JPS63199419A - Projection exposure device - Google Patents

Projection exposure device

Info

Publication number
JPS63199419A
JPS63199419A JP62031621A JP3162187A JPS63199419A JP S63199419 A JPS63199419 A JP S63199419A JP 62031621 A JP62031621 A JP 62031621A JP 3162187 A JP3162187 A JP 3162187A JP S63199419 A JPS63199419 A JP S63199419A
Authority
JP
Japan
Prior art keywords
pressure
optical system
closed space
pressure change
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62031621A
Other languages
Japanese (ja)
Inventor
Ryuichi Kemi
毛見 柳一
Kazuo Takahashi
一雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62031621A priority Critical patent/JPS63199419A/en
Priority to US07/155,277 priority patent/US4825247A/en
Publication of JPS63199419A publication Critical patent/JPS63199419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To predict, detect and correct the variation of image formation characteristics due to a temperature rise in a projection optical system with high precision by a simple means, and to stabilize image forming characteristics with high accuracy by automatically controlling a focusing mechanism on the basis of an output measuring the pressure change of a closed space formed between optical elements in an optical system. CONSTITUTION:A lighting means 2 irradiating the pattern of an original plate 1, a projection optical system 3 projecting the irradiated pattern onto a body to be exposed 4, a focusing mechanism 8 for conforming the image surface of the projection optical system 3 and a photosensitive surface on the body to be exposed 4, a closed space formed between optical elements in the projection optical system 3, a pressure- change measuring means 20 measuring the pressure change of the closed space, and a control means 22 automatically controlling the focusing mechanism 8 on the basis of an output from the pressure-change measuring means 20 are provided. When the pressure of the closed space in a projection lens 3 rises due to a temperature rise by exposure beams, a thin-film 19 is spread. The quantity of the spread is detected by the electrostatic capacity sensor 20 and the pressure change is acquired, and the CPU 22 drives the piezo-element 8 through a piezo-driver 26 on the basis of the pressure change.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は結像位置および倍率等の光学特性を高精度に維
持し得る投影露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection exposure apparatus that can maintain optical characteristics such as an imaging position and magnification with high precision.

[従来技術] 従来、縮小投影型露光装置(以下ステッパと呼ぶ)は近
年超LSIの生産現場に多く導入され大きな成果をもた
らしているが、その重要な性能の1つに重ね合わせマツ
チング精度が上げられる。
[Prior art] In recent years, reduction projection exposure equipment (hereinafter referred to as steppers) has been introduced to many VLSI production sites and has brought great results, but one of its important performances is improved overlay matching accuracy. It will be done.

このマツチング精度に影響を与える要素の中でも重要な
ものに投影光学系の倍率やピント誤差がある。超LSI
に用いられるパターンの大きさは年々微細化の傾向を強
め、それに伴ないこれらの誤差をより減少させ、マツチ
ング精度をより一層向上させることが望まれている。
Among the factors that affect this matching accuracy, the magnification and focus error of the projection optical system are important. Super LSI
The size of the patterns used for this purpose is becoming increasingly finer year by year, and as a result, it is desired to further reduce these errors and further improve matching accuracy.

現在、投影光学系の倍率やピントは装置の設置時に調整
することにより倍率誤差が一応は無視できる程度にはな
っている。しかし、この種の露光装置では、回路パター
ンをウェハ上のフォトレジストに転写するために強力な
エネルギをもった露光光を使用するため、投影レンズ内
の雰囲気温度が上昇する。したがって、レンズ温度およ
びレンズ雰囲気温度の上昇により、レンズのインデック
ス変化、面変化等が現われ結果的に投影レンズの光学特
性(倍率誤差やピント変化)に影響を与えることになる
。そこで、従来よりこのような投影レンズを用いる場合
、外雰囲気温度を検出し結像性能の変化を予測・補正す
る手段が用いられている。
Currently, by adjusting the magnification and focus of the projection optical system when installing the apparatus, the magnification error can be ignored. However, this type of exposure apparatus uses exposure light with strong energy to transfer the circuit pattern onto the photoresist on the wafer, which increases the ambient temperature within the projection lens. Therefore, as the lens temperature and lens atmosphere temperature rise, changes in the index of the lens, changes in the surface, etc. appear, and as a result, the optical characteristics (magnification error and focus change) of the projection lens are affected. Therefore, conventionally when using such a projection lens, a means has been used to detect the ambient temperature and predict and correct changes in imaging performance.

[発明が解決しようとする問題点] しかしながら、このような手段によれば、上記したレン
ズおよびレンズ雰囲気温度の上昇に伴う結像特性の変化
には十分に対応することができない。
[Problems to be Solved by the Invention] However, according to such a means, it is not possible to sufficiently cope with the above-mentioned changes in the imaging characteristics caused by the increase in the lens and lens atmosphere temperature.

この問題を解決すべくレンズ鏡筒から温度センサを直接
投影レンズ内に挿入することも考えられるが、センサを
有効光路内に設置できないため実際の温度上昇がつかみ
きれないこと、またセンサを小型化する必要性があるた
め温度感度が不十分であること等の問題がある。
In order to solve this problem, it is possible to insert a temperature sensor directly into the projection lens from the lens barrel, but since the sensor cannot be installed within the effective optical path, the actual temperature rise cannot be ascertained, and the sensor must be made smaller. There are problems such as insufficient temperature sensitivity due to the need to

その他、レンズ鏡筒に圧力ゲージを取り付け、密閉され
た投影レンズ内の温度変化に伴う圧力変化を計測するこ
とも考えられるが、投影レンズ内の微小な圧力変動には
通常のゲージでは到底追従できないのが現状である。
Another option is to attach a pressure gauge to the lens barrel and measure pressure changes due to temperature changes inside the sealed projection lens, but a normal gauge would be unable to track minute pressure fluctuations inside the projection lens. is the current situation.

また、特許出願例としては、空調された空気を投影光学
系中に循環させて各レンズを温調することにより所定の
光学特性の安定化を図った出願(特開昭60−7935
7号公報、特開昭60−79358号公報)がある。し
かし、この手段だと、装置の大型化、循環気体のゆらぎ
等による結像特性の不安定化、露光開始時の投影光学系
の急速な立上がりには追従できないこと等の問題点があ
る。
In addition, as an example of a patent application, an application (Japanese Patent Laid-Open No. 60-7935
No. 7 and Japanese Unexamined Patent Publication No. 60-79358). However, with this method, there are problems such as an increase in the size of the apparatus, instability of imaging characteristics due to fluctuations in the circulating gas, and an inability to follow the rapid startup of the projection optical system at the start of exposure.

本発明の目的は、このような問題点に鑑み、投影露光装
置において、温調機搭載などの装置の大型化を伴わない
簡便な手段により、投影光学系内の温度上昇に伴う結像
特性の変化を高精度で予測・′検出し補正して結像特性
を高精度に安定化させることにある。
In view of these problems, it is an object of the present invention to improve the imaging characteristics caused by the temperature rise in the projection optical system by using a simple means that does not involve increasing the size of the device, such as installing a temperature controller, in a projection exposure apparatus. The objective is to predict, detect, and correct changes with high precision to stabilize imaging characteristics with high precision.

[問題点を解決するための手段および作用]上記目的を
達成するため本発明では、フォーカス制御手段を有する
投影露光装置において、投影光学系の光学素子間の少な
くとも一部を密閉空間とし、露光光エネルギの累積等に
伴う投影光学系内の温度変化を該密閉空間内の圧力の変
化としてとらえ、この圧力変化から投影光学系内の温度
変化に伴うピント変化や結像位置変化等の結像特性の変
化を予測し、これに基づきフォーカス機構の補正を行な
うことで常に均一な結像状態を維持するようにしている
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a projection exposure apparatus having a focus control means, in which at least a part of the space between the optical elements of the projection optical system is a closed space, and the exposure light is Temperature changes within the projection optical system due to energy accumulation, etc. are interpreted as changes in the pressure within the sealed space, and imaging characteristics such as focus changes and imaging position changes due to temperature changes within the projection optical system are determined from this pressure change. By predicting changes in the image quality and correcting the focus mechanism based on this, a uniform imaging state is always maintained.

上記圧力変化は、例えば、上記密閉空間とその外部との
境界の一部を圧力差に敏感に感応する薄膜て形成し、該
密閉空間内の圧力変化を該薄膜の変位量として計測し、
この変位量を圧力に変換することにより検出することが
できる。
The pressure change can be measured, for example, by forming a part of the boundary between the closed space and the outside with a thin film that is sensitive to pressure differences, and measuring the pressure change in the closed space as the amount of displacement of the thin film.
Detection is possible by converting this amount of displacement into pressure.

このような本発明によれば、投影光学系およびその雰囲
気の温度上昇を温調機を使用して強制的に温度下降させ
る方式と異なり、温度上昇に伴う結像性能変化を圧力変
化に基づいて予測・補正する方式なので、光学素子雰囲
気温度を下げさせる温調機等は必要とせず装置の設置ス
ペースも全く変化しない。
According to the present invention, unlike the method of forcibly lowering the temperature rise of the projection optical system and its atmosphere using a temperature controller, the change in imaging performance due to the rise in temperature is controlled based on the pressure change. Since it is a prediction and correction method, there is no need for a temperature controller or the like to lower the ambient temperature of the optical element, and the installation space for the device does not change at all.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係る投影露光装置を示す。FIG. 1 shows a projection exposure apparatus according to an embodiment of the present invention.

同図において、1はレチクル、2はレチクル1のパター
ンを転写するために必要な照明装置、3は複数個の光学
素子(レンズ)を有する投影レンズ(光学系)、4は投
影レンズ3を介してレチクル1のパターンの縮小同型パ
ターンが焼き付けられるウェハ、5はウェハ4を真空吸
着するチャック、6はウェハ4を上下、θおよびXY方
向に移動させることができるXYθZステージである。
In the figure, 1 is a reticle, 2 is an illumination device necessary for transferring the pattern of the reticle 1, 3 is a projection lens (optical system) having a plurality of optical elements (lenses), and 4 is a projection lens that 5 is a chuck that vacuum-chucks the wafer 4, and 6 is an XYθZ stage that can move the wafer 4 up and down, in the θ and XY directions.

投影光学系3は所定の空気間隔をおいて配した複数個の
光学素子L1〜L5から構成されている。7はそのうち
の光学素子L1を固定するレンズホルダ、8は光学素子
L1を上下駆動させるために必要なピエゾ素子、9は投
影レンズ3に対するレンズホルダ7の上下位置検出セン
サ、10゜12、14.16は各光学素子L1〜L5間
の空気間隔、11.13.15.17は各空気間隔10
.12,14.16を通気させるために必要な通気孔、
18は投影レンズ3、ウェハ4、XYθZステージ6等
の雰囲気温度を一定に保つための恒温チャンバ、19は
レンズ鏡筒の一部に鏡筒内を密閉するように取り付けら
れている薄膜、20は投影レンズ3内の温度上昇に伴う
圧力変化により変形する薄膜1の変形量を検出する静電
容量センサ、21は薄膜1へ通じる通気孔、22はCP
U、23は温度モニタ、24は温風機、25は圧力モニ
タ、26はピエゾドライバである。
The projection optical system 3 is composed of a plurality of optical elements L1 to L5 arranged at predetermined air intervals. 7 is a lens holder for fixing the optical element L1, 8 is a piezo element necessary for vertically driving the optical element L1, 9 is a sensor for detecting the vertical position of the lens holder 7 with respect to the projection lens 3, 10° 12, 14. 16 is the air interval between each optical element L1 to L5, 11.13.15.17 is each air interval 10
.. 12, 14. Ventilation holes necessary to ventilate 16,
18 is a constant temperature chamber for keeping the ambient temperature of the projection lens 3, wafer 4, XYθZ stage 6, etc. constant; 19 is a thin film attached to a part of the lens barrel so as to seal the inside of the lens barrel; 20 is a constant temperature chamber; A capacitance sensor detects the amount of deformation of the thin film 1 that is deformed due to a pressure change accompanying a temperature rise inside the projection lens 3, 21 is a vent leading to the thin film 1, 22 is a CP
U, 23 is a temperature monitor, 24 is a hot air fan, 25 is a pressure monitor, and 26 is a piezo driver.

この構成において、露光されるウェハ4は、チャック5
により真空吸着され、XYθ2ステージ6によって最良
ピント位置および最適露光位置へ運ばれる。露光に際し
ては、投影レンズ3回りやXYθZステージ6回りの温
度環境を安定させるため、CP U 22は常に温度モ
ニタ23により温度変動を読み取り、最適な温度にする
指令値を温風機24に送信する。また、大気圧の変動に
対しては、圧力モニタ25で外界の圧力(大気圧)を検
出し変動があればピエゾドライバ26を介しピエゾ素子
8を駆動させ光学素子L1を上下させて最適結像特性に
する。それらが全てスタンバイされた状態でレチクル1
上に構成されているパターンは照明装置2の露光光によ
り投影レンズ3を介してウェハ4に結像投影される。こ
のとき、通気孔21以外の通気孔!1.13.15.1
7は封止されており、また、通気孔21は薄膜19とつ
ながっている。
In this configuration, the wafer 4 to be exposed is placed on the chuck 5
It is vacuum-adsorbed by the XYθ2 stage 6 and transported to the best focus position and the best exposure position. During exposure, in order to stabilize the temperature environment around the projection lens 3 and the XYθZ stage 6, the CPU 22 always reads temperature fluctuations with the temperature monitor 23 and sends a command value to the hot air fan 24 to set the temperature to the optimum temperature. In addition, in response to fluctuations in atmospheric pressure, the pressure monitor 25 detects the pressure in the outside world (atmospheric pressure), and if there is a fluctuation, the piezo element 8 is driven via the piezo driver 26 to move the optical element L1 up and down to form an optimal image. Make it a characteristic. With all of them on standby, reticle 1
The pattern formed above is imaged and projected onto the wafer 4 via the projection lens 3 by exposure light from the illumination device 2. At this time, ventilation holes other than ventilation hole 21! 1.13.15.1
7 is sealed, and the ventilation hole 21 is connected to the thin film 19.

第2図は光学系3の密閉空間内の圧力を検出する部分の
説明図である。
FIG. 2 is an explanatory diagram of a portion of the optical system 3 that detects the pressure within the closed space.

露光光による温度上昇に伴い投影レンズ3内の密閉空間
の圧力が上昇すると、薄膜19が同図の如く押し広げら
れる。この押し広げ量(変化量)を静電容量センサ20
で検出して圧力に変換することにより密閉空間の圧力変
化が求められる。
When the pressure in the sealed space inside the projection lens 3 increases as the temperature rises due to the exposure light, the thin film 19 is expanded as shown in the figure. The capacitance sensor 20 detects this amount of expansion (amount of change).
By detecting this and converting it to pressure, the pressure change in the closed space can be determined.

次に、この圧力変化に基づき投影倍率および結像面位置
の変化量を求めてこれらを補正する方法を述べる。
Next, a method for correcting the projection magnification and imaging plane position by determining the amount of change in the projection magnification and the imaging plane position based on this pressure change will be described.

光学系3の投影倍率Mと結像面位置Fは次の因子の関数
となる。
The projection magnification M and the imaging plane position F of the optical system 3 are functions of the following factors.

M=f (P、、T、、Ta、P、、X)・・・・・・
(1) )−=g (Pa、Ta、Te、Pe、X)・・・・・
・(2) Pa :投影レンズ3回りの雰囲気圧、T、  ・投影
レンズ3回りの雰囲気温度、To =投影レンズ3内温
度、 P8 二段形。レンズ3内圧力、 X:光学素子L1〜L2間距離 ここて、初期設定時からの各因子の変化量を、ΔP2.
ΔTa、ΔT8.ΔPa、ΔXとすると、投影倍率変化
量ΔM、結像面位置変化量ΔFは各因子変化量が充分小
さいとき、その2次より高次の項が無視でき ΔM−A、Δpa+ A2ΔTa+A3Δpa+ A4
Δ7.+ A5ΔX・・・・・・(3) ΔF−B、ΔPa+B2ΔTa+B3ΔP、+ B4Δ
T、+ B5ΔX・・・・・・(4) A、〜A5. at〜B5:実験または理論上より求め
る定数 となる。また、投影レンズ3(の密閉室)内の圧力pH
はその体積■6が一定だと考えると、次のように表わす
ことができる。
M=f (P,,T,,Ta,P,,X)...
(1) )-=g (Pa, Ta, Te, Pe, X)...
・(2) Pa: Atmospheric pressure around the projection lens 3, T, ・Ambient temperature around the projection lens 3, To = Temperature inside the projection lens 3, P8 Two-stage type. The internal pressure of the lens 3,
ΔTa, ΔT8. Assuming ΔPa and ΔX, when the amount of change in projection magnification ΔM and the amount of change in imaging plane position ΔF are sufficiently small, the terms higher than the second order can be ignored, ΔM-A, Δpa+ A2 ΔTa+A3 Δpa+ A4
Δ7. +A5ΔX...(3) ΔF-B, ΔPa+B2ΔTa+B3ΔP, +B4Δ
T, + B5ΔX (4) A, ~A5. at to B5: Constants determined experimentally or theoretically. In addition, the pressure pH in (the sealed chamber of) the projection lens 3
If we consider that its volume ■6 is constant, then it can be expressed as follows.

P、=h (T、、V。)・・・・・(5)Δpa=c
、ΔTa        ・・・・・・(6)C1:実
験または理論より求める定数 このΔPaはまた、薄膜19の変化量ΔSに比例しΔS
は大気圧から投影レンズ3の内圧を引いたものであるこ
とから、比例定数なKとして次のように表すことができ
る。
P,=h (T,,V.)...(5)Δpa=c
, ΔTa...(6) C1: Constant obtained from experiment or theory This ΔPa is also proportional to the amount of change ΔS in the thin film 19, and ΔS
Since K is the atmospheric pressure minus the internal pressure of the projection lens 3, it can be expressed as a proportionality constant K as follows.

ΔPa=にΔS=K (P、−P、 )−・・・・(7
)さらに、式(δ) 、 (7)より ΔT、=K (P、−P−)/C+  ・・・・・・(
8)と表わすことができ、投影レンズ3内の温度変化量
ΔT、は投影レンズ3回りの雰囲気圧P8と投影レンズ
3の内圧pHから求めることが可能である。したがって
、ΔM=Oに保つためには、ΔX−一(八、ΔP、十 
八2ΔTll+ A3ΔPa+  A4ΔT−)/As
m−(111,Δ Pa十 A2ΔTll+(八s +
 A 4) K P a−(八。+A4/C+)KpH
)/八。
ΔPa=to ΔS=K (P, -P, )−・・・(7
) Furthermore, from formula (δ), (7), ΔT, = K (P, -P-)/C+ ...... (
8), and the amount of temperature change ΔT inside the projection lens 3 can be determined from the atmospheric pressure P8 around the projection lens 3 and the internal pressure pH of the projection lens 3. Therefore, in order to keep ΔM=O, ΔX−1(8, ΔP, 10
82ΔTll+ A3ΔPa+ A4ΔT−)/As
m-(111, Δ Pa ten A2ΔTll+(8s +
A4) K P a-(8.+A4/C+) KpH
)/Eight.

・・・・・・(9) であればよいので、ピエゾ素子8を駆動させ光学素子L
1〜L2の距離をこのΔχ分分化化せれば良い。
・・・・・・(9) Since it is sufficient, the piezo element 8 is driven and the optical element L
It is sufficient to differentiate the distance from 1 to L2 by this Δχ.

またこのとき、ΔFは式(4)と式(8) 、 (9)
 よりΔF−(Bl−BSAI/A5)Δpa+ (B
2−1t5A2/Δ5)ΔTa” (B3”B4/C+
−As8s/As−AJs/A5)[’a−(B3”B
4+85A3”B5A4/AgC+’)KpH・・・・
・・(10) となるので、XYθZステージ6によりこのΔF分ウェ
ハ4を上下動させれば良い。
Also, at this time, ΔF is expressed by equation (4), equation (8), (9)
From ΔF−(Bl−BSAI/A5)Δpa+ (B
2-1t5A2/Δ5)ΔTa” (B3”B4/C+
-As8s/As-AJs/A5) ['a-(B3”B
4+85A3"B5A4/AgC+')KpH...
(10) Therefore, it is sufficient to move the wafer 4 up and down by this ΔF using the XYθZ stage 6.

以上の方法により露光時の投影光学系3回りの圧力変化
、温度変化および露光光エネルギ吸収に伴う投影レンズ
内圧力変化(温度変化)に起因する投影倍率の変化およ
びピント変化を補正することができる。
By the above method, it is possible to correct changes in projection magnification and changes in focus caused by pressure changes and temperature changes around the projection optical system 3 during exposure, and pressure changes (temperature changes) inside the projection lens due to absorption of exposure light energy. .

[実施例の変形例] 第3図は、静電容量センサ20の代りに、半導体のピエ
ゾ抵抗効果を利用した圧力の検出方法を示す。この方法
による圧力の計測は、ピエゾ抵抗圧力5W27に内蔵さ
れているセンサチップが投影レンズ3の密閉空間内の圧
力変化に応じて抵抗変化(歪抵抗)することを利用した
もので、上述実施例に比べ、代用測定していムいこと、
圧力5W27自身も非常にコンパクトである等の利点が
ある。
[Modification of Embodiment] FIG. 3 shows a method of detecting pressure using the piezoresistive effect of a semiconductor instead of the capacitance sensor 20. Pressure measurement using this method utilizes the fact that the sensor chip built into the piezoresistive pressure 5W27 changes its resistance (strain resistance) in response to pressure changes in the closed space of the projection lens 3. Compared to , it is difficult to measure by proxy.
The pressure 5W27 itself also has advantages such as being very compact.

また、上述においては、投影レンズ3の密閉空間内の気
体として空気を用いているが、この代わりに窒素やヘリ
ウム等を用いてもよい。
Further, in the above description, air is used as the gas in the closed space of the projection lens 3, but nitrogen, helium, or the like may be used instead.

[発明の効果コ 以上説明したように本発明によれば、露光光エネルギが
吸収される等により投影倍率や結像面位置などの光学特
性に与えられる影響を、小型で簡便な手段により容易に
かつ精度良く予測・検出して結像特性を高精度に補正・
維持することができる。
[Effects of the Invention] As explained above, according to the present invention, the effects of absorption of exposure light energy on optical properties such as projection magnification and image plane position can be easily reduced by small and simple means. It also predicts and detects with high precision and corrects and corrects the imaging characteristics with high precision.
can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る光学系の説明図、 第2図は、第1図の装置の光学系圧力検出機を、示すブ
ロック図、 第3図は、第1図の実施例の変形例に係る圧力検出手段
を示すブロック図である。 1ニレチクル、2:照明装置、 3:投影レンズ、4:ウェハ、 5:チャック、6:XYθZステージ、7:レンズホル
ダ、8.ピエゾ素子、 9:うず電流検出計、 10、12.14. lli:空気間隔、11、13.
15.17:通気孔、 18:チャンバ、19:薄膜、 20:静電容量センサ、21:薄膜部通気孔、22:C
PU、23:温度モニタ、24:温風機、25:圧力モ
ニタ、26:ピエゾドライバ、27:ピエゾ抵抗圧力S
W。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 辰 維 代理人 弁理士   伊 東 哲 也 第3図
FIG. 1 is an explanatory diagram of an optical system according to an embodiment of the present invention, FIG. 2 is a block diagram showing an optical system pressure detector of the apparatus shown in FIG. 1, and FIG. FIG. 7 is a block diagram showing pressure detection means according to a modification of the embodiment. 1 reticle, 2: illumination device, 3: projection lens, 4: wafer, 5: chuck, 6: XYθZ stage, 7: lens holder, 8. Piezo element, 9: Eddy current detector, 10, 12.14. lli: air interval, 11, 13.
15.17: Ventilation hole, 18: Chamber, 19: Thin film, 20: Capacitance sensor, 21: Thin film vent hole, 22: C
PU, 23: Temperature monitor, 24: Hot air fan, 25: Pressure monitor, 26: Piezo driver, 27: Piezo resistance pressure S
W. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito Figure 3

Claims (1)

【特許請求の範囲】 1、原板のパターンを照射する照明手段と、該照明手段
により照射された該パターンを被露光物上に投影する投
影光学系と、該投影光学系を介して該被露光物上の感光
面に該パターンを結像させる際の結像特性を調整するた
めのフォーカス機構と、該投影光学系の光学素子間の少
なくとも1ケ所に設けられた密閉空間と、該密閉空間の
圧力変化を計測する圧力変化計測手段と、該圧力変化計
測手段の出力に基づき上記フォーカス機構を自動制御す
る制御手段とを具備することを特徴とする投影露光装置
。 2、前記フォーカス機構が、前記光学素子を移動する手
段および前記被露光物を移動する手段を含む特許請求の
範囲第1項記載の投影露光装置。 3、前記圧力変化計測手段が、前記密閉空間とその外部
との境界の一部として設けた薄膜および該薄膜の変位量
を計測する手段を有するものである特許請求の範囲第1
項記載の投影露光装置。 4、前記圧力変化計測手段が、前記密閉空間の圧力変化
に応じて抵抗変化するピエゾ抵抗圧力スイッチを有する
特許請求の範囲第1項記載の投影露光装置。 5、前記密閉空間に存在する気体が、空気、窒素または
ヘリウムのいずれかである特許請求の範囲第1項記載の
投影露光装置。 6、前記制御手段が、前記圧力変化計測手段の出力に基
づき前記投影光学系の温度変化を算出して所定の結像特
性を維持すべく前記フォーカス機構を制御するものであ
る特許請求の範囲第1項記載の投影露光装置。
[Scope of Claims] 1. Illumination means for irradiating the pattern on the original plate; a projection optical system for projecting the pattern irradiated by the illumination means onto the object to be exposed; a focus mechanism for adjusting imaging characteristics when the pattern is imaged on a photosensitive surface of an object; a closed space provided at at least one location between the optical elements of the projection optical system; A projection exposure apparatus comprising: a pressure change measuring means for measuring a pressure change; and a control means for automatically controlling the focus mechanism based on the output of the pressure change measuring means. 2. The projection exposure apparatus according to claim 1, wherein the focus mechanism includes means for moving the optical element and means for moving the object to be exposed. 3. Claim 1, wherein the pressure change measuring means includes a thin film provided as part of the boundary between the closed space and the outside, and means for measuring the amount of displacement of the thin film.
Projection exposure apparatus described in Section 1. 4. The projection exposure apparatus according to claim 1, wherein the pressure change measuring means includes a piezoresistive pressure switch whose resistance changes according to pressure changes in the closed space. 5. The projection exposure apparatus according to claim 1, wherein the gas existing in the closed space is air, nitrogen, or helium. 6. The control means calculates the temperature change of the projection optical system based on the output of the pressure change measurement means and controls the focus mechanism to maintain predetermined imaging characteristics. The projection exposure apparatus according to item 1.
JP62031621A 1987-02-16 1987-02-16 Projection exposure device Pending JPS63199419A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62031621A JPS63199419A (en) 1987-02-16 1987-02-16 Projection exposure device
US07/155,277 US4825247A (en) 1987-02-16 1988-02-12 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031621A JPS63199419A (en) 1987-02-16 1987-02-16 Projection exposure device

Publications (1)

Publication Number Publication Date
JPS63199419A true JPS63199419A (en) 1988-08-17

Family

ID=12336287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031621A Pending JPS63199419A (en) 1987-02-16 1987-02-16 Projection exposure device

Country Status (1)

Country Link
JP (1) JPS63199419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device
JP2012195584A (en) * 2011-03-14 2012-10-11 Asml Netherlands Bv Projection system, lithographic apparatus and device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136746A (en) * 1983-12-26 1985-07-20 Nippon Kogaku Kk <Nikon> Projection optical device
JPS63179517A (en) * 1987-01-21 1988-07-23 Nikon Corp Projecting optical apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136746A (en) * 1983-12-26 1985-07-20 Nippon Kogaku Kk <Nikon> Projection optical device
JPS63179517A (en) * 1987-01-21 1988-07-23 Nikon Corp Projecting optical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device
JP2012195584A (en) * 2011-03-14 2012-10-11 Asml Netherlands Bv Projection system, lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US4825247A (en) Projection exposure apparatus
US4907021A (en) Projection exposure apparatus
TWI396053B (en) Lithographic apparatus and device manufacturing method
US6330052B1 (en) Exposure apparatus and its control method, stage apparatus, and device manufacturing method
US20050167514A1 (en) Adaptive real time control of a reticle/mask system
JP3047461B2 (en) Projection exposure apparatus, projection exposure method, and semiconductor integrated circuit manufacturing method
US8619258B2 (en) Lithographic apparatus and device manufacturing method
JP3445045B2 (en) Projection exposure apparatus and device manufacturing method using the same
US4730900A (en) Projection optical apparatus
KR100861076B1 (en) Lithographic apparatus, control system and device manufacturing method
US7375794B2 (en) Lithographic apparatus and device manufacturing method
US9535335B2 (en) Exposure apparatus and device manufacturing method
US6809793B1 (en) System and method to monitor reticle heating
US20110194088A1 (en) Projection System, Lithographic Apparatus, Method of Projecting a Beam of Radiation onto a Target and Device Manufacturing Method
EP3438749A1 (en) Methods of determining a mechanical property of a layer applied to a substrate, control system for a lithographic apparatus and lithographic apparatus
JP2003059807A (en) Method of exposure and aligner, and method for manufacturing device
JP3445102B2 (en) Exposure apparatus and device manufacturing method
KR101895018B1 (en) Lithographic apparatus, object positioning system and device manufacturing method
JPS63199419A (en) Projection exposure device
JPS6022319A (en) Semiconductor exposure apparatus
JPH10289865A (en) Projection exposing device and method therefor
KR100598630B1 (en) Lithographic apparatus and method to detect correct clamping of an object
JPH1083954A (en) Exposure device
JPH10284405A (en) Lithography system
JPH06181168A (en) Aligning method