力が要求されてい
る投影対物レンズにおいては、N.A.が大きく焦点深
度が小さいため、結像面の僅かな変動も十分に補正され
なければならない。
(Background of the Invention) A reduction projection type exposure apparatus (hereinafter referred to as a stepper) has recently been a super L type.
It has been introduced to many SI production sites and has produced great results, but one of its important performances is overlay matching accuracy. An important factor that affects the matching accuracy is a magnification error of the projection optical system.
The size of the pattern used in the VLSI is becoming finer year by year, and accordingly, the need for improving the matching accuracy is also increasing. Therefore, the necessity of keeping the projection magnification at a predetermined value has become extremely high. At present, the magnification of the projection optical system is adjusted to such an extent that the magnification error can be neglected by adjusting the magnification when the apparatus is installed. However, in order to sufficiently cope with the high density of VLSI, it is necessary to correct the magnification error when the environmental conditions change, such as a slight change in atmospheric pressure in the clean room during the operation of the device. It is also necessary to correct magnification fluctuations that occur when the lens system itself changes in temperature due to absorption of exposure energy. Moreover, in general, changes in the image plane are accompanied by changes in environmental conditions such as atmospheric pressure fluctuations and changes in magnification due to temperature rise of the projection lens system itself. In a projection objective lens that requires high resolution, NA. Is large and the depth of focus is small, so even slight variations in the image plane must be sufficiently corrected.

従来ステツパ以外の投影光学系では投影倍率を補正する
ために物体域は像面に対して投影レンズとの間隔を機械
的に変化させたり、投影レンズ中のレンズエレメントを
光軸方向に動かしたりする方法がとられていた。しかし
ステツパのように極めて高精度な倍率及び結像面の設定
が必要な装置に上記のように光学部材を光軸方向に変化
させるという方法を採用すると機械的な可動部の偏心
(シフト、テイルト)のため光軸を正しく保つたまま変
位を与えることが難しい。そのため物体を含めた光学系
が共軸でなくなつてしまい、光軸に対して非対称な倍率
分布が像面上に生じてしまう欠点が生ずる。又ウエハ上
で0.05μm以下の誤差しか発生しない様に精度良く
倍率設定するためには光学部材の変化量を偏心(シフ
ト、テイルト)を含めて数μmないし1μm以下に制御
する必要がありこれらの実現には多大の困難がともな
う。
In the projection optical system other than the conventional stepper, in order to correct the projection magnification, the object area mechanically changes the distance between the object surface and the projection lens, or moves the lens element in the projection lens in the optical axis direction. The method was taken. However, if the method of changing the optical member in the optical axis direction as described above is adopted in a device such as a stepper that requires extremely high-precision magnification and image plane setting, the mechanical eccentricity (shift, tilt) of the movable part is adopted. ), It is difficult to give a displacement while keeping the optical axis correct. As a result, the optical system including the object becomes non-coaxial, and there arises a disadvantage that a magnification distribution asymmetric with respect to the optical axis occurs on the image plane. In order to accurately set the magnification so that only an error of 0.05 μm or less occurs on the wafer, it is necessary to control the variation amount of the optical member to several μm to 1 μm or less including eccentricity (shift, tilt). There are many difficulties in realizing.

(発明の目的) 本発明は、これらの欠点を除き、光学性能の非対称性を
発生することなく倍率及び結像面の変動を高精度に補正
し得る投影光学装置を提供することを目的とする。
(Object of the Invention) The present invention has an object to provide a projection optical device which can correct the fluctuations of the magnification and the image plane with high accuracy without generating asymmetry of the optical performance, except for these drawbacks. .

(発明の概要) 本発明に先だち、本発明者は先に、レチクル上のパター
ンをウエハ上に投影露光するための投影対物レンズを有
する投影光学装置において、該投影対物レンズ中のレン
ズ間隔の少なくとも1ケ所に外気から遮断された空気室
を設けると共に、該空気室の圧力を制御するための圧力
制御器を設け、該圧力制御器により前記投影対物レンズ
中の空気室の圧力を変えることによつて該投影対物レン
ズの光学性能を調整可能に構成した装置を、特願昭58
−137377号として提案した。本発明は先に提案し
た上記のごとき投影光学装置を基礎として、圧力制御器
によつて圧力制御される空気室による投影対物レンズの
倍率変化量と結像面変化量との比の値を、該投影対物レ
ンズの所定の要因による倍率変化量と結像面変化量との
比の値にほぼ等しく構成し、これにより少なくとも1ケ
所のレンズ間隔からなる1つの空気室を圧力制御するこ
とによつて所定要因による倍率と結像面との両者の変動
を同時に高精度で補正するものである。
(Summary of the Invention) Prior to the present invention, the present inventor firstly provided in a projection optical apparatus having a projection objective lens for projecting and exposing a pattern on a reticle onto a wafer, at least a lens interval in the projection objective lens. An air chamber isolated from the outside air is provided at one place, and a pressure controller for controlling the pressure of the air chamber is provided, and the pressure of the air chamber in the projection objective lens is changed by the pressure controller. An apparatus constructed so that the optical performance of the projection objective lens can be adjusted is disclosed in Japanese Patent Application No.
-137377. The present invention is based on the above-mentioned projection optical apparatus proposed above, and the value of the ratio between the magnification change amount and the image plane change amount of the projection objective lens by the air chamber whose pressure is controlled by the pressure controller, By configuring the projection objective lens to be approximately equal to the ratio value of the amount of change in magnification and the amount of change in image plane due to a predetermined factor, one air chamber having at least one lens interval is pressure-controlled by this. Then, the fluctuations of both the magnification and the image plane due to a predetermined factor are simultaneously corrected with high accuracy.

さて、投影対物レンズ中の少なくとも1ケ所のレンズ間
隔を大気から遮断して形成した圧力制御用空気室におい
て、単位圧力変化によつて生ずる倍率変化量は、一体的
に圧力制御される各レンズ間隔における倍率変化量の和
であり、ΣΔXと表わされる。またこの空気室におい
て単位圧力変化によつて生ずる結像面変化量も同様に圧
力制御される各レンズ間隔における結像面変化量の和で
あり、ΣΔZと表わされる。いま、大気圧変動によつ
て生ずる投影対物レンズの倍率及び結像面の変動を補正
する場合についてみれば、全体の系で生ずる変動は投影
原板としてのレチクルから感光物体面としてのウエハま
での間の全ての空気間隔のうち、外気から遮断されて一
体的に圧力制御される前記のごとき空気室を形成するレ
ンズ間隔を除いた残りの全空気間隔において生ずる変動
に等しい。大気圧の単位圧力変化に伴つて残りの全空気
間隔で生ずる倍率変化量ΔX(P)は、これら残りの全
空気間隔それぞれにおける倍率変化量の和であり、 ΔX(P)=ΣΔX と表わされる。また結像面変化量ΔZ(P)もこれらの
全空気間隔それぞれにおける結像面変化量の和であり、 ΔZ(P)=ΣΔZ と表わされる。そこで、大気圧変動による倍率変動量と
結像面変動量との比を変動比V(P)として、 V(P)=ΔZ(P)/ΔX(P) (1) と定義する。他方、前述の一体的圧力制御を行なう空気
室によつて変化させ得る倍率変化量と結像面変化量との
比を補正比Cとして、 C=ΣΔZ/ΣΔX (2) と定義する。そして、大気圧変動による変動比V(P)
に等しい補正比Cを持つような空気室を設けることによ
つて、大気圧変動による倍率変化と結像面変化との両者
を同時に補正することが可能となる。すなわち、(1)(2)
式より、 となるように、投影対物レンズ中のレンズ間隔を組合せ
て一体的圧力制御空気室を形成すればよい。
Now, in a pressure control air chamber formed by cutting off at least one lens interval in the projection objective lens from the atmosphere, the amount of change in magnification caused by a unit pressure change is determined by the lens interval that is integrally pressure controlled. Is the sum of the magnification change amounts at, and is represented by ΣΔX c . Further, the amount of change in the image plane caused by the unit pressure change in this air chamber is also the sum of the amount of change in the image plane at each lens interval under pressure control, and is represented by ΣΔZ c . Now, in the case of correcting the magnification of the projection objective lens and the fluctuation of the image plane caused by the atmospheric pressure fluctuation, the fluctuation generated in the entire system is from the reticle as the projection original plate to the wafer as the photosensitive object surface. Out of all air intervals of the above, which is equal to the fluctuation that occurs in the remaining air intervals other than the lens interval forming the above-mentioned air chamber that is shut off from the outside air and integrally pressure-controlled. The amount of change in magnification ΔX (P) that occurs in the remaining total air interval due to the unit pressure change of atmospheric pressure is the sum of the amount of change in magnification in each of the remaining total air intervals, and is expressed as ΔX (P) = ΣΔX R. Be done. The image plane change amount ΔZ (P) is also the sum of the image plane change amounts at each of these total air intervals, and is represented by ΔZ (P) = ΣΔZ R. Therefore, the ratio of the magnification variation due to atmospheric pressure variation and the imaging plane variation is defined as the variation ratio V (P), and V (P) = ΔZ (P) / ΔX (P) (1) is defined. On the other hand, C = ΣΔZ c / ΣΔX c (2) is defined as the correction ratio C, which is the ratio of the magnification change amount and the image plane change amount that can be changed by the air chamber that performs the integrated pressure control. Then, the variation ratio V (P) due to the atmospheric pressure variation
By providing the air chamber having the correction ratio C equal to, it is possible to simultaneously correct both the magnification change and the image plane change due to the atmospheric pressure fluctuation. That is, (1) (2)
From the formula, Therefore, the lens space in the projection objective lens may be combined to form an integrated pressure control air chamber.

ここで、上記(3)式を書き換えれば、 となり、この値αは圧力変化に対する変化量と補正量と
の比を表わし、大気圧変動量に対して、一体的圧力制御
空気室をα倍した圧力だけ逆の圧力変化を与えればよい
ことを意味しており、制御率ともいうべきである。すな
わち、大気圧変動量ΔPに対して、制御空気室の圧力を
α・ΔPだけ逆に減圧又は加圧することとすれば、結果
としての倍率変化量ΔXは、 ΔX=ΔP・ΔX(P)−α・ΔP・ΣΔX (5) =ΔP・{ΔX(P)−α・ΣΔX} となる。(4)式より、 α・ΣΔX=ΔX(P) であるから、 ΔX=ΔP・{ΔX(P)−ΔX(P)} よつて、ΔX=0 (5′) となり、倍率変動が完全に補正される。
Here, if the above equation (3) is rewritten, Therefore, this value α represents the ratio of the amount of change to the pressure change and the correction amount, and it suffices to apply the opposite pressure change to the atmospheric pressure change amount by the pressure that is α times the integral pressure control air chamber. It is meant and should also be called a control rate. That is, if the pressure in the control air chamber is inversely reduced or increased by α · ΔP with respect to the atmospheric pressure fluctuation amount ΔP, the resulting magnification change amount ΔX is ΔX = ΔP · ΔX (P) − α · ΔP · ΣΔX c (5) = ΔP · {ΔX (P) −α · ΣΔX c } From the equation (4), since α · ΣΔX c = ΔX (P), ΔX = ΔP · {ΔX (P) −ΔX (P)}, so ΔX = 0 (5 ′), and the change in magnification is complete. Is corrected to.

同様に、補正後の結像面変化量ΔZは、 ΔZ=ΔP・ΔZ(P)−α・ΔP・ΣΔZ (6) と与えられ、(4)式より α・ΣΔZ=ΔZ(P) であるから ΔZ=0 (6′) となり、結像面の変動も同時に補正される。Similarly, the corrected image plane change amount ΔZ is given as ΔZ = ΔP · ΔZ (P) −α · ΔP · ΣΔZ c (6), and α · ΣΔZ c = ΔZ (P) from the equation (4). Therefore, ΔZ = 0 (6 ′), and the fluctuation of the image plane is also corrected at the same time.

上記の説明では、大気圧変動による倍率及び結像面の補
正を行なうこととしたが、前述したごとく、投影対物レ
ンズの倍率及び結像面に変動を生ずる要因としては、大
気圧変動のみならず環境温度変化や露光エネルギーの吸
収によるレンズ自体の温度変化がある。投影光学装置と
しての環境温度についてはかなりの精度で定常状態を保
つことが可能である反面、露光エネルギーの吸収による
レンズ自体の温度変化の補償は難しいものであつたが、
本発明によれば露光エネルギー照射によつて生ずるレン
ズ自体の温度変化に帰因する倍率及び結像面の変動をも
精度良く同時に補正することができる。
In the above description, the magnification and the imaging surface are corrected by the atmospheric pressure fluctuation. However, as described above, the factors causing the magnification and the imaging surface of the projection objective lens are not limited to the atmospheric pressure fluctuation. There is a change in temperature of the lens itself due to a change in environmental temperature or absorption of exposure energy. Regarding the environmental temperature of the projection optical device, it is possible to maintain a steady state with considerable accuracy, but it is difficult to compensate for the temperature change of the lens itself due to absorption of exposure energy.
According to the present invention, it is possible to accurately and simultaneously correct the fluctuations of the magnification and the image plane caused by the temperature change of the lens itself caused by the exposure energy irradiation.

すなわち、投影対物レンズ全系の単位入射エネルギー当
りの倍率変化量をΔX(E)、結像面変化量をΔZ
(E)とすると、レンズの露光エネルギー吸収に基づく
温度変化による倍率変動量と結像面変化量との比として
の、変動比V(E)は、 V(E)=ΔZ(E)/ΔX(E) (7) と定義される。そこで、前記(2)式に示した一体的圧力
制御空気室による補正比Cを、(7)式に示したレンズの
露光エネルギー吸収による変動比V(E)に等しくなるよ
うにレンズ間隔を組合せればよい。
That is, the magnification change amount per unit incident energy of the entire projection objective lens system is ΔX (E), and the image plane change amount is ΔZ.
Assuming that (E), the variation ratio V (E), which is the ratio of the amount of change in magnification due to the temperature change due to the absorption of the exposure energy of the lens and the amount of change in the image plane, is V (E) = ΔZ (E) / ΔX (E) Defined as (7). Therefore, the lens spacing is combined so that the correction ratio C by the integrated pressure control air chamber shown in the formula (2) becomes equal to the fluctuation ratio V (E) due to the exposure energy absorption of the lens shown in the formula (7). Just do it.

即ち、 となるような圧力制御空気室を形成すればよい。ここ
で、(8)式の左辺の分母分子にΔEを、右辺の分母分子
にΔPを乗じて書き換えれば、 となり、この値α′も(4)式のαと同様に制御率ともい
うべきものとなる。
That is, It is sufficient to form the pressure-controlled air chamber so that Here, by rewriting by multiplying the denominator numerator on the left side of the equation (8) by ΔE and the denominator numerator on the right side by ΔP, Therefore, this value α'is also to be called a control rate, like α in Eq. (4).

従つて、この場合、レンズへの露光エネルギーがΔEだ
け変化したとするとき圧力制御空気室の圧力を−α′・
ΔPだけ変化させることによつて、補正後の倍率変化量
ΔXは ΔX=ΔE・ΔX(E)−α′・ΔP・ΣΔX と表わされ、(9)式より、 α′・ΔP・ΣΔX=ΔE・ΔX(E) であるから、 ΔX=0 となり、倍率変化が完全に補正される。
Therefore, in this case, when the exposure energy to the lens changes by ΔE, the pressure in the pressure control air chamber is changed to −α ′ ·
By changing only ΔP, the corrected magnification change amount ΔX is expressed as ΔX = ΔE · ΔX (E) −α ′ · ΔP · ΣΔX c, and from Equation (9), α ′ · ΔP · ΣΔX Since c = ΔE · ΔX (E), ΔX = 0 and the magnification change is completely corrected.

また、同様にして、補正後の結像面変化量ΔZは、 ΔZ=ΔE・ΔZ(E)−α′・ΔP・ΣΔZ と表わされ、(9)式を用いて、 ΔZ=0 となり、結像面も同時に補正され得ることが明らかであ
る。
Similarly, the corrected image plane change amount ΔZ is expressed as ΔZ = ΔE · ΔZ (E) −α ′ · ΔP · ΣΔZ c, and ΔZ = 0 is obtained by using the equation (9). Obviously, the image plane can also be corrected at the same time.

(実施例) 以下、本発明の実施例に基づいて本発明を説明する。第
1図はステツパーに用いられる投影対物レンズの一例を
示すレンズ配置図であり、この対物レンズによりレチク
ル(R)上の所定のパターンがウエハ(W)上に縮小投影さ
れる。図中にはウエハとレチクルとの軸上物点の共役関
係を表わす光線を示した。この対物レンズはレチクル
(R)側から順にL,L,…L14の合計14個のレン
ズからなり、各レンズの間隔及びレチクル(R)、ウエハ
(W)との間に、レチクル側から順にa,b,c,……,
oの合計15個の空気間隔が形成されている。この対物
レンズの諸元を表1に示す。但し、rは各レンズ面の曲
率半径、Dは各レンズの中心厚及び空気間隔、Nは各レ
ンズのi線(λ=365.0nm)に対する屈折率を表
わし、表中左端の数字はレチクル側からの順序を表わす
ものとする。また、Dはレチクル(R)と最前レンズ面
との間隔、D31は最終レンズ面とウエハ(W)との間隔を
表わす。
(Example) Hereinafter, the present invention will be described based on Examples of the present invention. FIG. 1 is a lens arrangement view showing an example of a projection objective lens used for a stepper, and a predetermined pattern on a reticle (R) is reduced and projected onto a wafer (W) by this objective lens. In the figure, rays showing the conjugate relation of the on-axis object point between the wafer and the reticle are shown. This objective lens is a reticle
It is composed of a total of 14 lenses L 1 , L 2 , ... L 14 in order from the (R) side, and the distance between each lens, the reticle (R), and the wafer.
Between (W) and a, b, c, ..., from the reticle side in order
There are a total of 15 air intervals of o. Table 1 shows the specifications of this objective lens. Where r is the radius of curvature of each lens surface, D is the center thickness and air gap of each lens, and N is the refractive index of each lens with respect to the i-line (λ = 365.0 nm), and the leftmost number in the table is the reticle side. It represents the order from. Further, D 0 represents the distance between the reticle (R) and the frontmost lens surface, and D 31 represents the distance between the final lens surface and the wafer (W).

いま、この対物レンズにおいて、空気間隔a,b,…o
の気圧をそれぞれ+137.5mmHgだけ変化させたと
すると、各空気間隔の相対屈折率は1.00005に変
化し、この時の倍率変化、及び結像面すなわちレチクル
(R)との共役面の変化は表2に示すようになる。但し、
倍率変化ΔXは、結像面上において気圧変動がない時に
光軸より5.66mm離れた位置に結像する像点が、各空
気間隔の気圧変化後の移動量μm単位で表わし、気圧変
動が無い場合の結像面すなわち所定のウエハ面上により
大きく投影される場合(拡大)を正符号として示した。
また、結像面の変化ΔZは軸上の結像点の変化として示
し、対物レンズから遠ざかる場合を正符号として示し
た。両者の値は共にμm単位である。
Now, in this objective lens, air intervals a, b, ... O
If the atmospheric pressure of each is changed by +137.5 mmHg, the relative refractive index of each air space changes to 1.00005, the magnification change at this time, and the image plane or reticle.
The change in the conjugate plane with (R) is shown in Table 2. However,
The change in magnification ΔX is expressed by the amount of movement μm after the change in atmospheric pressure at each air interval when the image point that forms an image at a position 5.66 mm away from the optical axis when there is no change in atmospheric pressure on the image plane, and the change in atmospheric pressure The case where there is no image formation, that is, the case where the image is projected larger on a predetermined wafer surface (enlargement) is shown as a plus sign.
Further, the change ΔZ of the image plane is shown as the change of the image formation point on the axis, and the case of moving away from the objective lens is shown as a positive sign. Both values are in μm.

上記のような特性を有する投影対物レンズを用いた本発
明による第1実施例の投影光学装置は、第10空間jか
ら第13空間mまでの連続する4つのレンズ間隔を大気
から遮断し、連通して一体的に圧力制御する構成とし、
これにより大気圧変動による倍率及び結像面の両者の変
動を同時に補正するものである。
The projection optical apparatus according to the first embodiment of the present invention, which uses the projection objective lens having the above characteristics, blocks four continuous lens intervals from the tenth space j to the thirteenth space m from the atmosphere and communicates with each other. To control the pressure integrally,
Thus, the fluctuations of both the magnification and the image plane due to the fluctuation of the atmospheric pressure are corrected at the same time.

ここで、圧力制御を行なう空気室としての4つのレンズ
間隔j,k,l,mにおいて、単位圧力変化に対して生
ずる倍率変化量ΣΔX、結像面変化量ΣΔZ及び大
気圧の単位圧力変化に対して圧力制御空気室を除く全系
の空気間隔で生ずる倍率変化量ΔX(P)、結像面変化
量ΔΣ(P)の各値は表2より計算され、下記表3のご
とくなる。表中には、圧力制御空気室による補正比C及
び大気圧変動による変動比V(P)を併記した。
Here, in four lens intervals j, k, l, and m as air chambers for performing pressure control, the magnification change amount ΣΔX c , the imaging plane change amount ΣΔZ c, and the unit pressure of atmospheric pressure that occur with respect to the unit pressure change. The respective values of the magnification change amount ΔX (P) and the image plane change amount ΔΣ (P) that occur with respect to the change in the air space of the entire system excluding the pressure control air chamber are calculated from Table 2, and are as shown in Table 3 below. . In the table, the correction ratio C by the pressure controlled air chamber and the fluctuation ratio V (P) by the atmospheric pressure fluctuation are also shown.

このような構成においては、変動比V(P)に対して補
正比Cは0.929〔=C/V(P)〕とほぼ両者は等
しい関係にあり、(5)(5′)式及び(6)(6′)式に示したご
とく、倍率変動も結像面変動も共に同時に補正されるは
ずである。ここで、(4)式に示した制御率αは、(4)式の
左辺で与えられる結像面変動についての制御率と(4)式
の中間の辺で与えられる倍率変動についての制御率との
平均値とすればα=0.62である。そこで、大気の圧
力変動量が表2に示した状態と同じく+137.5mmH
gである場合について(5)式に各値を代入してみると、 ΔX=0.374−0.62×0.63=−0.017 となる。この値は全系において何ら補正を行なわない場
合の倍率変化量+1.004に対して2%以下であり十
分に補正され得ることが分る。他方、(6)式に各値を代
入してみると、 ΔZ=5.78−0.62×9.05=0.169 となる。この値は全系において何ら補正しない場合の結
像面変化量+14.83に対して1%程度であり、極め
て良好に補正され得ることが明らかである。
In such a configuration, the correction ratio C is 0.929 [= C / V (P)] with respect to the fluctuation ratio V (P), which are substantially equal to each other, and the equations (5) and (5 ′) and As shown in equations (6) and (6 '), both the magnification variation and the image plane variation should be corrected at the same time. Here, the control rate α shown in the equation (4) is the control rate for the image plane variation given on the left side of the equation (4) and the control rate for the magnification variation given on the middle side of the equation (4). The average value of and is α = 0.62. Therefore, the atmospheric pressure fluctuation amount is +137.5 mmH as in the state shown in Table 2.
Substituting each value into the equation (5) for the case of g, ΔX = 0.374−0.62 × 0.63 = −0.017. This value is 2% or less with respect to the magnification change amount +1.004 when no correction is made in the entire system, and it can be seen that the value can be sufficiently corrected. On the other hand, substituting each value into the equation (6), ΔZ = 5.78−0.62 × 9.05 = 0.169. This value is about 1% with respect to the image plane change amount +14.83 in the case where no correction is made in the entire system, and it is clear that the correction can be performed extremely well.

第2図は上記のごとき投影対物レンズ中の4つのレンズ
間隔を大気から遮断し一体的に形成した空気室の圧力制
御を行なうことによつて、倍率補正と結像面補正とを同
時に達成することが可能な第1実施例による投影光学装
置の概略構成図である。投影対物レンズ(1)は照明装
置(2)により均一照明されたレチクル(R)上のパタ
ーンを、ステージ(3)上に裁置されたウエハ(W)上
に縮小投影する。投影対物レンズ(1)中には、第10
空間j、第11空間k、第12空間l及び第13空間m
に対応する4個の空気室(J,K,L,M)は連通部
(11a)によつて結合された大気から遮断され、圧力
制御空間としてパイプ(11)を通して圧力制御され
る。大気圧と共に圧力が変化する空間は図面の複雑化を
避けるために第2図中から省略した。圧力制御空間はパ
イプ(11)により、対物レンズ外に設けられた圧力制
御器(12)に連結されている。そして圧力制御器(1
2)には、フイルタ(13)を通して加圧空気供給器
(4)から定常的に一定圧力の空気が供給され、また排
気装置(8)により必要に応じて排気される。一方、空
気室の側面にはその内部圧力を検出する圧力センサー
(14)が設けられており、この出力信号は演算器
(5)に送られる。演算器(5)には計測器(6)から
大気圧の測定値が入力される。演算器(5)には圧力制
御空間内の空気室における単位圧力当りの倍率変化量Σ
ΔXと結像面変化量ΣΔZ及び圧力制御空間を除く
全系における単位圧力当りの倍率変化量ΔX(P)と結
像面変化量ΔZ(P)が記憶されており、また、これら
の値により(4)式に示した制御率αが決定されている。
そして、演算器(5)は計測器(6)からの入力信号に
より大気圧の基準状態に対する変動量ΔPを算出し、こ
れに必要な圧力制御量すなわち大気圧変動量に逆符号の
制御率を乗じた値−k・ΔPに相当する圧力制御信号を
圧力制御器(12)へ送出する。そして、圧力制御器
(12)は演算器(5)からの信号に応じて加圧空気供
給器(4)からの空気流入量及び排気装置(8)への流
出量を適宜変更し、圧力制御空気室内の圧力を−k・Δ
Pだけ変化させる。このような一連の動作により、大気
圧変動の経時変化に応じて圧力制御空気室の圧力が制御
され、投影対物レンズの倍率と結像面とが常に一定状態
に保たれる。
FIG. 2 simultaneously achieves magnification correction and image plane correction by controlling the pressure of the integrally formed air chamber by blocking the four lens intervals in the projection objective lens from the atmosphere as described above. FIG. 1 is a schematic configuration diagram of a projection optical device according to a first example which is capable of performing. The projection objective lens (1) projects the pattern on the reticle (R) uniformly illuminated by the illuminating device (2) onto the wafer (W) placed on the stage (3) in a reduced scale. In the projection objective lens (1),
Space j, 11th space k, 12th space 1 and 13th space m
The four air chambers (J, K, L, M) corresponding to (1) are cut off from the atmosphere connected by the communication part (11a), and the pressure is controlled through the pipe (11) as a pressure control space. The space where the pressure changes with the atmospheric pressure is omitted from FIG. 2 in order to avoid complication of the drawing. The pressure control space is connected by a pipe (11) to a pressure controller (12) provided outside the objective lens. And the pressure controller (1
Air having a constant pressure is constantly supplied from the pressurized air supply unit (4) to the unit (2) through the filter (13), and is exhausted by the exhaust unit (8) as necessary. On the other hand, a pressure sensor (14) for detecting the internal pressure of the air chamber is provided on the side surface of the air chamber, and the output signal is sent to the calculator (5). A measured value of atmospheric pressure is input to the computing unit (5) from the measuring unit (6). The calculator (5) has a magnification change amount Σ per unit pressure in the air chamber in the pressure control space.
ΔX c , the image plane change amount ΣΔZ c, and the magnification change amount ΔX (P) and the image plane change amount ΔZ (P) per unit pressure in the entire system excluding the pressure control space are stored. The value determines the control rate α shown in equation (4).
Then, the computing unit (5) calculates the variation amount ΔP of the atmospheric pressure with respect to the reference state based on the input signal from the measuring unit (6), and sets the pressure control amount necessary for this, that is, the control ratio of the opposite sign to the atmospheric pressure variation amount. A pressure control signal corresponding to the multiplied value −k · ΔP is sent to the pressure controller (12). Then, the pressure controller (12) appropriately changes the amount of inflow of air from the pressurized air supplier (4) and the amount of outflow to the exhaust device (8) according to the signal from the computing unit (5) to control the pressure. The pressure in the air chamber is -k
Change P only. By such a series of operations, the pressure of the pressure control air chamber is controlled according to the change of atmospheric pressure fluctuation with time, and the magnification of the projection objective lens and the image plane are always kept constant.

上記の第1実施例では、第10空間〜第13空間までの
4つの連続するレンズ間隔を一体的圧力制御空気室と
し、その他のレンズ間隔を全て大気圧と共に圧力変化し
得る構成としたが、圧力制御しないレンズ間隔のうちの
1部又は全部を大気から遮断し密封することも可能であ
る。例えば、上記第1実施例の構成において、第14空
間nに対応するレンズ間隔を大気から遮断密封する構成
とすることができる。このような第2実施例の場合につ
いて、表3と同様に各変化量及び補正比、変動比を表4
に示す。
In the above-described first embodiment, four continuous lens intervals from the tenth space to the thirteenth space are integrated pressure control air chambers, and the other lens intervals are all configured to be capable of changing the pressure together with the atmospheric pressure. It is also possible to shield some or all of the lens spacing without pressure control from the atmosphere and seal. For example, in the configuration of the first embodiment, the lens interval corresponding to the fourteenth space n can be sealed from the atmosphere. In the case of the second embodiment as described above, each change amount, the correction ratio, and the variation ratio are shown in Table 4 as in Table 3.
Shown in.

表4に示すごとく、圧力制御空気室は第1実施例の場合
と同一であるから、ΣΔX,ΣΔZ及び補正比Cは
表3と同一であり、全系で大気圧変化によつて生ずる倍
率変動量ΔX(P)及び結像面変化量ΔZ(P)の各値
は、第14空間nにおける各変化量分だけ表3の各値と
異なつている。従つて、変動比V(P)も表3の場合と
異なつている。この場合、変動比V(P)に対して補正
比Cは1.063〔=C/V(P)〕であり、第1実施
例の場合よりも変動比と補正比との割合が1に近づいて
いる。ここでも(4)式に示した制御率αを各変動につい
ての制御率の平均値とすればα=0.59である。そこ
で、第1実施例の場合と同様に、(5)式及び(6)式に各値
を代入して結果としての変動量を計算すれば、 ΔX=0.382−0.59×0.63=0.010 ΔZ=5.16−0.59×9.05=−0.18 となる。この倍率変動量ΔXは補正しない場合の1%で
あり、結像面変動量ΔZも補正しない場合の1%程度に
過ぎず、両者共に極めて良好に補正されることが明らか
である。
As shown in Table 4, since the pressure controlled air chamber is the same as in the first embodiment, ΣΔX c , ΣΔZ c and the correction ratio C are the same as those in Table 3, and are caused by the atmospheric pressure change in the entire system. The respective values of the magnification variation amount ΔX (P) and the imaging plane variation amount ΔZ (P) differ from the respective values in Table 3 by the respective variation amounts in the fourteenth space n. Therefore, the variation ratio V (P) is also different from that in Table 3. In this case, the correction ratio C is 1.063 [= C / V (P)] with respect to the fluctuation ratio V (P), and the ratio of the fluctuation ratio to the correction ratio is 1 as compared with the case of the first embodiment. It is approaching. Here, if the control rate α shown in the equation (4) is the average value of the control rate for each variation, then α = 0.59. Therefore, similarly to the case of the first embodiment, if the respective values are substituted into the equations (5) and (6) and the resulting variation amount is calculated, ΔX = 0.382−0.59 × 0. 63 = 0.010 ΔZ = 5.16−0.59 × 9.05 = −0.18. This magnification variation ΔX is 1% without correction, and the image plane variation ΔZ is only about 1% without correction, and it is clear that both are extremely well corrected.

尚、第2実施例による投影光学装置は、第2図に示した
第1実施例による装置において、第14空間を大気から
遮断密封する構成を付加するだけであるため、特に図示
しなかつた。また、第2実施例の場合は全系で生ずる各
変動量及び制御率の値が異なるため演算器(5)におけ
る記憶値及び計算値は当然異なるが、各部材の動作は実
質的に同一である。
The projection optical apparatus according to the second embodiment is not particularly shown because it is different from the apparatus according to the first embodiment shown in FIG. 2 only in that the fourteenth space is sealed off from the atmosphere. Further, in the case of the second embodiment, since the values of the fluctuation amounts and control rates occurring in the entire system are different, the stored values and calculated values in the calculator (5) are naturally different, but the operation of each member is substantially the same. is there.

上記第1及び第2実施例では、大気圧変動のみを要因と
する倍率及び結像面の変動補正を行なつたが、実際に
は、前述したごとく投影対物レンズ自体が露光エネルギ
ーを吸収して温度変化するためこれに伴なう倍率及び結
像面の変動が生ずる場合がある。このためには、ウエハ
ーの露光に必要な露光エネルギーに加えて、投影対物レ
ンズ自体に定常的な露光エネルギーを与えるようにする
ことが望ましい。すなわち、単位時間に投影対物レンズ
に入射するエネルギーを一定に保つことによつて、露光
エネルギーに帰因する倍率及び結像面の変動をなくすよ
うにすることができる。
In the first and second embodiments, the fluctuation of the magnification and the image plane due to only the atmospheric pressure fluctuation is corrected, but in reality, the projection objective lens itself absorbs the exposure energy as described above. Since the temperature changes, the magnification and the image plane may change accordingly. For this purpose, in addition to the exposure energy required for exposing the wafer, it is desirable to give a constant exposure energy to the projection objective lens itself. That is, by keeping the energy incident on the projection objective lens constant in a unit time, it is possible to eliminate the fluctuation of the magnification and the image plane caused by the exposure energy.

ここで、単位時間当りに投影対物レンズに与える露光エ
ネルギーを一定に保つ手法について詳述する。単位時間
として実際上は倍率変化及び結像面変化の飽和時間と比
較して十分に短い時間を設定すれば良い。単位時間を短
くとれば、それだけ倍率及び結像面の精度は高くなる傾
向にある。飽和時間は装置によつて異なるがおおよそ数
分から数十分であるから、単位時間としては数十秒から
数分の間の値を選べば充分である。上記の方法は入射エ
ネルギーにより倍率及び結像面の変化が発生し、飽和状
態になつてから使用するので、使用状態にないステツパ
をあらためて稼働させる際には倍率を飽和させるまで待
ち時間が必要になる。この待ち時間を少なくするため
に、ウオーミングアツプ時間として最初は単位時間の入
射エネルギーを使用時より多くあたえ、倍率及び結像面
の変化を短時間に発生させるのが便利である。
Here, a method of keeping the exposure energy applied to the projection objective lens constant per unit time will be described in detail. As a unit time, in practice, a sufficiently short time compared with the saturation time of the magnification change and the image plane change may be set. The shorter the unit time, the higher the magnification and the accuracy of the image plane tend to be. Although the saturation time varies depending on the device, it is approximately several minutes to several tens of minutes, so it is sufficient to select a value between several tens of seconds and several minutes as the unit time. In the above method, the magnification and the image plane change due to the incident energy, and it is used after it is in a saturated state.Therefore, when operating a stepper that is not in use again, it is necessary to wait until the magnification is saturated. Become. In order to reduce this waiting time, it is convenient to first give more incident energy per unit time as the warm-up time than when using it, and to change the magnification and the image plane in a short time.

単位時間に投影光学系に入射するエネルギーは光源の明
るさ、レチクルの透過率、ウエハの反射率等の影響を受
けるが時間的に最も変動するのは単位時間内にシヤツタ
が開き、照明光が投影光学系に入射している時間の割合
(以下τで表す)である。従つて、このτ値を一定にす
ることが倍率誤差を補償する上で最も大切になる。例え
ば単位時間としてステツパ標準稼働時に一枚のウエハを
処理する時間τを使用する。定常的な露光動作時のτは
次式で与えられる。
The energy that enters the projection optical system in a unit time is affected by the brightness of the light source, the transmittance of the reticle, the reflectance of the wafer, etc., but the most fluctuating time is that the shutter opens within the unit time and the illumination light It is the ratio of the time of incidence on the projection optical system (hereinafter represented by τ). Therefore, it is most important to keep this τ value constant in order to compensate the magnification error. For example, the time τ for processing one wafer during the standard operation of the stepper is used as the unit time. Τ at the time of steady exposure operation is given by the following equation.

ここに、t1はウエハ交換に要する時間 t2はウエハアライメント時間 t0は1シヨツトあたり露光時間 tcはステツピング時間 Nは1ウエハあたりのシヨツト数 である。シヤツタが開き、投影対物レンズに露光エネル
ギーが入射しているのは露光時間だけであるので1枚の
ウエハあたりNt0となる。ウエハが連続して次々と処
理されているときは常に同じ繰り返しであり、τは変化
しない。しかし、何らかの理由でウエハの供給が連続し
て行われなかつたり、装置が故障したりすると、通常シ
ヤツターが閉じたままで時間が経過するのでτが小にな
り、次にウエハ露光を再開した時に倍率及び結像面の変
化が発生する。そのため通常の露光動作が停止した時点
でτの減少を防ぐために一定の比率でシヤツターを開
け、投影対物レンズに露光エネルギーが入射するように
する。ここでシヤツタの開閉動作は(10)式のτを保つた
めに以下のように定めれば良い。すなわち、装置が定常
的な露光動作を停止したと判断するための時間をt3と
する。この間はシヤツタは閉状態にある。次にτの減少
を防ぐためにシヤツタを開状態に保つ時間t4が必要で
ある。そして、 τ=t4/(t3+t4) を満たすようにシヤツタを作動する。従つてt4は、 t4=τ・t3/(1−τ) で与えられる。この時(10)式のτを用いればτの減少が
避けられる。
Here, t1 is a time required for wafer exchange, t2 is a wafer alignment time, t0 is an exposure time per one shot, tc is a stepping time, and N is a number of shots per one wafer. Since the shutter is opened and the exposure energy is incident on the projection objective lens only during the exposure time, Nt0 per wafer is obtained. Whenever the wafers are being processed one after the other, the repetition is always the same and τ does not change. However, if the wafer is not continuously supplied for some reason or if the device fails, τ will be small because the time will usually remain with the shutter closed, and the magnification will be reduced when wafer exposure is restarted. And a change in the image plane occurs. Therefore, when the normal exposure operation is stopped, the shutter is opened at a constant ratio to prevent the reduction of τ so that the exposure energy is incident on the projection objective lens. Here, the opening / closing operation of the shutter may be determined as follows in order to maintain τ in equation (10). That is, the time for determining that the apparatus has stopped the steady exposure operation is t3. During this time, the shutter is closed. Next, a time t4 for keeping the shutter in the open state is necessary to prevent the decrease of τ. Then, the shutter is operated so as to satisfy τ = t4 / (t3 + t4). Therefore, t4 is given by t4 = τ · t3 / (1−τ). At this time, if τ in Eq. (10) is used, a decrease in τ can be avoided.

第3図はこのようなシヤツタの開閉の時間変化の例を示
す図である。シヤツタの開状態を高レベルで、またシヤ
ツタ閉状態を低レベルであらわしている。ウエハ交換時
間t1,ウエハアライメント時間t2,及びN回繰り返
される露光時間t0とステツピング時間tcとで単位時
間Tとなるようにした例である。(t3+t4)はτを
計算するための単位時間Tであるから、前述のように短
いほど精度が向上するがウエハ1枚の処理時間すなわち
(10)式の分母の値以下にしておけば問題はない。(n3
+t4)時間経過後も定常的な露光動作に復帰しないと
きは(t3+t4)をn回繰り返せればτの減少を防ぐ
ことができる。この例ではt3,t4,τの計算及び定
常的な動作が停止したことの判断は電子回路によつて行
つてもよいし、またオペレータが判断し、各数値を指示
入力してもよい。またτ=t4/(t3+t4)が制御
されるべき項なのでt3,t4をi個に分割しても同様
の効果があることはいうまでもない。第3図の下方に示
した例は2分割した場合である。
FIG. 3 is a diagram showing an example of a change with time of opening and closing of such a shutter. The open state of the shutter is shown at a high level, and the closed state of the shutter is shown at a low level. This is an example in which the unit time T is set to the wafer exchange time t1, the wafer alignment time t2, and the exposure time t0 repeated N times and the stepping time tc. Since (t3 + t4) is the unit time T for calculating τ, the shorter the processing time, the higher the accuracy as described above.
There is no problem if it is set below the value of the denominator of equation (10). (N3
If the exposure operation does not return to the steady state even after the lapse of + t4) time, the decrease of τ can be prevented by repeating (t3 + t4) n times. In this example, the calculation of t3, t4, τ and the determination that the steady operation has stopped may be performed by an electronic circuit, or the operator may determine and input the respective numerical values. Further, since τ = t4 / (t3 + t4) is a term to be controlled, it goes without saying that the same effect can be obtained by dividing t3 and t4 into i pieces. The example shown in the lower part of FIG. 3 is a case of being divided into two.

すなわち、各分割部分ごとのシヤツタ閉時間t3i,シヤツ
タ開時間をt4iとするとき、 を満たせばよい。この分母の値は単位時間Tに等しい。
That is, when the shutter closing time t3i and the shutter opening time t4i for each divided part are Should be satisfied. The value of this denominator is equal to the unit time T.

さて、第4図は本発明による第3実施例の概略構成図で
あり、投影対物レンズの内部は断面図として示されてい
る。図中、第1実施例と同等の機能を有する部材には同
一の図番を付した。この第3実施例は、投影対物レンズ
内の一部のレンズ間隔の圧力を制御することによつて、
露光エネルギーの吸収によつて生ずる投影対物レンズの
温度変化や環境温度の変化に帰因する倍率及び結像面の
補正を同時に行うものである。対物レンズ系を構成する
14個のレンズL,L,……,L14はそれぞれ第1
支持鏡筒(101)、第2支持鏡筒(102)、……、
第14支持鏡筒(114)によつて支持されている。こ
れら14個の支持鏡筒が積み重ねられることによつて実
質的に内部鏡筒が形成され、これらは外部鏡筒(20)
によつて一体的に収納支持され、抑え環(21)によつ
て固定されている。第1レンズLから第14レンズL
14をそれぞれ支持する第1支持鏡筒(101)〜第14
支持鏡筒(114)によつて鏡筒内に13個のレンズ空
間B〜Nが形成されており、これらのレンズ空間B〜N
はそれぞれ第1図に示した空気間隔b〜nに対応してい
る。ここで第7レンズLを支持する第7支持鏡筒(1
07)及び第8レンズを支持する第8支持鏡筒(10
8)にはそれぞれ隣接する空気室を連通するための貫通
孔(107a)及び(108a)が形成されている。そ
して、第6レンズLを支持する第6支持鏡筒(10
6)と第9レンズLを支持する第9支持鏡筒(10
9)とによつて、G,H,Iの3つのレンズ空間が一体
的に大気から遮断されて一つの空気室を形成しており、
圧力制御器(12)に連結されたパイプ(11)を通し
てこの密閉された空気室の圧力制御がなされる。また、
その他のレンズ空間B〜F及びJ〜Nはそれぞれ第1支
持鏡筒(101)〜第7支持鏡筒(107)及び第9支
持鏡筒(109)〜第14支持鏡筒(114)によつて大
気から遮断密封されていて一定の圧力に保たれている。
尚、上記のごとき鏡筒構造であるため、一体的に密封し
ようとする空気室の両端のレンズ支持鏡筒のみを外部鏡
筒との間でオーリング等のシール部材にて密閉すればよ
い。
Now, FIG. 4 is a schematic configuration diagram of the third embodiment according to the present invention, and the inside of the projection objective lens is shown as a sectional view. In the figure, members having the same functions as those in the first embodiment are designated by the same reference numerals. In this third embodiment, by controlling the pressure of a part of the lens spacing in the projection objective lens,
The magnification and the image plane are simultaneously corrected due to the temperature change of the projection objective lens and the environmental temperature change caused by the absorption of the exposure energy. The fourteen lenses L 1 , L 2 , ..., L 14 constituting the objective lens system are respectively the first
Support lens barrel (101), second support lens barrel (102), ...
It is supported by a fourteenth support lens barrel (114). By stacking these 14 support lens barrels, the inner lens barrel is substantially formed, and these are formed into the outer lens barrel (20).
Are integrally housed and supported by and are fixed by a retaining ring (21). 1st lens L 1 to 14th lens L
The first support barrel for supporting 14, respectively (101) - 14
The support lens barrel (114) forms 13 lens spaces B to N in the lens barrel, and these lens spaces B to N are formed.
Correspond to the air intervals b to n shown in FIG. 1, respectively. Here seventh support barrel for supporting a seventh lens L 7 (1
07) and the eighth support barrel (10) for supporting the eighth lens.
In 8), through holes (107a) and (108a) for communicating the adjacent air chambers are formed. The sixth support barrel for supporting a sixth lens L 6 (10
6) and ninth support barrel for supporting a ninth lens L 9 (10
According to 9), the three lens spaces G, H and I are integrally shielded from the atmosphere to form one air chamber,
The pressure of the closed air chamber is controlled through the pipe (11) connected to the pressure controller (12). Also,
The other lens spaces B to F and J to N are defined by the first supporting lens barrel (101) to the seventh supporting lens barrel (107) and the ninth supporting lens barrel (109) to the fourteenth supporting lens barrel (114), respectively. It is sealed from the atmosphere and kept at a constant pressure.
Since the lens barrel structure is as described above, only the lens supporting lens barrels at both ends of the air chamber to be integrally sealed may be sealed with the outer lens barrel by a sealing member such as an O-ring.

このような第3実施例の構成においては、投影対物レン
ズ内のレンズ空間のうち一体的な圧力制御を行なう3つ
のレンズ空間G,H,Iを除く残りのレンズ空間が全て
大気に対して密封されているため、大気圧変動に帰因す
る倍率及び結像面の変化はほぼ無視することができる。
このため、他の要因、例えば露光エネルギーの吸収によ
るレンズ自体の温度変化による倍率及び結像面の変動を
補正することが可能である。そこで、前記の第2に示し
た値より、圧力制御空気室を形成する3つのレンズ空間
G,H,Iにおける倍率変化量ΣΔX及び結像面変化
量ΔΣZ並びに補正比Cを求めると下記表5のとおり
である。
In the structure of the third embodiment as described above, all the lens spaces other than the three lens spaces G, H, and I for performing integrated pressure control among the lens spaces in the projection objective lens are sealed to the atmosphere. Therefore, the changes in the magnification and the image plane caused by the atmospheric pressure fluctuation can be almost ignored.
Therefore, it is possible to correct other factors, for example, variations in magnification and image plane due to temperature change of the lens itself due to absorption of exposure energy. Therefore, the magnification change amount ΣΔX c, the image plane change amount ΔΣZ c , and the correction ratio C in the three lens spaces G, H, and I forming the pressure control air chamber are calculated from the above-described second value. It is as shown in Table 5.

従つて、この第3実施例によれば変動比が−13程度の
倍率及び結像面変動を生ずる要因に対する補正を行なう
ことが可能である。例えば、一般に投影対物レンズが露
光エネルギーを吸収して温度上昇する場合には、結像面
が対物レンズに近づく方向、即ち結像面が負方向に変動
すると共に倍率が正又は負の小さい値で変動する傾向に
あるが、上記第3実施例においては、圧力制御空気室の
圧力を減少させることによつて、正の倍率変化と負の結
像面変化とを−1:13の割合で生ずることができるた
め、露光エネルギー吸収による対物レンズの温度上昇に
帰因する負の結像面変化と正の倍率変化とを同等に補正
することができる。
Therefore, according to the third embodiment, it is possible to correct the factors that cause the magnification and the image plane variation with a variation ratio of about -13. For example, in general, when the projection objective lens absorbs the exposure energy and the temperature rises, the image plane moves toward the objective lens, that is, the image plane changes in the negative direction, and the magnification is a small positive or negative value. Although it tends to fluctuate, in the third embodiment, by decreasing the pressure in the pressure control air chamber, a positive magnification change and a negative image plane change occur at a ratio of −1: 13. Therefore, it is possible to equally correct the negative image plane change and the positive magnification change due to the temperature rise of the objective lens due to the absorption of the exposure energy.

尚、投影対物レンズ自体が露光エネルギーを吸収して温
度上昇する場合の倍率及び結像面の変化は、対物レンズ
の材料によつて大きく異なるため、個々の投影対物レン
ズについて実験により各変動量を精確に測定しておく必
要があり、これによつて求められる変動比V(E)に最
も近い値の補正比Cを持つようにレンズ空間を組合せて
圧力制御空気室を構成することが望ましい。また、制御
率α及びα′については、前述の第1,第2実施例のご
とく必ずしも倍率及び結像面についての各制御率の平均
値とするのではなく、補正精度の要求がより厳しい方の
制御率を採用することも有効と考えられる。さらに、上
記第3実施例では圧力制御を行なうレンズ空間を除く全
てのレンズ空間を密封する構成としたが、一部のみ密封
し、残りを大気圧と共に圧力変動し得る構成としても全
体のレンズ系における大気圧変動に帰因する倍率及び結
像面変動が無視し得る場合があり、本発明の範囲におい
て個々のレンズタイプに応じて最適な圧力制御用空間及
び密封空間の組合せを見い出すことは当業者には容易に
なされ得るであろう。
It should be noted that changes in the magnification and the image plane when the projection objective lens itself absorbs the exposure energy and rises in temperature are largely different depending on the material of the objective lens. It is necessary to measure accurately, and it is desirable to configure the pressure controlled air chamber by combining the lens spaces so as to have the correction ratio C closest to the fluctuation ratio V (E) obtained by this. Further, the control rates α and α ′ are not necessarily the average values of the respective control rates for the magnification and the image plane as in the first and second embodiments described above. It is considered effective to adopt the control rate of. Furthermore, in the third embodiment described above, all lens spaces except the lens space for pressure control are sealed, but the entire lens system may be structured so that only a part of the lens space is sealed and the rest can change in pressure with atmospheric pressure. Magnification and imaging plane variations due to atmospheric pressure fluctuations in N may be negligible, and it is appropriate within the scope of the present invention to find an optimal combination of pressure control space and sealed space for each individual lens type. It could easily be done by a trader.

ところで、これまで気圧として空気に含まれるN2
2,CO2,H2O……等の各気体の分圧を考慮せずに
全圧のみを取り扱つてきた。しかし、本発明で重要なの
は空気の屈折率を制御することなので通常、空気でなく
のみを使つたり全圧一定のもとで各気体の分圧を制
御して空気の屈折率を変化させることも本発明に当然含
まれる。
By the way, N 2 contained in air as atmospheric pressure so far,
Only the total pressure has been handled without considering the partial pressure of each gas such as O 2 , CO 2 , H 2 O .... However, since it is important to control the refractive index of air in the present invention, normally, only N 2 is used instead of air, or the partial pressure of each gas is controlled under a constant total pressure to change the refractive index of air. It is naturally included in the present invention to do so.

(発明の効果) 以上のように本発明によれば、ステツパの投影倍率及び
結像面が大気圧変化や露光エネルギーの吸収によるレン
ズ自体の温度変化等によつて変動するのを、投影対物レ
ンズ系内の部材に機械的移動を与えることなく、従つて
非対称な光学性能を生ずることなく高精度に補正するこ
とが可能である。そして、常に安定してウエハ面への焼
付露光がなされると共に高精度の重ね合せマツチングが
なされるため、一段と高密度化しつつある超LSI等の
半導体素子の製造に大きく貢献するものである。
(Effects of the Invention) As described above, according to the present invention, the projection objective and the projection surface of the stepper are prevented from fluctuating due to a change in atmospheric pressure or a temperature change of the lens itself due to absorption of exposure energy. It is possible to perform correction with high accuracy without giving mechanical movement to members in the system and thus without causing asymmetric optical performance. Further, since the exposure of the wafer surface is always stably performed and the overlay matching is performed with high accuracy, it greatly contributes to the manufacture of semiconductor elements such as VLSIs, which are becoming higher in density.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における一実施例のステツパ用投影対物
レンズのレンズ構成図、第2図は本発明による投影光学
装置の第1実施例の概略構成図であり、第3図は第1、
第2実施例に適用され得る露光エネルギー制御のための
シヤツターの開閉を示す図、第4図は第3実施例の概略
構成図である。 (主要部分の符号の説明) R……投影原板(レチクル) W……感光物体(ウエハ) L1,L2〜L14……レンズ a,b〜o……空気間隔 B,C〜N……レンズ空間 1……投影対物レンズ 12……圧力制御器
FIG. 1 is a lens configuration diagram of a projection objective lens for a stepper according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a first embodiment of a projection optical apparatus according to the present invention, and FIG.
FIG. 4 is a diagram showing opening / closing of a shutter for exposure energy control applicable to the second embodiment, and FIG. 4 is a schematic configuration diagram of the third embodiment. (Explanation of symbols of main parts) R: projection original plate (reticle) W: photosensitive object (wafer) L 1 , L 2 to L 14 ... Lenses a, b to o ... Air spacing B, C to N ... … Lens space 1 …… Projection objective lens 12 …… Pressure controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】投影露光すべきパターンが形成されたレチ
クルを照明する照明系と、複数の光学素子の夫々が光軸
方向に所定の空気間隔を伴って鏡筒内に組み込まれた投
影光学系と、前記レチクルのパターンの該投影光学系に
よる投影像の転写される感光基板を保持するステージと
を備えた投影光学装置において、 前記投影光学系は、その内部のいくつかの空気間隔を連
通させて1つの密封された空気室にしたとき、該空気室
内の圧力の単位変化により生じる前記投影光学系の倍率
変化量ΣΔXcと結像面変化量ΣΔZcとの補正比ΣΔ
Zc/ΣΔXcが、前記投影光学系の周囲の環境条件の
変化、もしくは前記投影光学系の露光エネルギーの一部
吸収による温度変化に起因して生ずる倍率変化量ΔXと
結像面変化量ΔZとの比ΔZ/ΔXとほぼ揃うように、
前記空気室を構成するいくつかの空気間隔を組み合わせ
て構成され; さらに前記環境条件の変化、もしくは露光エネルギーの
吸収状態に依存して生ずる前記投影光学系の倍率変動と
結像面変動との両方を同時に補正するように、前記密封
された空気室内の圧力を前記環境条件の変化、もしくは
露光エネルギーの吸収状態に基づいて制御する圧力制御
器を設けたことを特徴とする投影光学装置。
1. An illumination system for illuminating a reticle on which a pattern to be projected and exposed is formed, and a projection optical system in which each of a plurality of optical elements is incorporated in a lens barrel with a predetermined air gap in the optical axis direction. And a stage for holding a photosensitive substrate onto which a projection image of the reticle pattern projected by the projection optical system is held, wherein the projection optical system communicates some air spaces therein. Correction unit ΣΔ between the amount of change in magnification ΣΔXc of the projection optical system and the amount of change in image plane ΣΔZc caused by a unit change in pressure inside the air chamber.
Zc / ΣΔXc is a change amount of magnification ΔX and a change amount of image plane ΔZ caused by a change in environmental conditions around the projection optical system or a temperature change due to partial absorption of exposure energy of the projection optical system. To be almost equal to the ratio ΔZ / ΔX,
Both of the air gaps constituting the air chamber are combined; further, both the magnification variation and the image plane variation of the projection optical system caused depending on the change of the environmental condition or the absorption state of the exposure energy. The projection optical apparatus is provided with a pressure controller for controlling the pressure in the sealed air chamber based on a change in the environmental condition or an absorption state of exposure energy so as to simultaneously correct the above.
JP58249093A 1983-07-27 1983-12-26 Projection optics Expired - Lifetime JPH0616477B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58249093A JPH0616477B2 (en) 1983-12-26 1983-12-26 Projection optics
US07/120,232 US4871237A (en) 1983-07-27 1987-11-12 Method and apparatus for adjusting imaging performance of projection optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249093A JPH0616477B2 (en) 1983-12-26 1983-12-26 Projection optics

Publications (2)

Publication Number Publication Date
JPS60136746A JPS60136746A (en) 1985-07-20
JPH0616477B2 true JPH0616477B2 (en) 1994-03-02

Family

ID=17187871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249093A Expired - Lifetime JPH0616477B2 (en) 1983-07-27 1983-12-26 Projection optics

Country Status (1)

Country Link
JP (1) JPH0616477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616908A (en) * 1984-07-19 1986-10-14 Gca Corporation Microlithographic system
JPS63213341A (en) * 1987-03-02 1988-09-06 Canon Inc Projection aligner
JPS63199419A (en) * 1987-02-16 1988-08-17 Canon Inc Projection exposure device

Also Published As

Publication number Publication date
JPS60136746A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
KR100847633B1 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
JP3402850B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP3395280B2 (en) Projection exposure apparatus and method
JP3303758B2 (en) Projection exposure apparatus and device manufacturing method
US20020061469A1 (en) Projection apparatus, method of manufacturing the apparatus,method of exposure using the apparatus, and method of manufacturing circuit devices by using the apparatus
KR100971561B1 (en) Exposure apparatus and method of manufacturing device
JPH0869963A (en) Projection aligner and device manufacturing method using the same
US6630985B2 (en) Exposure apparatus and device manufacturing method including gas purging of a space containing optical components
JP3445045B2 (en) Projection exposure apparatus and device manufacturing method using the same
JPH05144701A (en) Projection aligner and fabrication of semiconductor element using the same
US6172740B1 (en) Projection exposure apparatus and device manufacturing method
JP2001291654A (en) Projection aligner and its method
JPH10142555A (en) Projection exposure device
JPH0697301B2 (en) Projection exposure device
JP2897345B2 (en) Projection exposure equipment
JP2009218492A (en) Method of measuring wavefront error, method of adjusting wavefront error, and method of manufacturing semiconductor device
TW518662B (en) Exposure method and exposure device
JP5094517B2 (en) Exposure apparatus, measurement method, stabilization method, and device manufacturing method
US7027227B2 (en) Three-dimensional structure forming method
JP2897346B2 (en) Projection exposure equipment
JPH0616477B2 (en) Projection optics
JPH10289865A (en) Projection exposing device and method therefor
JP2006114839A (en) Projection optical system, aligner and exposure method
JP4330291B2 (en) Lithographic projection apparatus, device manufacturing method, and gas composition
WO1999026279A1 (en) Exposure method and aligner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term