WO1999026279A1 - Exposure method and aligner - Google Patents

Exposure method and aligner Download PDF

Info

Publication number
WO1999026279A1
WO1999026279A1 PCT/JP1998/005184 JP9805184W WO9926279A1 WO 1999026279 A1 WO1999026279 A1 WO 1999026279A1 JP 9805184 W JP9805184 W JP 9805184W WO 9926279 A1 WO9926279 A1 WO 9926279A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
projection optical
conditions
reticle
Prior art date
Application number
PCT/JP1998/005184
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Taniguchi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU11734/99A priority Critical patent/AU1173499A/en
Publication of WO1999026279A1 publication Critical patent/WO1999026279A1/en
Priority to US09/571,685 priority patent/US20030016339A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Definitions

  • the present invention relates to an exposure method used for transferring a mask pattern onto a photosensitive substrate when, for example, manufacturing a semiconductor element, a liquid crystal display element, or a thin-film magnetic head using a photolithography technique, and
  • the exposure apparatus is particularly suitable for use in performing multiple exposure.
  • a projection exposure apparatus such as a stepper used for manufacturing a semiconductor device or the like
  • imaging characteristics disortion, best focus position, etc.
  • various correction methods have been proposed.
  • One example of such a correction method is to measure the incident energy to the projection optical system, predict the amount of change in the imaging characteristics according to a previously determined model of the change characteristics of the imaging characteristics, and determine a predetermined amount based on the prediction result. This is a method of driving some optical elements of the projection optical system via the correction mechanism described above.
  • a modified illumination technology or a phase shifter that illuminates a reticle as a mask with illumination light from a secondary light source having an annular shape or a plurality of apertures has been provided.
  • Technology using a reticle has also been proposed.
  • these techniques are used, the intensity distribution of the illumination light in the projection optical system changes greatly, and the fluctuation characteristics of the above-mentioned imaging characteristics change.
  • a technique has been proposed in which a model of the fluctuation characteristic is used after being changed according to exposure conditions.
  • the next lot of wafers may be switched to another exposure condition and exposed.
  • the exposure under the new exposure condition is started while the influence of the previous exposure condition remains in the projection optical system, and the imaging characteristics change discontinuously.
  • Japanese Patent Application Laid-Open No. 6-45217 proposes a method of suspending exposure under new exposure conditions until the influence of the previous exposure conditions is sufficiently reduced.
  • the discontinuity (offset) of the imaging characteristic at the time of the change is measured in advance, and when the imaging characteristic is switched, A method of adding the offset to the imaging characteristic after switching has also been proposed.
  • the conventional method of correcting the imaging characteristics uses a model of the fluctuation characteristics of the imaging characteristics obtained in advance according to the exposure conditions, and performs the offset correction when switching the exposure conditions.
  • the amount of change in the image characteristics is predicted, and the image formation characteristics are corrected so as to offset the predicted amount of change.
  • the imaging characteristics under the two exposure conditions are mixed, and the offset of the imaging characteristics is temporarily considered. Even if a single model of the fluctuation characteristic is used, there is a possibility that a correction error of the imaging characteristic remains.
  • a double exposure method has attracted attention as an exposure method for further improving the imaging performance.
  • This method uses two or more different layers on the same layer (sensitive layer) on the wafer.
  • the dense pattern and the isolated pattern have significantly different states of generation of diffracted light.
  • the numerical aperture (NA), illumination conditions, exposure amount, and best focus position of the projection optical system are different. Therefore, the dense pattern and the isolated pattern are drawn on the first and second reticles different from each other, and the pattern of the two reticles is double-exposed under the optimum exposure conditions, for example, by using both of them.
  • both patterns can be transferred with high resolution.
  • the chemically amplified resist which is a photoresist suitable for excimer laser light, is suitable for forming fine patterns, but the chemical stability after exposure is not very good, so the time between exposure and development is reduced. In order to shorten the time, it is necessary to perform development processing within a certain time after exposure. For this reason, when performing double exposure using a chemically amplified resist, after exposing the pattern of the first reticle for each wafer in one lot, the reticle is exchanged by exchanging the reticle. The reticle pattern must be exposed, and the exposed wafer must be sequentially transferred to a development process.
  • the present invention can reduce the fluctuation of the imaging characteristic due to the absorption of the energy of the illumination light in the projection optical system, even when performing multiple exposure while exchanging patterns for each wafer.
  • a second object is to provide an exposure method that can accurately correct.
  • Another object of the present invention is to provide an exposure apparatus that can use such an exposure method. Disclosure of the invention
  • An exposure method is an exposure method for exposing an image of a mask pattern on a substrate through a projection optical system under a predetermined exposure energy beam, wherein a plurality of different exposure conditions are sequentially applied to the substrate.
  • the image forming characteristic of the projection optical system is corrected in accordance with the switching operation of the exposure condition.
  • the imaging characteristics are substantially mixed with the characteristics under a plurality of exposure conditions. Attention is paid to the fact that the ratio can be regarded as substantially constant according to the switching operation, that is, for example, the ratio of the amount of irradiation energy under each exposure condition, and the like.
  • the imaging characteristics are considered to fluctuate based on the average fluctuation characteristics determined by a ratio corresponding to the switching operation, and the amount of fluctuation of the imaging characteristics is determined according to the average fluctuation characteristics. Is predicted, and the imaging characteristics are corrected based on this result.
  • the correction is performed on the assumption that the imaging characteristic fluctuates according to the average fluctuation characteristic. Therefore, the imaging characteristics can be accurately maintained in a desired state only by performing a simple calculation.
  • the imaging characteristics of the projection optical system it is desirable to correct the imaging characteristics of the projection optical system according to the ratio of the respective exposure times of the plurality of exposure conditions. Since the mixture ratio of the imaging characteristics is determined according to the exposure time ratio, using the exposure time ratio makes it possible to accurately predict the average fluctuation amount of the imaging characteristics with a small amount of calculation. .
  • a plurality of mask patterns may be prepared, and the images of the plurality of mask patterns may be exposed to the same sensitive layer on the substrate under mutually different exposure conditions.
  • a predetermined pattern is exposed by performing multiple exposure while switching the exposure condition on one layer on the substrate.
  • the imaging characteristics are considered to fluctuate based on the average fluctuation characteristics of the plurality of imaging characteristics corresponding to each mask pattern.
  • An example of the exposure condition is any of the illumination condition of the exposure energy beam, the numerical aperture of the projection optical system, and the type of the mask pattern. For example, since the transmittance or the like changes depending on the type of mask pattern, the amount of energy incident on the projection optical system changes.
  • an exposure apparatus is an exposure apparatus that exposes an image of a mask pattern onto a substrate via a projection optical system under a predetermined exposure energy beam. And an image forming characteristic correcting unit for correcting the image forming characteristic of the projection optical system in accordance with the switching operation of the exposure condition.
  • the exposure method of the present invention can be used.
  • the exposure control unit stores in advance a model of a variation characteristic of an imaging characteristic due to absorption of an exposure energy beam of the projection optical system for each of a plurality of exposure conditions, and performs exposure by, for example, a double exposure method.
  • the model obtained by averaging the models of the fluctuation characteristics according to the ratio of the irradiation energy amount under each exposure condition the fluctuation of the imaging characteristics due to the irradiation of the exposure energy beam is corrected. It is desirable to do it.
  • FIG. 1 is a partial view showing a projection exposure apparatus used in an example of an embodiment of the present invention.
  • FIG. 1 is a partial view showing a projection exposure apparatus used in an example of an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a state of a change in imaging characteristics caused by absorption of illumination light of a projection optical system.
  • FIG. 3 is an explanatory view of patterns of two reticles and corresponding exposure conditions when performing exposure by a double exposure method.
  • FIG. 4 is an explanatory diagram of how to obtain a coefficient of a model _ of a variation amount of an imaging characteristic when performing exposure by a double exposure method in the embodiment.
  • FIG. 5 is a diagram showing a correction amount (change amount) of an imaging characteristic under each exposure condition when performing exposure by a double exposure method in the embodiment.
  • FIG. 6 is an enlarged view showing the correction amount (change amount) of the imaging characteristic in the first part of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the projection exposure apparatus of this example.
  • KrF wavelength 24
  • a r F wavelength 1 9 3 nm
  • F 2 irradiation Meiko IL as an exposure energy beam emitted from the exposure light source 1 consisting of an excimer laser light source 1 5 7 nm
  • the light is incident on a shaping optical system for shaping the cross-sectional shape of light, and an illuminance uniforming optical system 2 including a fly-eye lens for uniforming the illuminance distribution.
  • a mercury lamp, X-ray, or the like can be used as the exposure light source 1.
  • the exit surface of the illumination uniforming optical system 2 is the reticle to be transferred (reticle R in Fig. 1).
  • a turret plate 3 on which various aperture stops for switching the illumination conditions for the reticle are formed is arranged. . That is, around the rotation axis of the turret plate 3, a circular aperture stop for normal illumination, a small circular aperture stop 3a for setting a small ⁇ value as a coherence factor, and an annular illumination are provided. A ring-shaped aperture stop 3b for performing the operation, and a deformed stop composed of four apertures arranged around the optical axis are arranged.
  • the illumination light IL emitted from the illuminance uniforming optical system 2 and having passed through a predetermined aperture stop in the turret plate 3 is further converted into an optical system 4 including a relay lens, a field stop, and the like, a mirror for bending the optical path 5
  • the illumination area on the pattern surface (lower surface) of the reticle R 1 is illuminated via the condenser lens 6.
  • the optical system 4 also includes an integrator sensor 4a for branching a part of the illumination light IL and detecting the amount of the light, and a reflectance monitor 4b for detecting the amount of light reflected from the reticle side. .
  • the image of the pattern in the illumination area of reticle R 1 is projected onto the surface of a semiconductor wafer (hereinafter simply referred to as “wafer”) W at a projection magnification of ⁇ (1 Z 4, 1/5, etc.) via projection optical system PL. Is transferred to the exposure area.
  • wafer semiconductor wafer
  • an illumination system including the illuminance uniforming optical system 2 and the optical system 4 is disclosed in Japanese Patent Application Laid-Open No. Hei 5-2010 (U.S. Pat. No. 5,719,704).
  • An illumination system including a rod-type optical integrator as described above may be used.
  • a variable aperture stop (not shown) is provided on the optical Fourier transform plane (pupil plane) for the pattern surface of the reticle R1 in the projection optical system PL.
  • a pupil filter of a so-called light-blocking type that blocks illumination light in a predetermined area centered on the optical axis as disclosed in Japanese Patent Application Laid-Open No. HEI 6-124870.
  • a phase filter or the like in which a phase member is formed can be installed as needed. Note that the exit surface of the uniform illumination optical system 2 is almost optically conjugate with the pupil plane of the projection optical system PL, and is substantially optically conjugate with the pupil plane of the projection optical system PL due to the rotation of the turret plate 3.
  • the intensity distribution on the pupil plane of the projection optical system PL also changes.
  • a chemically amplified resist is applied to the surface of the wafer W in this example, and the surface is held so as to coincide with the image plane of the projection optical system PL during exposure.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis
  • the Y axis is perpendicular to the plane of Fig. 1.
  • the reticle R 1 is sucked and held on the reticle holder 7, and the reticle holder 7 has three drive elements 8 (two in FIG. Only the driving element 8 appears.
  • the reticle stage RST is mounted on the reticle base 9 movably in the X direction, the Y direction, and the rotation direction by, for example, a linear motor system.
  • the amount of expansion and contraction of the drive element 8 is set by the imaging characteristic control system 16 under the control of the main control system 14.
  • the moving mirror on the reticle holder 7 and the external laser interferometer 10 measure the X coordinate, Y coordinate, and rotation angle of the reticle stage RST (reticle R), and the measured values are used as the reticle stage drive system 11,
  • the reticle stage drive system 11 is supplied to the main control system 14 and controls the operation of the reticle stage RST based on the measured values and control commands from the main control system 14.
  • a reticle exchanging device 12 is installed near the reticle base 9, and a second reticle R 2 is placed on the first slider 13 of the reticle exchanging device 12, and the reticle exchanging device 1 2 Replaces the reticle R 1 on the reticle holder 7 with the second reticle R 2 via the second slider (not shown) and the first slider 13 according to a control command from the main control system 14. . Thereafter, reticle R 1 and reticle R 2 are alternately set on reticle holder 7 by reticle exchange device 12. Reticles R 1 and R 2 in this example are formed with a pattern for double exposure, which will be described later.
  • the wafer W is held by suction on a sample table 23 via a wafer holder (not shown), and the sample table 23 is fixed on a wafer stage WST for positioning the wafer W in the X and Y directions by, for example, a linear motor method. Have been.
  • the sample stage 23 is also provided with a Z leveling drive mechanism for controlling the position (focus position) of the wafer W in the Z direction and the tilt angle within a predetermined range.
  • the moving mirror on the sample stage 23 and the external laser interferometer 25 measure the X coordinate, Y coordinate, and rotation angle of the sample stage 23 (wafer W), and the measured values are used as the wafer stage drive system 26,
  • the wafer stage drive system 26 is supplied to the main control system 14, and controls the operation of the wafer stage WST based on the measured values, control commands from the main control system 14, and the like.
  • the projection exposure apparatus of this embodiment is of a batch exposure type (stepper type), but the present invention is disclosed in Japanese Patent Application Laid-Open No. 6-291106 (US Pat. No.
  • the present invention can also be applied to a scanning exposure type projection exposure apparatus such as a step-and-scan method as disclosed in (1).
  • the reticle stage RST is also provided with, for example, a function of continuously moving in the Y direction. The scanning is performed synchronously with the projection magnification 3 as the speed ratio.
  • a slit image is obliquely placed on the side of the projection optical system PL at a measurement point on the surface of the wafer W near the exposure area.
  • the projection optical system 27 that projects the light, and the reflected light from the surface of the wafer W is received and the slit image is re-imaged, so that the focus signal corresponding to the defocus amount from the image plane at the measurement point is obtained.
  • An oblique incidence type focus position detection system (hereinafter, referred to as “AF sensors 27, 28”) composed of an output light receiving optical system 28 and is provided.
  • the focus signals of the AF sensors 27 and 28 are supplied to the main control system 14 and the wafer stage drive system 26, and the wafer stage drive system 26 has the target value whose focus signal is set from the main control system 14.
  • the operation of the Z repelling drive mechanism in the sample stage 23 is controlled so that the initial value becomes 0.
  • the illumination system and projection optical system including multiple optical components are incorporated into the exposure apparatus main body to perform optical adjustment, and the reticle stage and wafer stage are attached to the exposure apparatus main body to electrically and mechanically By connecting, the projection exposure apparatus of this example is manufactured.
  • the circuit pattern image is, as an example, a butterfly image in which a dense pattern image 32 and an isolated pattern image 33 are mixed, as shown in FIG. 3 (a), and each pattern image is a light shielding pattern. Shall correspond.
  • the dense pattern and the isolated pattern have mutually different optimal exposure conditions (such as the aperture stop of the illumination system, the numerical aperture of the projection optical system PL, and the exposure amount).
  • the corresponding reticle pattern is decomposed into a first reticle R1 pattern shown in FIG. 3 (b) and a second reticle R2 pattern shown in FIG. 3 (d).
  • the pattern of the first reticle R1 is formed by the dense pattern 32A and the light shielding pattern 33A for covering the isolated pattern
  • the pattern of the second reticle R2 is The light-shielding pattern 32B for covering the dense pattern and the isolated pattern 33B are formed.
  • a phase shifter may be provided in the dense pattern 32A
  • the reticle R_l may be a phase shift reticle.
  • the annular aperture stop 3b shown in FIG. 3 (c) is used as the aperture stop of the illumination system
  • the second When exposing the pattern image of the reticle R2 an aperture stop 3a for a small ⁇ value shown in FIG. 3 (e) is used as the aperture stop.
  • the incident energy to the projection optical system PL depends on which reticle is used. Change.
  • the exposure is performed by the double exposure method, but also in this case, the projection optical system PL depends on environmental conditions such as the temperature around the projection optical system PL and the amount of energy incident on the projection optical system PL.
  • the imaging characteristics change gradually. Therefore, the projection exposure apparatus of this example is provided with a sensor for measuring environmental conditions and a mechanism for measuring the amount of energy incident on the projection optical system PL. That is, a detection signal from an environment sensor 30 including an atmospheric pressure sensor, a temperature sensor, and a humidity sensor is supplied to a main control system 14 via a signal processing device 29, and the main control system 14 detects the detection signal.
  • the atmospheric pressure, temperature, and humidity around the projection optical system PL are recognized from the signal.
  • An irradiation monitor 24 composed of a photoelectric detector is installed near the wafer W (wafer holder) on the sample table 23, and a detection signal of the irradiation monitor 24 is supplied to the main control system 14. .
  • a detection signal of the irradiation monitor 24 is supplied to the main control system 14. .
  • reticle R 1 or R 2
  • pattern abundance can be measured. Even during the exposure, the exposure amount to the wafer W (incident energy to the projection optical system PL) is constantly indirectly monitored via the integrator sensor in the optical system 4. And the reflectance monitor of the optical system 4 can be used to determine the reflectivity of the wafer W, and thus the amount of illumination light reflected by the wafer W and returned to the projection optical system PL. .
  • the drive element 8 for driving the reticle R in the optical axis AX direction is used for correcting a symmetric distortion component. If the reticle is non-telecentric, it is used to correct the projection magnification.
  • a lens element L 2 is inserted into a lens frame 20 via three driving elements 19 such as a piezo element which can be extended and contracted on a lens barrel 18 of the projection optical system PL.
  • a lens element L1 is held in the lens frame 22 via three drive elements 21 that can expand and contract in the Z direction on the lens frame 20.
  • the expansion and contraction amounts of the driving elements 19 and 21 are controlled by an imaging characteristic control system 16. For example, by moving the lens elements L 2 and L 1 near the reticle R 1 in the direction of the optical axis AX and tilting them within a predetermined range, for example, the projection is performed. Correction of magnification, field curvature, symmetric distortion components, etc. can be performed.
  • a pressure variable section 15 such as a bellows pump for controlling the pressure inside the sealed space 17 between predetermined lens elements inside the projection optical system PL
  • the imaging characteristic control section 16 includes: By controlling the pressure in the closed space 17 via the pressure variable section 15, for example, magnification, coma aberration, field curvature and the like can be corrected.
  • the main control system 14 detects the wafer stage drive system 26 by the AF sensors 27 and 28. By issuing a command to add the offset corresponding to the variation to the target value of the focus signal, the surface of the wafer W can follow the variation of the image plane.
  • the imaging characteristic control system 16 determines the drive amount of the corresponding correction mechanism and drives each correction mechanism.
  • the main control system 14 measures the energy amount of the illumination light IL incident on the projection optical system PL and the transmittance of the reticle R by the irradiation amount monitor 24 on the wafer stage WST. Also, when monitoring the energy amount of the light beam passing through the projection optical system PL with higher accuracy, the main control system 14 uses the detection signal from the reflectance monitor 4 b provided in the optical system 4 to Calculate the energy of the light beam reflected by the wafer W and returned to the projection optics PL.
  • the main control system 14 determines, for example, at what timing the illumination light IL is incident on the projection optical system PL based on the detection signal of the integrator sensor 4a in the optical system 4, and the illumination light IL for the projection optical system PL. Can be recognized.
  • the internal temperature of the projection optical system PL changes due to the balance between the absorption of the illumination light IL and the heat radiation, and the imaging characteristics change accordingly.
  • FIG. 2 shows how the imaging characteristics of the projection optical system PL change in such a manner.
  • the horizontal axis represents the elapsed time t
  • the vertical axis represents the variation ⁇ ⁇ of the imaging characteristics. I have.
  • the solid curves 31A and 31B represent changes in the imaging characteristics when the reticles R1 and R2 are used, for example.
  • the following describes the exposure conditions (illumination conditions, reticle pattern type, numerical aperture of the projection optical system PL, and the inside of the projection optical system PL) when exposing the patterns of the first reticle R 1 and the second reticle R 2.
  • Filter type; presence / absence, exposure amount, etc.) are referred to as exposure condition A and exposure condition B, respectively.
  • the curves 31 A and 3 IB in FIG. 2 after the irradiation of the projection optical system PL with the illumination light IL is started at time t0, the imaging characteristics gradually change, and the irradiation continues.
  • the absorption and radiation are gradually balanced, and the imaging characteristics are saturated to a certain value.
  • the imaging characteristics gradually return to the original state.
  • the illumination conditions are different under the exposure conditions A and B, and the intensity distribution of the illumination light in the projection optical system PL is different even with the same amount of incident energy as a whole. 3
  • the change characteristics are different. This change characteristic is obtained in advance by an experiment or the like, and is stored in the storage unit in the main control system 14 as a model of the change characteristic of the imaging characteristic.
  • the change amount ⁇ of the imaging characteristic is, for example, the change amount (defocus amount) of the best focus position, the error of the projection magnification / 3, or the amount of distortion.
  • the change amounts ⁇ P under the exposure conditions ⁇ and B are respectively Let ⁇ A and ⁇ B. Then, assuming that the time constants under the exposure conditions A and B are ⁇ A and B, respectively, and the saturation values of the variation ⁇ P under the exposure conditions A and B are PA and PB, respectively.
  • the changes ⁇ PA and ⁇ are each expressed as a function of time t as follows: The following model represents the variation between t O ⁇ t ⁇ tl with the irradiation start time t 0 as 0 in FIG.
  • the main control system 14 By successively substituting the elapsed time t from the irradiation start into these models, the main control system 14 obtains the change amounts ⁇ ⁇ and ⁇ ⁇ of the imaging characteristics at the elapsed time t. be able to. Since the cumulative incident energy during t 0 t ⁇ t 1 is proportional to the elapsed time t, the elapsed time t can be made to correspond to the cumulative incident energy.
  • the saturation values PA and PB are coefficients (usually proportional to energy and change) that indicate how much variation (at saturation level) occurs for a given energy.
  • the time constants ⁇ and ⁇ are coefficients that indicate the speed of change (how long it takes to reach saturation).
  • the saturation values ⁇ , ⁇ ⁇ ⁇ and the time constants A, B vary depending on the amount of incident energy (illuminance) per unit time, their saturation values PA, PB, and the time constant ⁇ , ⁇ The value of It is stored as a function of the illuminance of the illumination light.
  • the storage unit of the main control system 14 stores those environmental conditions. A variation characteristic model for obtaining the amount of change in the imaging characteristic with respect to the variation is also stored. Then, the main control system 14 supplies the change amount of the imaging characteristic according to the change of the environmental condition and the sum of the change amount of the imaging characteristic according to the incident energy amount to the imaging characteristic control system 16. In the imaging characteristic control system 16, imaging is performed via at least one of the driving elements 8, 15, 19, 21 so as to cancel the sum of the supplied changes in the imaging characteristics. Correct the image characteristics. Further, regarding the defocus correction, the main control system 14 changes the offset of the focus signals of the AF sensors 27 and 28 with respect to the target value with respect to the wafer stage drive system 26.
  • the operation of exposing the pattern image of the first reticle R 1 to each wafer in one lot under the exposure condition A is performed in order to shorten the time for putting the chemically amplified resist on the wafer.
  • the operation of exposing the pattern image of the second reticle R 2 under the exposure condition B are alternately repeated.
  • the reticle In order to reduce the frequency of reticle replacement and increase the throughput of the exposure process, after exposing the first wafer, the reticle must not be replaced after the first wafer has been exposed. Exposure of the pattern image of the second reticle R2, and then exchanging the reticle to expose the pattern image of the first reticle R1, and thereafter, it is desirable to perform the reticle exchange at an intermediate point of the exposure of each wafer. .
  • the imaging characteristics change when the fluctuation characteristics of the imaging characteristics under the two exposure conditions A and B are mixed at a constant rate. Can be considered.
  • the projection optical system PL is irradiated in a state where the imaging characteristics of the exposure conditions A and B are mixed, the passing position of the illumination light IL is different between the exposure conditions A and B. Since the change characteristics are different from the change characteristics for exposure condition B, it is necessary to calculate the amount of change in the imaging characteristics using different coefficients (saturation value and time constant) for exposure conditions A and B. is there.
  • FIG. 4 shows the case where it can be considered that the imaging characteristics of exposure conditions A and B are mixed.
  • FIG. 4 is an explanatory diagram of a method of determining a coefficient of a model indicating a variation amount of an imaging characteristic under exposure conditions A and B.
  • a horizontal axis indicates a total irradiation energy under two exposure conditions A and B.
  • the irradiation energy is determined by the transmittance of the reticle and the illuminance on the reticle determined by the exposure conditions of the resist (per unit time with respect to the projection optical system PL monitored by the integrator sensor 4a in the optical system 4). Incident energy) and the irradiation time. If the irradiation energy amounts under the exposure conditions A and B are ⁇ EA and ⁇ EB, respectively, the ratio ⁇ is as follows.
  • the ratio ⁇ can be calculated from the output of the dose monitor 24 in FIG. 1 and parameters (eg, the dose, the number of shots, etc.) that determine the exposure sequence.
  • parameters eg, the dose, the number of shots, etc.
  • the output of the dose monitor 24 is obtained. It is also possible to obtain from the actually measured value of the integrated value.
  • the vertical axis on the left side of FIG. 4 represents the coefficient k A under the exposure condition ⁇
  • the vertical axis on the right side represents the coefficient k B under the exposure condition B
  • the solid curves 34 A and 34 B correspond to the coefficient k A and kB are shown.
  • the coefficients k A and k B are, for example, proportional coefficients for obtaining the saturation values PA and PB (see equations (1A) and (1B)) described with reference to FIG. 2 from the illuminance of the illumination light. It is.
  • the value k A o of the coefficient k A under the exposure condition A when the ratio ⁇ is 0 is the value of the imaging characteristic in the case where one lot of wafers are continuously exposed only under the exposure condition A.
  • the value of the coefficient k ⁇ 0 under the exposure condition B when the ratio ⁇ is 1 is the coefficient representing the fluctuation characteristics.
  • the coefficient k ⁇ ⁇ under the exposure condition ⁇ gradually increases. Conversely, as the ratio ⁇ decreases from 1, the coefficient k ⁇ ⁇ under the exposure condition ⁇ gradually decreases as shown by the curve 34 ⁇ . In this case, the ratio ⁇ is 1
  • the value k Ai of the coefficient k A when it is close to, and the value k of the coefficient k ⁇ ⁇ when the ratio ⁇ is close to 0 may be obtained in advance.
  • the value is a coefficient indicating the amount of change under exposure condition A when greatly affected by exposure condition B.
  • the coefficients kA and kB in the range of 0 ⁇ ⁇ 1 are two It can be regarded as an average coefficient in which the effects of exposure conditions A and B are mixed.
  • an exposure experiment is performed while changing the ratio ⁇ in a predetermined step from 0 to 1 in advance to confirm the values of the coefficients kA and kB.
  • the characteristics of the curves 34A and 34B may be obtained as a function (for example, a quadratic function or the like) relating to the ratio ⁇ , or a table for each predetermined step of the ratio ⁇ .
  • the function or the table may be stored in the storage unit in the main control system 14, and the values of the coefficients k ⁇ and k ⁇ ⁇ may be obtained from the ratio ⁇ during the double exposure.
  • FIG. 5 shows a case where double exposure is performed while the exposure conditions A and B are alternately repeated from the time point t S when the projection optical system PL in FIG. 1 is sufficiently cooled.
  • the horizontal axis represents the elapsed time t, and the vertical axis represents the absolute value of the correction amount C of the imaging characteristic.
  • the correction amount C is a value having the same absolute value and the opposite sign to the change amount ⁇ ⁇ of the imaging characteristic.
  • the exposure period TA under the exposure condition A and the exposure period TB under the exposure condition B alternate alternately at a substantially constant cycle.
  • the ratio ⁇ of the irradiation energy amount between the exposure condition A and the exposure condition B is ⁇ X.
  • the control system 14 obtains the values kAx and kBx of the coefficients kA and kB under the exposure conditions A and B at the ratio ⁇ x from the stored characteristics of the curves 34A and 34B in FIG.
  • the time constant coefficient is obtained from the ratio ⁇ X.
  • the main control system 14 determines the amount of change ⁇ in the imaging characteristic under the exposure condition ⁇ during the period ⁇ ⁇ ⁇ ⁇ by using the model of the variation characteristic represented by the equations (1 ⁇ ) to (2 ⁇ ), for example.
  • the change amount ⁇ ⁇ ⁇ of the imaging characteristic under the exposure condition ⁇ of the period ⁇ ⁇ is sequentially calculated.
  • the change amounts ⁇ ⁇ and ⁇ of the imaging characteristics under the exposure conditions ⁇ and ⁇ are represented by solid-line curves 35 ⁇ and 35 B, respectively.
  • the main control system 14 calculates the change amount ⁇ ⁇ calculated under the exposure condition A.
  • the value of the correction amount C is set so as to offset P A, and in the period TB, the value of the correction amount C is set so as to offset the change amount ⁇ P B calculated under the exposure condition B.
  • FIG. 6 is an enlarged view of a portion corresponding to the first part of the curved line 35A of the exposure condition A in FIG. 5, and in FIG. Shows the actual amount of change ⁇ ⁇ A in the imaging characteristics, and the amount of change ⁇ is large during the exposure period TA under the exposure condition A, and small during the exposure period TB under the exposure condition B. .
  • the curve 36A decreases in the period TC1 and TC2 at the boundary between the period TA and the period TB when the illumination light is not irradiated for the reticle exchange time or the wafer exchange time. Is shown. In FIG. 5, the portion where the variation ⁇ is reduced is omitted. Ideally, it should be corrected according to the change of the solid curve 36A, but it is difficult to calculate exactly the state where the two exposure conditions A and B are mixed.
  • the dotted curve 37A in FIG. And the change amount ⁇ ⁇ ⁇ of the imaging characteristic calculated according to the average coefficient of B and B (the inverse of this sign becomes the correction amount C of the imaging characteristic).
  • the correction amount C of the imaging characteristic is determined based on the curve 35B in FIG.
  • the exposure conditions A and B are switched at a sufficiently short interval compared to the time constant of the change in the imaging characteristics, so that the correction error (the difference between the curves 36A and 37A) is sufficiently small to cause a problem. No.
  • the imaging characteristics based on the change in the incident energy to the projection optical system PL and the environmental conditions are changed. Can be corrected with high accuracy.
  • the pattern image of the first reticle R1 is exposed on the first wafer during the period TA (TA1) starting from the time point tS, and the first half of the next period TB is performed.
  • TA1 the pattern image of the second reticle R2 is exposed on the first wafer.
  • the pattern image of the second reticle R2 is exposed on the second wafer in the second period TB2, and in the first half of the next period TA, the second wafer is exposed in the second period TA2.
  • the pattern image of the first reticle R1 has been exposed.
  • the latter half period TA3 the pattern image of the first reticle R1 is exposed on the third wafer, and thereafter, the reticle is exchanged in the middle of the exposure of each wafer.
  • a step for designing the function and performance of the device For a device such as a semiconductor, a step for designing the function and performance of the device, a step for manufacturing a reticle based on the design step, a step for manufacturing a wafer from a silicon material, a pattern of a reticle by the exposure apparatus of the above-described embodiment. It is manufactured through a step of exposing the wafer to a wafer, a step of assembling devices (including a dicing step, a bonding step, and a package step), and an inspection step.
  • two reticles Rl and R2 are prepared for performing double exposure.
  • the first pattern and the left half of the reticle are provided on the right half of one reticle.
  • the second pattern may be drawn in advance, and the first and second patterns may be alternately exposed.
  • the exposure conditions to be switched are the two conditions A and B, but the same can be applied even when the number of exposure conditions becomes three or more.
  • FIG. A coefficient indicating the amount of change in the imaging characteristics may be obtained from the ratio of the amount of irradiation energy.
  • the effects of the mixture of the two exposure conditions are ignored, and they are calculated independently of each other and simply added, without having to consider the Daraf in FIG. This method is effective when the influence of mixing is small because the calculation load and the coefficient setting load are small.
  • the exposure method of the present invention since the imaging characteristics of the projection optical system are corrected in accordance with the switching operation of the exposure conditions, the exposure is performed when multiple exposures are performed while the plurality of exposure conditions are alternately switched. There is an advantage that a desired imaging state can be accurately maintained by suppressing a change in imaging characteristics without reducing the throughput of the process.
  • a mask (a wafer) is provided for each substrate (wafer).
  • the exposure condition is any one of the illumination condition of the exposure energy beam, the numerical aperture of the projection optical system, and the type of the mask pattern
  • the exposure condition having a large influence on the imaging characteristics is considered. Fluctuations in the imaging characteristics can be corrected more accurately. Further, when performing exposure under a plurality of different exposure conditions, when correcting the imaging characteristics of the projection optical system according to the ratio of the amount of the exposure energy beam incident on the projection optical system under each exposure condition, Variations in image characteristics can be corrected more accurately.

Abstract

An aligner such that the variation of image-forming characteristic which is caused by the absorption of the energy of illumination light in a projection optical system can be accurately corrected even if double exposure is performed while the pattern of a reticle is changed for every wafer. During a period TA, the pattern of a 1st reticle is exposed under an exposure condition A and, during a period TB, the pattern of a 2nd reticle is exposed under an exposure condition B. These exposures are alternately repeated. A coefficient which shows the model of the variation of the image-forming characteristic during the period TA and a coefficient which shows the model of the variation of the image-forming characteristic during the period TB are determined in accordance with the ratio between the applied energies under the exposure conditions A and B. The change ΔP of the image-forming characteristic during the periods TA and TB is estimated in accordance with the coefficients and the image-forming characteristic is corrected so as to cancel the change ΔP.

Description

明 細 書 露光方法及び装置 技術分野  Description Exposure method and apparatus
この発明は、 例えば半導体素子、 液晶表示素子、 又は薄膜磁気ヘッド等をフォ トリソグラフィ技術を用いて製造する際に、 マスクパターンを感光性の基板上に 転写するために使用される露光方法、 及び露光装置に関し、 特に多重露光を行う 場合に使用して好適なものである。 背景技術  The present invention relates to an exposure method used for transferring a mask pattern onto a photosensitive substrate when, for example, manufacturing a semiconductor element, a liquid crystal display element, or a thin-film magnetic head using a photolithography technique, and The exposure apparatus is particularly suitable for use in performing multiple exposure. Background art
半導体素子等を製造する際に使用されるステッパー等の投影露光装置において は、投影光学系による露光用の照明光の吸収により結像特性(ディストーション、 ベストフォーカス位置等) が変動することが知られており、 これに対する補正方 法が種々提案されている。 その補正方法の一例は、 投影光学系に対する入射エネ ルギーを測定し、 予め求めておいた結像特性の変動特性のモデルに従ってその結 像特性の変動量を予測し、 この予測結果に基づいて所定の補正機構を介してその 投影光学系の一部の光学素子を駆動する方法であった。  In a projection exposure apparatus such as a stepper used for manufacturing a semiconductor device or the like, it is known that imaging characteristics (distortion, best focus position, etc.) fluctuate due to absorption of illumination light for exposure by a projection optical system. Therefore, various correction methods have been proposed. One example of such a correction method is to measure the incident energy to the projection optical system, predict the amount of change in the imaging characteristics according to a previously determined model of the change characteristics of the imaging characteristics, and determine a predetermined amount based on the prediction result. This is a method of driving some optical elements of the projection optical system via the correction mechanism described above.
これに関して、 近年、 より解像力を向上させるために、 マスクとしてのレチク ルを輪帯状の、 あるいは複数の開口よりなる 2次光源からの照明光で照明する変 形照明技術、 あるいは位相シフタを設けたレチクル (位相シフトレチクル) を用 いる技術も提案されている。 これらの技術を使用すると投影光学系内での照明光 の強度分布が大きく変化し、 上記の結像特性の変動特性が変化するため、 特開昭 6 2 - 2 2 9 8 3 8号公報に開示されているように、 その変動特性のモデルを露 光条件に応じて変更して使用する技術が提案されている。  In this regard, in recent years, in order to further improve the resolution, a modified illumination technology or a phase shifter that illuminates a reticle as a mask with illumination light from a secondary light source having an annular shape or a plurality of apertures has been provided. Technology using a reticle (phase shift reticle) has also been proposed. When these techniques are used, the intensity distribution of the illumination light in the projection optical system changes greatly, and the fluctuation characteristics of the above-mentioned imaging characteristics change. As disclosed, a technique has been proposed in which a model of the fluctuation characteristic is used after being changed according to exposure conditions.
ところが、 実際の露光工程では、 例えば或る露光条件で 1ロットのウェハに露 光した後、 次のロットのウェハに対して別の露光条件に切り換えて露光するよう な場合がある。 この場合には、 前の露光条件の影響が投影光学系に残留している 状態で、 新たな露光条件での露光が開始されて、 結像特性が不連続に変化するた めに、 或る一定の露光条件下での結像特性の変動特性のモデルを用いた高精度な 予測計算は困難となる。 また、 それら 2つの露光条件での変動特性のモデルを予 め求めておき、 露光条件が切り換えられた際にその変動特性のモデルを切り換え る方法を用いるとしても、 露光条件の切り換え時には結像特性が不連続的に変化 するため、 結像特性の補正誤差が残存する恐れがある。 However, in an actual exposure process, for example, after exposing one lot of wafers under a certain exposure condition, the next lot of wafers may be switched to another exposure condition and exposed. In this case, the exposure under the new exposure condition is started while the influence of the previous exposure condition remains in the projection optical system, and the imaging characteristics change discontinuously. For this reason, it is difficult to make a highly accurate prediction calculation using a model of the fluctuation characteristic of the imaging characteristic under a certain exposure condition. Even if a model of the fluctuation characteristics under these two exposure conditions is obtained in advance and a method of switching the model of the fluctuation characteristics when the exposure conditions are switched is used, the imaging characteristics are not changed when the exposure conditions are switched. May change discontinuously, which may leave a correction error in the imaging characteristics.
このため、 例えば特開平 6— 4 5 2 1 7号公報において、 前の露光条件の影響 が十分小さくなるまで、 新たな露光条件での露光を休止する方法が提案されてい る。 あるいは、 特開平 7— 9 4 3 9 3号公報に開示されているように、 変更時の 結像特性の不連続量 (オフセット) を予め測定しておき、 結像特性の切り換え時 には、 切り換え後の結像特性にそのオフセット分を加算する方法も提案されてい る。  For this reason, for example, Japanese Patent Application Laid-Open No. 6-45217 proposes a method of suspending exposure under new exposure conditions until the influence of the previous exposure conditions is sufficiently reduced. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 7-94339, the discontinuity (offset) of the imaging characteristic at the time of the change is measured in advance, and when the imaging characteristic is switched, A method of adding the offset to the imaging characteristic after switching has also been proposed.
上記の如く従来の結像特性の補正方法は、 露光条件に応じて予め求めておいた 結像特性の変動特性のモデルを用いると共に、 露光条件の切り換え時にはオフセ ット分の補正を行って結像特性の変動量を予測し、 この予測される変動量を相殺 するように結像特性を補正する方法であった。 しかしながら、 実際の露光工程で は、 露光条件を切り換えた後の暫くの間はそれら 2つの露光条件での結像特性が 混じり合つたような状態となり、 仮に結像特性のオフセット分の考慮を行ったと しても、 単独の変動特性のモデルを用いたのでは結像特性の補正誤差が残留する 恐れがある。  As described above, the conventional method of correcting the imaging characteristics uses a model of the fluctuation characteristics of the imaging characteristics obtained in advance according to the exposure conditions, and performs the offset correction when switching the exposure conditions. In this method, the amount of change in the image characteristics is predicted, and the image formation characteristics are corrected so as to offset the predicted amount of change. However, in the actual exposure process, for a while after switching the exposure conditions, the imaging characteristics under the two exposure conditions are mixed, and the offset of the imaging characteristics is temporarily considered. Even if a single model of the fluctuation characteristic is used, there is a possibility that a correction error of the imaging characteristic remains.
更に、 近年、 結像性能をより向上させる露光方法として、 二重露光法が注目さ れてきている。 この方法は、 ウェハ上の同一レイヤ (感応層) に異なる 2枚以上 Further, in recent years, a double exposure method has attracted attention as an exposure method for further improving the imaging performance. This method uses two or more different layers on the same layer (sensitive layer) on the wafer.
(又は 2種類以上) のレチクルのパターンを重ねて露光する方式である。 具体的 に、 例えば同一レイヤに密集パターンと孤立パターンとが混在するパターンを露 光したレ、場合、 密集パターンと孤立パターンとは回折光の発生状態が大きく異な るため、 最適な露光条件 (例えば投影光学系の開口数 (N A) 、 照明条件、 露光 量、 ベストフォーカス位置) が異なる。 そこで、 密集パターンと孤立パターンと を互いに異なる第 1及び第 2のレチクルに描画しておき、 これら 2枚のレチクル のパターンをそれぞれの最適な露光条件で二重露光することによって、 例えば両 方のパターンが混在するパターンを両方の中間の露光条件で露光する方法に比べ て、 両方のパターンをそれぞれ高い解像度で転写できる。 This is a method in which (or two or more types) of reticle patterns are overlapped and exposed. Specifically, for example, when a pattern in which a dense pattern and an isolated pattern coexist is exposed on the same layer, the dense pattern and the isolated pattern have significantly different states of generation of diffracted light. The numerical aperture (NA), illumination conditions, exposure amount, and best focus position of the projection optical system are different. Therefore, the dense pattern and the isolated pattern are drawn on the first and second reticles different from each other, and the pattern of the two reticles is double-exposed under the optimum exposure conditions, for example, by using both of them. Compared to the method of exposing a pattern with mixed patterns under both intermediate exposure conditions Therefore, both patterns can be transferred with high resolution.
この二重露光法の適用に際しては、 従来のように露光から現像までの時間が長 くとも特性変化が少ない感光材料 (フォトレジスト) を使用する場合には、 例え ば 1ロットのウェハに対して第 1のレチクルのパターンを露光した後に、 その 1 ロットのウェハに対して第 2のレチクルのパターンを露光することができる。 し かしながら、最近は解像度を高めるために、照明光としてより短波長の K r F (波 長 2 4 8 n m) 、 又は A r F (波長 1 9 3 n m ) 等のエキシマレ一ザ光が使用さ れるようになっている。 このエキシマレ一ザ光に適したフォトレジストである化 学増幅型レジストは、 微細パターンの形成には適しているが、 露光後の化学的安 定性があまりよくないため、 露光から現像までの時間を短くするために、 露光後 の一定時間内に現像処理を行う必要がある。 このため、 化学増幅型レジストを使 用して二重露光を行う場合には、 1ロット内の各ウェハ毎に第 1のレチクルのパ ターンの露光が終わった後に、 レチクル交換を行って第 2のレチクルのパターン を露光して、 露光後のウェハを順次現像処理工程に移す必要がある。  When applying this double exposure method, when using a photosensitive material (photoresist) that has a long time from exposure to development and a small change in characteristics as in the past, for example, one lot of wafers After exposing the pattern of the first reticle, the pattern of the second reticle can be exposed to the one lot of wafers. However, recently, in order to increase the resolution, excimer laser light such as KrF (wavelength: 248 nm) or ArF (wavelength: 193 nm) having a shorter wavelength is used as illumination light. It is being used. The chemically amplified resist, which is a photoresist suitable for excimer laser light, is suitable for forming fine patterns, but the chemical stability after exposure is not very good, so the time between exposure and development is reduced. In order to shorten the time, it is necessary to perform development processing within a certain time after exposure. For this reason, when performing double exposure using a chemically amplified resist, after exposing the pattern of the first reticle for each wafer in one lot, the reticle is exchanged by exchanging the reticle. The reticle pattern must be exposed, and the exposed wafer must be sequentially transferred to a development process.
このように 1枚のウェハ毎に 2枚のレチクルのパターンをそれぞれ最適な露光 条件で二重露光する際に、 照明光の熱エネルギーの吸収に伴う投影光学系の結像 特性の変動を補正する場合には、 結像特性は 2つの露光条件のもとでの結像特性 が混じり合つたような傾向で変動することになる。 このため、 従来のように単に レチクル交換時に結像特性のオフセット分を考慮するのみでは、 正確に結像特性 の変動を補正することは困難となる。 また、 1枚のウェハ毎に 1枚目のレチクル のパターンの露光後に、 前の露光条件の影響が殆どなくなるまで待つ方式では、 露光工程のスループット (生産性) が悪化して現実的ではないと共に、 化学増幅 型レジストのように引き置き時間を短くする必要のある感光材料に対しては適用 が困難である。  In this way, when performing double exposure of the two reticle patterns under the optimal exposure conditions for each wafer, the fluctuations in the imaging characteristics of the projection optical system due to the absorption of the thermal energy of the illumination light are corrected. In this case, the imaging characteristics fluctuate in such a tendency that the imaging characteristics under the two exposure conditions are mixed. For this reason, it is difficult to accurately correct the fluctuation of the imaging characteristic simply by considering the offset of the imaging characteristic when replacing the reticle as in the conventional case. In addition, in the method of waiting until the influence of the previous exposure condition almost disappears after the exposure of the pattern of the first reticle for each wafer, the throughput (productivity) of the exposure process deteriorates and is not realistic. However, it is difficult to apply this method to photosensitive materials such as chemically amplified resists that require a short resting time.
本発明は、 斯かる点に鑑み、 複数の露光条件を交互に切り換えながら露光する ような場合に、 所望の結像状態で露光できる方法を提供することを第 1の目的と する。  In view of the above, it is a first object of the present invention to provide a method capable of performing exposure in a desired imaging state when performing exposure while alternately switching a plurality of exposure conditions.
更に本発明は、 1枚のウェハ毎にパターンを交換しながら多重露光を行うよう な場合でも、 投影光学系での照明光のエネルギーの吸収による結像特性の変動を 正確に補正できる露光方法を提供することを第 2の目的とする。 Further, the present invention can reduce the fluctuation of the imaging characteristic due to the absorption of the energy of the illumination light in the projection optical system, even when performing multiple exposure while exchanging patterns for each wafer. A second object is to provide an exposure method that can accurately correct.
更に本発明は、 そのような露光方法を使用できる露光装置を提供することをも 目的とする。 発明の開示  Another object of the present invention is to provide an exposure apparatus that can use such an exposure method. Disclosure of the invention
本発明による露光方法は、 所定の露光エネルギービームのもとでマスクパター ンの像を投影光学系を介して基板上に露光する露光方法において、 その基板に対 して複数の異なる露光条件を順次切り換えながら露光を行うに際して、 その露光 条件の切り換え動作に応じて投影光学系の結像特性を補正するものである。  An exposure method according to the present invention is an exposure method for exposing an image of a mask pattern on a substrate through a projection optical system under a predetermined exposure energy beam, wherein a plurality of different exposure conditions are sequentially applied to the substrate. When performing exposure while switching, the image forming characteristic of the projection optical system is corrected in accordance with the switching operation of the exposure condition.
斯かる本発明では、 二重又は三重以上等の多重露光を行う場合のように複数の 露光条件を交互に切り換えながら露光する場合には、 結像特性はほぼ複数の露光 条件での特性が混じり合った状態とみなせると共に、 その混じり合いの比率は、 その切り換え動作、 即ち例えば各露光条件での照射エネルギー量の比率等に応じ てほぼ一定とみなせることに着目する。 そして、 長期的に見れば、 結像特性はそ の切り換え動作に応じた比率で定まる平均的な変動特性に基づいて変動するもの とみなして、 その平均的な変動特性に従って結像特性の変動量の予測を行い、 こ の結果に基づいて結像特性の補正を行う。 つまり、 結像特性の変動の時定数に比 ベて十分短い周期で露光条件の切り換えを行う場合には、 平均的な変動特性に従 つて結像特性が変動しているとみなして補正を行うため、 簡単な演算を行うのみ で結像特性を所望の状態に正確に維持できる。  According to the present invention, when performing exposure while switching a plurality of exposure conditions alternately, such as in the case of performing multiple exposure such as double or triple exposure, the imaging characteristics are substantially mixed with the characteristics under a plurality of exposure conditions. Attention is paid to the fact that the ratio can be regarded as substantially constant according to the switching operation, that is, for example, the ratio of the amount of irradiation energy under each exposure condition, and the like. In the long term, the imaging characteristics are considered to fluctuate based on the average fluctuation characteristics determined by a ratio corresponding to the switching operation, and the amount of fluctuation of the imaging characteristics is determined according to the average fluctuation characteristics. Is predicted, and the imaging characteristics are corrected based on this result. In other words, when the exposure condition is switched at a period sufficiently shorter than the time constant of the fluctuation of the imaging characteristic, the correction is performed on the assumption that the imaging characteristic fluctuates according to the average fluctuation characteristic. Therefore, the imaging characteristics can be accurately maintained in a desired state only by performing a simple calculation.
言い換えると、 例えば二重露光法を用いる場合に、 実質的に複数の変動特性が 混じり合っているとみなすことで、 露光エネルギービームの照射による結像特性 の変動の補正が可能となった。  In other words, for example, when the double exposure method is used, it is possible to correct the fluctuation of the imaging characteristic due to the irradiation of the exposure energy beam by considering that a plurality of fluctuation characteristics are substantially mixed.
この場合、 複数の露光条件のそれぞれの露光時間の比率に応じてその投影光学 系の結像特性を補正することが望ましい。 露光時間の比率に応じて、 結像特性の 混じり合いの比率が定まるため、 その露光時間の比率を用いることで、 少ない計 算量で、 平均的な結像特性の変動量を正確に予測できる。  In this case, it is desirable to correct the imaging characteristics of the projection optical system according to the ratio of the respective exposure times of the plurality of exposure conditions. Since the mixture ratio of the imaging characteristics is determined according to the exposure time ratio, using the exposure time ratio makes it possible to accurately predict the average fluctuation amount of the imaging characteristics with a small amount of calculation. .
また、 マスクパターンを複数用意し、 これら複数のマスクパターンの像を互い に異なる露光条件でその基板上の同一の感応層に露光するようにしてもよい。 こ れは基板上の 1つのレイヤに露光条件を切り換えながら多重露光を行って、 所定 のパターンを露光することを意味する。 この際に、 特に 1枚の基板毎にマスクパ ターンを交換しながら多重露光を行う場合、 結像特性は各マスクパターンに対応 する複数の結像特性の平均的な変動特性に基づいて変動するとみなして本発明を 適用することによって、 簡単な制御で正確に所望の結像特性が維持できる。 Alternatively, a plurality of mask patterns may be prepared, and the images of the plurality of mask patterns may be exposed to the same sensitive layer on the substrate under mutually different exposure conditions. This This means that a predetermined pattern is exposed by performing multiple exposure while switching the exposure condition on one layer on the substrate. At this time, especially when performing multiple exposure while exchanging the mask pattern for each substrate, the imaging characteristics are considered to fluctuate based on the average fluctuation characteristics of the plurality of imaging characteristics corresponding to each mask pattern. By applying the present invention, desired imaging characteristics can be accurately maintained with simple control.
また、 その露光条件の一例は、 その露光エネルギービームの照明条件、 その投 影光学系の開口 _数、 及びそのマスクのパターンの種類の何れかである。 例えばマ スクのパターンの種類によって透過率等が変化するため、 投影光学系に対する入 射エネルギー量が変化する。  An example of the exposure condition is any of the illumination condition of the exposure energy beam, the numerical aperture of the projection optical system, and the type of the mask pattern. For example, since the transmittance or the like changes depending on the type of mask pattern, the amount of energy incident on the projection optical system changes.
また、 それらの複数の異なる露光条件で露光する際に、 それぞれの露光条件で その投影光学系に入射する露光エネルギービームの量の比率に応じてその投影光 学系の結像特性を補正するようにしてもよい。 入射するエネルギー量の比率によ つても複数の露光条件のもとでの結像特性の混じり合いの比率がほぼ正確に推定 できるため、 その比率に基づいて結像特性の変動量がほぼ正確に予測できる。 次に、 本発明による露光装置は、 所定の露光エネルギービームのもとでマスク パターンの像を投影光学系を介して基板上に露光する露光装置において、 その基 板に対して複数の異なる露光条件を順次切リ換えながら露光を行う露光制御部と、 その露光条件の切り換え動作に応じてその投影光学系の結像特性を補正する結像 特性補正部と、 を有するものである。  When exposing under a plurality of different exposure conditions, the imaging characteristics of the projection optical system are corrected according to the ratio of the amount of the exposure energy beam incident on the projection optical system under each exposure condition. It may be. Since the ratio of the mixture of the imaging characteristics under a plurality of exposure conditions can be almost accurately estimated based on the ratio of the amount of incident energy, the amount of change in the imaging characteristics can be almost accurately estimated based on the ratio. Can be predicted. Next, an exposure apparatus according to the present invention is an exposure apparatus that exposes an image of a mask pattern onto a substrate via a projection optical system under a predetermined exposure energy beam. And an image forming characteristic correcting unit for correcting the image forming characteristic of the projection optical system in accordance with the switching operation of the exposure condition.
斯かる本発明の露光装置によれば、 本発明の露光方法が使用できる。  According to such an exposure apparatus of the present invention, the exposure method of the present invention can be used.
また、 露光制御部は、 その投影光学系の露光エネルギービームの吸収による結 像特性の変動特性のモデルを複数の露光条件のそれぞれについて予め記憶してお き、 例えば二重露光法で露光を行う際には、 一例として各露光条件での照射エネ ルギー量の比率に応じてその変動特性のモデルを平均して得られるモデルに基づ いて、 露光エネルギービームの照射による結像特性の変動を補正することが望ま しい。 図面の簡単な説明  In addition, the exposure control unit stores in advance a model of a variation characteristic of an imaging characteristic due to absorption of an exposure energy beam of the projection optical system for each of a plurality of exposure conditions, and performs exposure by, for example, a double exposure method. In this case, as an example, based on the model obtained by averaging the models of the fluctuation characteristics according to the ratio of the irradiation energy amount under each exposure condition, the fluctuation of the imaging characteristics due to the irradiation of the exposure energy beam is corrected. It is desirable to do it. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態の一例で使用される投影露光装置を示す一部を 切り欠いた構成図である。 FIG. 1 is a partial view showing a projection exposure apparatus used in an example of an embodiment of the present invention. FIG.
第 2図は、 投影光学系の照明光吸収によリ発生する結像特性の変化の様子の説 明に供する図である。  FIG. 2 is a diagram for explaining a state of a change in imaging characteristics caused by absorption of illumination light of a projection optical system.
第 3図は、 二重露光法で露光する場合の 2枚のレチクルのパターン、 及び対応 する露光条件の説明図である。  FIG. 3 is an explanatory view of patterns of two reticles and corresponding exposure conditions when performing exposure by a double exposure method.
第 4図は、 その実施の形態において、 二重露光法で露光する場合の結像特性の 変動量のモデル _の係数の求め方の説明図である。  FIG. 4 is an explanatory diagram of how to obtain a coefficient of a model _ of a variation amount of an imaging characteristic when performing exposure by a double exposure method in the embodiment.
第 5図は、 その実施の形態において、 二重露光法で露光する場合の各露光条件 での結像特性の補正量 (変化量) を示す図である。  FIG. 5 is a diagram showing a correction amount (change amount) of an imaging characteristic under each exposure condition when performing exposure by a double exposure method in the embodiment.
第 6図は、 第 5図の最初の部分の結像特性の補正量 (変化量) を拡大して示す 図である。 発明を実施するための最良の形態  FIG. 6 is an enlarged view showing the correction amount (change amount) of the imaging characteristic in the first part of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態の一例につき図面を参照して説明する。  Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
第 1図は本例の投影露光装置を示し、 この第 1図において、 K r F (波長 2 4 FIG. 1 shows the projection exposure apparatus of this example. In FIG. 1, KrF (wavelength 24
8 n m ) 、 A r F (波長 1 9 3 n m) 、 又は F 2 (波長 1 5 7 n m ) 等のエキシマ レーザ光源よりなる露光光源 1から射出される露光エネルギービームとしての照 明光 I Lは、 照明光の断面形状を整形する整形光学系、 及び照度分布均一化用の フライアイレンズ等を含む照度均一化光学系 2に入射する。 なお、 露光光源 1 と しては、 水銀ランプや X線等も使用できる。 8 nm), A r F (wavelength 1 9 3 nm), or F 2 (irradiation Meiko IL as an exposure energy beam emitted from the exposure light source 1 consisting of an excimer laser light source 1 5 7 nm), etc. wavelengths, lighting The light is incident on a shaping optical system for shaping the cross-sectional shape of light, and an illuminance uniforming optical system 2 including a fly-eye lens for uniforming the illuminance distribution. Note that a mercury lamp, X-ray, or the like can be used as the exposure light source 1.
照度均一化光学系 2の射出面は、 転写対象のレチクル (第 1図ではレチクル R The exit surface of the illumination uniforming optical system 2 is the reticle to be transferred (reticle R in Fig. 1).
1 ) のパターン面に対する光学的フーリエ変換面 (瞳面) に相当しており、 その 射出面に、 レチクルに対する照明条件を切り換えるための種々の開口絞りが形成 されたターレット板 3が配置されている。 即ち、 ターレット板 3の回転軸の周囲 には、 通常照明を行うための円形の開口絞り、 コヒ一レンスファクタである σ値 を小さく設定するための小さい円形の開口絞り 3 a、 輪帯照明を行うための輪帯 状の開口絞り 3 b、 及び光軸を中心として配置された 4個の開口よりなる変形絞 リ等が配置されており、 装置全体の動作を統轄制御する主制御系 1 4が駆動モー タ 3 gを介してターレツト板 3を回転することで、 その射出面に所望の開口絞り が設置できるように構成されている。 なお、 タ一レット板 3の一例は、 特開平 9 — 2 6 5 5 4号公報 (米国特許第 5, 7 3 9, 8 9 9号) に開示されている。 照度均一化光学系 2から射出されて、 ターレツト板 3中の所定の開口絞りを通 過した照明光 I Lは、 更にリレーレンズ、 及び視野絞り等を含む光学系 4、 光路 折り曲げ用のミラ一 5、 並びにコンデンサレンズ 6を介して、 レチクル R 1のパ ターン面 (下面) の照明領域を照明する。 光学系 4内には、 照明光 I Lの一部を 分岐してその光量を検出するインテグレータセンサ 4 a、 及びレチクル側からの 反射光の光量を検出する反射率モニタ 4 b等も配置されている。 レチクル R 1の 照明領域内のパターンの像は、投影光学系 P Lを介して投影倍率^ ( は 1 Z 4, 1 / 5等) で半導体ウェハ (以下、 単に 「ウェハ」 と言う) Wの表面の露光領域 に転写される。 1) corresponds to the optical Fourier transform plane (pupil plane) for the pattern plane, and on the exit plane, a turret plate 3 on which various aperture stops for switching the illumination conditions for the reticle are formed is arranged. . That is, around the rotation axis of the turret plate 3, a circular aperture stop for normal illumination, a small circular aperture stop 3a for setting a small σ value as a coherence factor, and an annular illumination are provided. A ring-shaped aperture stop 3b for performing the operation, and a deformed stop composed of four apertures arranged around the optical axis are arranged. By rotating the turret plate 3 via the drive motor 3 g, the desired aperture stop It is configured so that it can be installed. An example of the turret plate 3 is disclosed in Japanese Patent Application Laid-Open No. 9-265554 (US Pat. No. 5,739,899). The illumination light IL emitted from the illuminance uniforming optical system 2 and having passed through a predetermined aperture stop in the turret plate 3 is further converted into an optical system 4 including a relay lens, a field stop, and the like, a mirror for bending the optical path 5 The illumination area on the pattern surface (lower surface) of the reticle R 1 is illuminated via the condenser lens 6. The optical system 4 also includes an integrator sensor 4a for branching a part of the illumination light IL and detecting the amount of the light, and a reflectance monitor 4b for detecting the amount of light reflected from the reticle side. . The image of the pattern in the illumination area of reticle R 1 is projected onto the surface of a semiconductor wafer (hereinafter simply referred to as “wafer”) W at a projection magnification of ^ (1 Z 4, 1/5, etc.) via projection optical system PL. Is transferred to the exposure area.
なお、照度均一化光学系 2や光学系 4などを含む照明系は、特開平 5— 1 0 2 0 0 3号公報 (米国特許第 5, 7 1 9, 7 0 4号) に開示されているようなロッド タイプのォプチカルインテグレータを含む照明系を用いてもよい。  Note that an illumination system including the illuminance uniforming optical system 2 and the optical system 4 is disclosed in Japanese Patent Application Laid-Open No. Hei 5-2010 (U.S. Pat. No. 5,719,704). An illumination system including a rod-type optical integrator as described above may be used.
投影光学系 P L内のレチクル R 1のパターン面に対する光学的フーリェ変換面 (瞳面) には、 不図示であるが可変開口絞りが設置され、 更に例えば特開平 5— 2 3 4 8 7号公報に開示されているような光軸を中心とする所定領域で照明光 を遮光するいわゆる遮光型の瞳フィルタ、 及び特開平 6— 1 2 4 8 7 0号公報に 開示されているような所定領域に位相部材が形成された位相フィルタ等も必要に 応じて設置できるように構成されている。 なお、 照度均一光学系 2の射出面は、 投影光学系 P Lの瞳面と光学的にほぼ共役な関係にあり、ターレット板 3の回転 により投影光学系 P Lの瞳面と光学的にほぼ共役な面内での光強度分布 (2次光 源) が変更されると、 投影光学系 P Lの瞳面での強度分布も変化する。また、 本例 のウェハ Wの表面には化学増幅型レジストが塗布され、 露光時にはその表面は投 影光学系 P Lの像面に合致するように保持される。 以下、 投影光学系 P Lの光軸 A Xに平行に Z軸を取り、 Z軸に垂直な平面内で第 1図の紙面に平行に X軸を取 り、 第 1図の紙面に垂直に Y軸を取って説明する。  A variable aperture stop (not shown) is provided on the optical Fourier transform plane (pupil plane) for the pattern surface of the reticle R1 in the projection optical system PL. A pupil filter of a so-called light-blocking type that blocks illumination light in a predetermined area centered on the optical axis as disclosed in Japanese Patent Application Laid-Open No. HEI 6-124870. A phase filter or the like in which a phase member is formed can be installed as needed. Note that the exit surface of the uniform illumination optical system 2 is almost optically conjugate with the pupil plane of the projection optical system PL, and is substantially optically conjugate with the pupil plane of the projection optical system PL due to the rotation of the turret plate 3. When the light intensity distribution (secondary light source) in the plane is changed, the intensity distribution on the pupil plane of the projection optical system PL also changes. In addition, a chemically amplified resist is applied to the surface of the wafer W in this example, and the surface is held so as to coincide with the image plane of the projection optical system PL during exposure. Hereinafter, the Z axis is taken parallel to the optical axis AX of the projection optical system PL, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is perpendicular to the plane of Fig. 1. Take and explain.
先ず、 レチクル R 1はレチクルホルダ 7上に吸着保持され、 レチクルホルダ 7 は Z方向に伸縮自在のピエゾ素子等からなる 3個の駆動素子 8 (第 1図では 2個 の駆動素子 8のみが現れている。 以下同様) を介してレチクルステージ R S T上 に載置され、 レチクルステージ R S Tは、 レチクルベース 9上に例えばリニアモ ータ方式で X方向、 Y方向、 回転方向に移動自在に載置されている。 駆動素子 8 の伸縮量は、 主制御系 1 4の制御のもとで結像特性制御系 1 6によって設定され る。 レチクルホルダ 7上の移動鏡、 及び外部のレーザ干渉計 1 0によってレチク ルステージ R S T (レチクル R ) の X座標、 Y座標、 及び回転角が計測され、 計 測値がレチクルステージ駆動系 1 1、 及び主制御系 1 4に供給され、 レチクルス テージ駆動系 1 1は、 その計測値及び主制御系 1 4からの制御コマンド等に基づ いてレチクルステージ R S Tの動作を制御する。 First, the reticle R 1 is sucked and held on the reticle holder 7, and the reticle holder 7 has three drive elements 8 (two in FIG. Only the driving element 8 appears. The reticle stage RST is mounted on the reticle base 9 movably in the X direction, the Y direction, and the rotation direction by, for example, a linear motor system. The amount of expansion and contraction of the drive element 8 is set by the imaging characteristic control system 16 under the control of the main control system 14. The moving mirror on the reticle holder 7 and the external laser interferometer 10 measure the X coordinate, Y coordinate, and rotation angle of the reticle stage RST (reticle R), and the measured values are used as the reticle stage drive system 11, The reticle stage drive system 11 is supplied to the main control system 14 and controls the operation of the reticle stage RST based on the measured values and control commands from the main control system 14.
また、 レチクルベース 9に近接して、 レチクル交換装置 1 2が設置されており、 レチクル交換装置 1 2の第 1のスライダ 1 3に第 2のレチクル R 2が載置され、 レチクル交換装置 1 2は、 主制御系 1 4からの制御コマンドに応じて不図示の第 2のスライダ、 及び第 1のスライダ 1 3を介してレチクルホルダ 7上のレチクル R 1を第 2のレチクル R 2と交換する。 その後、 レチクル交換装置 1 2によって レチクルホルダ 7上にはレチクル R 1とレチクル R 2とが交互に設置される。 本 例のレチクル R 1, R 2には二重露光用のパターンが形成されている(詳細後述)。 一方、ウェハ Wは不図示のウェハホルダを介して試料台 2 3上に吸着保持され、 試料台 2 3は、 例えばリニアモータ方式でウェハ Wを X方向、 Y方向に位置決め するウェハステージ W S T上に固定されている。 試料台 2 3には、 ウェハ Wの Z 方向の位置 (フォーカス位置) 、 及び傾斜角を所定範囲内で制御する Zレべリン グ駆動機構も備えられている。 試料台 2 3上の移動鏡、 及び外部のレーザ干渉計 2 5によって試料台 2 3 (ウェハ W) の X座標、 Y座標、 及び回転角が計測され、 計測値がウェハステージ駆動系 2 6、 及び主制御系 1 4に供給され、 ウェハステ —ジ駆動系 2 6は、 その計測値及び主制御系 1 4からの制御コマンド等に基づい てウェハステージ W S Tの動作を制御する。  In addition, a reticle exchanging device 12 is installed near the reticle base 9, and a second reticle R 2 is placed on the first slider 13 of the reticle exchanging device 12, and the reticle exchanging device 1 2 Replaces the reticle R 1 on the reticle holder 7 with the second reticle R 2 via the second slider (not shown) and the first slider 13 according to a control command from the main control system 14. . Thereafter, reticle R 1 and reticle R 2 are alternately set on reticle holder 7 by reticle exchange device 12. Reticles R 1 and R 2 in this example are formed with a pattern for double exposure, which will be described later. On the other hand, the wafer W is held by suction on a sample table 23 via a wafer holder (not shown), and the sample table 23 is fixed on a wafer stage WST for positioning the wafer W in the X and Y directions by, for example, a linear motor method. Have been. The sample stage 23 is also provided with a Z leveling drive mechanism for controlling the position (focus position) of the wafer W in the Z direction and the tilt angle within a predetermined range. The moving mirror on the sample stage 23 and the external laser interferometer 25 measure the X coordinate, Y coordinate, and rotation angle of the sample stage 23 (wafer W), and the measured values are used as the wafer stage drive system 26, The wafer stage drive system 26 is supplied to the main control system 14, and controls the operation of the wafer stage WST based on the measured values, control commands from the main control system 14, and the like.
露光時には、 レチクル R 1 (又はレチクル R 2 ) とウェハ W上の一つのショッ ト領域とを所定の位置関係で静止させた状態で、 レチクル R 1のパターンの像を 投影光学系 P Lを介してそのショット領域に露光した後、 ウェハステージ W S T をステップ移動してウェハ W上の次のショット領域を露光領域に移動して、 レチ クル R 1のパターンの像を露光するという動作がステップ · アンド · リピート方 式で繰り返されて、 ウェハ W上の各ショット領域への露光が行われる。 このよう に本例の投影露光装置は一括露光型 (ステッパー型) であるが、 本発明は特開平 6— 2 9 1 0 1 6号公報 (米国特許第 5, 7 2 1 , 6 0 8号) に開示されている ようなステップ · アンド ·スキャン方式のような走査露光型の投影露光装置にも 適用できる。 走査露光型の場合には、 レチクルステージ R S Tにも例えば Y方向 への連続移動機能が付与され、 走査露光時にはレチクルステージ R S T、 及びゥ ェハステージ W S Tを介して、 レチクル R 1 とウェハ Wとが Y方向に投影倍率 3 を速度比として同期走査される。 At the time of exposure, while the reticle R 1 (or reticle R 2) and one shot area on the wafer W are kept stationary in a predetermined positional relationship, an image of the pattern of the reticle R 1 is projected via the projection optical system PL. After exposing the shot area, the wafer stage WST is stepped and the next shot area on the wafer W is moved to the exposure area, The operation of exposing the image of the pattern of the circle R1 is repeated in a step-and-repeat manner, and each shot area on the wafer W is exposed. As described above, the projection exposure apparatus of this embodiment is of a batch exposure type (stepper type), but the present invention is disclosed in Japanese Patent Application Laid-Open No. 6-291106 (US Pat. No. 5,721,608). The present invention can also be applied to a scanning exposure type projection exposure apparatus such as a step-and-scan method as disclosed in (1). In the case of the scanning exposure type, the reticle stage RST is also provided with, for example, a function of continuously moving in the Y direction. The scanning is performed synchronously with the projection magnification 3 as the speed ratio.
上記の露光時にオートフォーカス方式でウェハ Wの表面を投影光学系 P Lの像 面に保持するために、 投影光学系 P Lの側面に、 露光領域近傍のウェハ Wの表面 の計測点に斜めにスリット像を投影する投射光学系 2 7と、 ウェハ Wの表面から の反射光を受光してそのスリット像を再結像することによって、 その計測点の像 面からのデフォーカス量に応じたフォーカス信号を出力する受光光学系 2 8と、 から構成される斜入射方式の焦点位置検出系 (以下、 「A Fセンサ 2 7, 2 8」 と呼ぶ) が配置されている。 A Fセンサ 2 7, 2 8のフォーカス信号は主制御系 1 4、 及びウェハステージ駆動系 2 6に供給され、 ウェハステージ駆動系 2 6は そのフォーカス信号が主制御系 1 4から設定される目標値 (初期値は 0 ) になる ように、 試料台 2 3中の Zレペリング駆動機構の動作を制御する。  In order to hold the surface of the wafer W on the image plane of the projection optical system PL by the autofocus method during the above exposure, a slit image is obliquely placed on the side of the projection optical system PL at a measurement point on the surface of the wafer W near the exposure area. The projection optical system 27 that projects the light, and the reflected light from the surface of the wafer W is received and the slit image is re-imaged, so that the focus signal corresponding to the defocus amount from the image plane at the measurement point is obtained. An oblique incidence type focus position detection system (hereinafter, referred to as “AF sensors 27, 28”) composed of an output light receiving optical system 28 and is provided. The focus signals of the AF sensors 27 and 28 are supplied to the main control system 14 and the wafer stage drive system 26, and the wafer stage drive system 26 has the target value whose focus signal is set from the main control system 14. The operation of the Z repelling drive mechanism in the sample stage 23 is controlled so that the initial value becomes 0.
以上のような、 複数の光学部品を含む照明系や投影光学系などを露光装置本体 に組み込んで光学調整を行うとともに、レチクルステージやウェハステージなど を露光装置本体に取付けて電気的、機械的に接続することにより、本例の投影露光 装置が製造される。  As described above, the illumination system and projection optical system including multiple optical components are incorporated into the exposure apparatus main body to perform optical adjustment, and the reticle stage and wafer stage are attached to the exposure apparatus main body to electrically and mechanically By connecting, the projection exposure apparatus of this example is manufactured.
次に、 本例の投影露光装置は、 ウェハ W上の或るレイヤに対して二重露光法で 所定の回路パターン像を露光するものとする。 その回路パターン像は、 一例とし て第 3図 ( a ) に示すように、 密集パターン像 3 2と孤立パターン像 3 3とが混 在するバタ一ン像であり、 各パターン像は遮光パターンに対応するものとする。 この場合、 密集パターンと孤立パターンとは互いに最適な露光条件 (照明系の開 口絞り、 投影光学系 P Lの開口数、 露光量等) が異なるため、 第 3図 ( a ) に対 応するレチクルパターンは、 第 3図 (b ) に示す第 1のレチクル R 1のパターン と、 第 3図 (d ) に示す第 2のレチクル R 2のパターンとに分解されている。 こ の場合、 第 1のレチクル R 1のパターンは、 密集パターン 3 2 A、 及び孤立バタ —ンを覆うための遮光パターン 3 3 Aより形成され、 第 2のレチクル R 2のバタ ーンは、 密集パターンを覆うための遮光パターン 3 2 B、 及び孤立パターン 3 3 Bより形成されている。 なお、 例えば密集パターン 3 2 Aには位相シフタを設け て、 レチクル R_ lを位相シフトレチクルとしてもよい。 Next, it is assumed that the projection exposure apparatus of this example exposes a certain circuit pattern image to a certain layer on the wafer W by a double exposure method. The circuit pattern image is, as an example, a butterfly image in which a dense pattern image 32 and an isolated pattern image 33 are mixed, as shown in FIG. 3 (a), and each pattern image is a light shielding pattern. Shall correspond. In this case, the dense pattern and the isolated pattern have mutually different optimal exposure conditions (such as the aperture stop of the illumination system, the numerical aperture of the projection optical system PL, and the exposure amount). The corresponding reticle pattern is decomposed into a first reticle R1 pattern shown in FIG. 3 (b) and a second reticle R2 pattern shown in FIG. 3 (d). In this case, the pattern of the first reticle R1 is formed by the dense pattern 32A and the light shielding pattern 33A for covering the isolated pattern, and the pattern of the second reticle R2 is The light-shielding pattern 32B for covering the dense pattern and the isolated pattern 33B are formed. Note that, for example, a phase shifter may be provided in the dense pattern 32A, and the reticle R_l may be a phase shift reticle.
そして、 ウェハ W上に第 1のレチクル R 1のパターン像を露光する場合には、 照明系の開口絞りとして第 3図 (c ) に示す輪帯状の開口絞り 3 bが使用され、 第 2のレチクル R 2のパターン像を露光する場合には、 その開口絞りとして第 3 図 (e ) に示す小 σ値用の開口絞り 3 aが使用される。 また、 第 1のレチクル R 1 と第 2のレチクル R 2とはパターン存在率、 ひいては照明光 I Lに対する透過 率が異なっているため、 どちらのレチクルを使用するかによって投影光学系 P L に対する入射エネルギーは変化する。  When the pattern image of the first reticle R1 is exposed on the wafer W, the annular aperture stop 3b shown in FIG. 3 (c) is used as the aperture stop of the illumination system, and the second When exposing the pattern image of the reticle R2, an aperture stop 3a for a small σ value shown in FIG. 3 (e) is used as the aperture stop. Also, since the first reticle R 1 and the second reticle R 2 have different pattern abundances and, consequently, transmittances for the illumination light IL, the incident energy to the projection optical system PL depends on which reticle is used. Change.
このように本例では二重露光法で露光が行われるが、 この場合にも投影光学系 P Lの周囲の温度等の環境条件、 及び投影光学系 P Lに対する入射エネルギー量 等によって投影光学系 P Lの結像特性は次第に変動する。 そこで、 本例の投影露 光装置には、 環境条件の測定センサ、 及び投影光学系 P Lに対する入射エネルギ —量の計測機構が設けられている。 即ち、 大気圧センサ、 温度センサ、 及び湿度 センサ等を含む環境センサ 3 0からの検出信号が信号処理装置 2 9を介して主制 御系 1 4に供給され、 主制御系 1 4ではその検出信号より投影光学系 P Lの周囲 の大気圧、 温度、 及び湿度を認識する。  As described above, in this example, the exposure is performed by the double exposure method, but also in this case, the projection optical system PL depends on environmental conditions such as the temperature around the projection optical system PL and the amount of energy incident on the projection optical system PL. The imaging characteristics change gradually. Therefore, the projection exposure apparatus of this example is provided with a sensor for measuring environmental conditions and a mechanism for measuring the amount of energy incident on the projection optical system PL. That is, a detection signal from an environment sensor 30 including an atmospheric pressure sensor, a temperature sensor, and a humidity sensor is supplied to a main control system 14 via a signal processing device 29, and the main control system 14 detects the detection signal. The atmospheric pressure, temperature, and humidity around the projection optical system PL are recognized from the signal.
また、 試料台 2 3上のウェハ W (ウェハホルダ) の近傍に光電検出器よりなる 照射量モニタ 2 4が設置され、 照射量モニタ 2 4の検出信号が主制御系 1 4に供 給されている。 照射量モニタ 2 4の受光面を投影光学系 P Lの露光領域に移動し て受光量を検出することによって、 投影光学系 P Lに対する実際の入射エネルギ An irradiation monitor 24 composed of a photoelectric detector is installed near the wafer W (wafer holder) on the sample table 23, and a detection signal of the irradiation monitor 24 is supplied to the main control system 14. . By moving the light receiving surface of the irradiation amount monitor 24 to the exposure area of the projection optical system PL and detecting the amount of received light, the actual incident energy to the projection optical system PL is obtained.
—量、 及びレチクル R 1 (又は R 2 ) の透過率 (パターン存在率) が計測できる。 また、 露光中であっても、 光学系 4内のインテグレ一タセンサを介して常時ゥェ ハ Wに対する露光量 (投影光学系 P Lに対する入射エネルギー) を間接的にモニ タできると共に、 光学系 4内の反射率モニタによってウェハ Wの反射率、 ひいて はウェハ Wで反射されて投影光学系 P Lに戻される照明光の光量も求めることが できるように構成されている。 —Amount and transmittance of reticle R 1 (or R 2) (pattern abundance) can be measured. Even during the exposure, the exposure amount to the wafer W (incident energy to the projection optical system PL) is constantly indirectly monitored via the integrator sensor in the optical system 4. And the reflectance monitor of the optical system 4 can be used to determine the reflectivity of the wafer W, and thus the amount of illumination light reflected by the wafer W and returned to the projection optical system PL. .
次に、 本例の投影露光装置の結像特性の補正機構につき説明する。 先ず、 レチ クル Rを光軸 A X方向へ駆動するための駆動素子 8は、 投影光学系 P Lがレチク ル側にテレセントリックの場合には、 対称的ディストーション成分の補正に用い られ、 投影光学系 P Lがレチクル側に非テレセントリックな場合には、 投影倍率 の補正に用いられる。 更に、 第 1図において、 投影光学系 P Lの鏡筒 1 8上にピ ェゾ素子等の Z方向に伸縮自在の 3個の駆動素子 1 9を介してレンズ枠 2 0内に レンズエレメント L 2が保持され、 レンズ枠 2 0上に Z方向に伸縮自在の 3個の 駆動素子 2 1を介してレンズ枠 2 2内にレンズエレメント L 1が保持されている。 駆動素子 1 9, 2 1の伸縮量は結像特性制御系 1 6によって制御されている。 こ のように投影光学系 P Lを構成するレンズエレメントの内、 レチクル R 1に近い レンズエレメント L 2, L 1をそれぞれ光軸 A X方向に移動すると共に、 所定範 囲で傾斜させることによって、 例えば投影倍率、 像面湾曲、 対称ディストーショ ン成分等の補正を行うことができる。  Next, a description will be given of a mechanism for correcting the imaging characteristics of the projection exposure apparatus of the present embodiment. First, when the projection optical system PL is telecentric on the reticle side, the drive element 8 for driving the reticle R in the optical axis AX direction is used for correcting a symmetric distortion component. If the reticle is non-telecentric, it is used to correct the projection magnification. Further, in FIG. 1, a lens element L 2 is inserted into a lens frame 20 via three driving elements 19 such as a piezo element which can be extended and contracted on a lens barrel 18 of the projection optical system PL. Is held, and a lens element L1 is held in the lens frame 22 via three drive elements 21 that can expand and contract in the Z direction on the lens frame 20. The expansion and contraction amounts of the driving elements 19 and 21 are controlled by an imaging characteristic control system 16. For example, by moving the lens elements L 2 and L 1 near the reticle R 1 in the direction of the optical axis AX and tilting them within a predetermined range, for example, the projection is performed. Correction of magnification, field curvature, symmetric distortion components, etc. can be performed.
更に、 投影光学系 P L内部の所定のレンズエレメント間の密閉空間 1 7の内部 の圧力を制御するためのベローズポンプ等の圧力可変部 1 5が設けられ、 結像特 性制御部 1 6は、 圧力可変部 1 5を介して密閉空間 1 7内の圧力を制御すること により、 例えば倍率、 コマ収差、 像面湾曲等を補正できる。 また、 投影光学系 P Lの像面 (ベストフォーカス位置) の変動量が予測できた場合には、 主制御系 1 4からウェハステージ駆動系 2 6に対して A Fセンサ 2 7 , 2 8で検出されるフ ォ一カス信号の目標値にその変動量分のオフセットを加算するように指令を発す ることで、 その像面の変動に対してウェハ Wの表面を追従させることが可能であ る。 これらの補正機構は補正が必要な項目 (自由度) に応じた数だけ用意する必 要がある。 また、 上記の収差が完全に独立には補正できない場合は、 各補正機構 の駆動量と対応する収差の変動量との組み合わせを連立方程式で表し、 この連立 方程式を解くことによって所望の収差の変動量 (補正量) を得るための各補正機 構の駆動量を求めればよい。 主制御系 1 4によって各収差 (結像特性) の補正量 が設定されるのに応じて、 結像特性制御系 1 6は対応する補正機構の駆動量を求 めて、 各補正機構を駆動する。 Further, a pressure variable section 15 such as a bellows pump for controlling the pressure inside the sealed space 17 between predetermined lens elements inside the projection optical system PL is provided, and the imaging characteristic control section 16 includes: By controlling the pressure in the closed space 17 via the pressure variable section 15, for example, magnification, coma aberration, field curvature and the like can be corrected. In addition, when the fluctuation amount of the image plane (best focus position) of the projection optical system PL can be predicted, the main control system 14 detects the wafer stage drive system 26 by the AF sensors 27 and 28. By issuing a command to add the offset corresponding to the variation to the target value of the focus signal, the surface of the wafer W can follow the variation of the image plane. It is necessary to prepare a number of these correction mechanisms corresponding to the items (degrees of freedom) that need to be corrected. If the above aberrations cannot be corrected completely independently, the combination of the driving amount of each correction mechanism and the corresponding variation amount of aberration is represented by a simultaneous equation. By solving this simultaneous equation, the desired variation of the aberration is obtained. The drive amount of each correction mechanism for obtaining the amount (correction amount) may be obtained. Correction amount of each aberration (imaging characteristics) by main control system 14 In response to the setting, the imaging characteristic control system 16 determines the drive amount of the corresponding correction mechanism and drives each correction mechanism.
次に、 照明光 I Lの吸収による投影光学系 P Lの結像特性の変動量を予測する ための計算方法について説明する。 主制御系 1 4は、 ウェハステージ W S T上の 照射量モニタ 2 4により投影光学系 P Lに入射する照明光 I Lのエネルギー量、 及びレチクル Rの透過率を測定する。 また、 より高精度に投影光学系 P Lを通過 する光束のエネルギー量をモニタする場合に、 主制御系 1 4は光学系 4中に設け られた反射率モニタ 4 bからの検出信号を用いて、 ウェハ Wで反射されて投影光 学系 P Lに戻る光束のエネルギー量を計算する。 また、 主制御系 1 4は、 例えば 光学系 4内のインテグレ一タセンサ 4 aの検出信号より、 どのタイミングで投影 光学系 P Lに照明光 I Lが入射したのか、 及び投影光学系 P Lに対する照明光 I Lの照射期間を認識できる。 投影光学系 P Lは照明光 I Lの吸収とその熱放射と のバランスにより内部の温度が変化していき、それに応じて結像特性が変化する。 第 2図は、 そのように投影光学系 P Lの結像特性が変化する様子を示し、 この 第 2図において、横軸は経過時間 t、縦軸は結像特性の変化量 Δ Ρを示している。 また、 実線の曲線 3 1 A及び 3 1 Bは、 それぞれ例えばレチクル R 1、 及び R 2 を使用する場合の結像特性の変化を表している。以下では、第 1のレチクル R 1、 及び第 2のレチクル R 2のパターンを露光する際の露光条件 (照明条件、 レチク ルのパターンの種類、 投影光学系 P Lの開口数、 投影光学系 P L内のフィルタの 種類;有無、 露光量等) をそれぞれ露光条件 A、 及び露光条件 Bと呼ぶ。 第 2図 の曲線 3 1 A, 3 I Bで示すように、 時点 t 0に投影光学系 P Lへの照明光 I L の照射が開始された後、 次第に結像特性が変化し、 更に継続して照射が行われる と次第に前記の吸収と放射とのバランスがとれて、 結像特性は一定の値に飽和す る。 また、 時点 t 1で照射を停止すると、 結像特性は次第に元の状態に戻る。 こ の場合、 露光条件 A及び Bでは、 照明条件も異なっているため、 全体では同じ入 射エネルギー量でも、 投影光学系 P L内での照明光の強度分布が異なるため、 曲 線 3 1 A, 3 I Bで表すように、 変化特性が異なっている。 この変化特性は予め 実験等で求めてあり、 結像特性の変動特性のモデルとして主制御系 1 4内の記憶 部に記憶されている。 結像特性の変化量 ΔΡは例えばべストフォーカス位置の変化量 (デフォーカス 量) 、 投影倍率 /3の誤差、 又はディストーションの量等であり、 露光条件 Α及び Bでの変化量 Δ Pをそれぞれ ΔΡ A及び ΔΡ Bとする。 そして、 露光条件 A及び Bでの時定数をそれぞれ τ A及びて B、 露光条件 A及び Bでの変化量 Δ Pの飽和 値をそれぞれ P A及び P Bとすると、 その変動特性のモデルの一例では、 変化量 △ P A及び ΔΡ Βがそれぞれ次のように時間 tの関数として表される。 なお、 以 下のモデルは、 第 2図において照射開始時点 t 0を 0として、 t O≤ t≤ t lの 間の変動を表している。 Next, a calculation method for estimating the amount of change in the imaging characteristics of the projection optical system PL due to the absorption of the illumination light IL will be described. The main control system 14 measures the energy amount of the illumination light IL incident on the projection optical system PL and the transmittance of the reticle R by the irradiation amount monitor 24 on the wafer stage WST. Also, when monitoring the energy amount of the light beam passing through the projection optical system PL with higher accuracy, the main control system 14 uses the detection signal from the reflectance monitor 4 b provided in the optical system 4 to Calculate the energy of the light beam reflected by the wafer W and returned to the projection optics PL. Further, the main control system 14 determines, for example, at what timing the illumination light IL is incident on the projection optical system PL based on the detection signal of the integrator sensor 4a in the optical system 4, and the illumination light IL for the projection optical system PL. Can be recognized. The internal temperature of the projection optical system PL changes due to the balance between the absorption of the illumination light IL and the heat radiation, and the imaging characteristics change accordingly. FIG. 2 shows how the imaging characteristics of the projection optical system PL change in such a manner. In FIG. 2, the horizontal axis represents the elapsed time t, and the vertical axis represents the variation Δ 結 of the imaging characteristics. I have. The solid curves 31A and 31B represent changes in the imaging characteristics when the reticles R1 and R2 are used, for example. The following describes the exposure conditions (illumination conditions, reticle pattern type, numerical aperture of the projection optical system PL, and the inside of the projection optical system PL) when exposing the patterns of the first reticle R 1 and the second reticle R 2. Filter type; presence / absence, exposure amount, etc.) are referred to as exposure condition A and exposure condition B, respectively. As shown by the curves 31 A and 3 IB in FIG. 2, after the irradiation of the projection optical system PL with the illumination light IL is started at time t0, the imaging characteristics gradually change, and the irradiation continues. As a result, the absorption and radiation are gradually balanced, and the imaging characteristics are saturated to a certain value. When the irradiation is stopped at time t1, the imaging characteristics gradually return to the original state. In this case, the illumination conditions are different under the exposure conditions A and B, and the intensity distribution of the illumination light in the projection optical system PL is different even with the same amount of incident energy as a whole. 3 As shown by IB, the change characteristics are different. This change characteristic is obtained in advance by an experiment or the like, and is stored in the storage unit in the main control system 14 as a model of the change characteristic of the imaging characteristic. The change amount ΔΡ of the imaging characteristic is, for example, the change amount (defocus amount) of the best focus position, the error of the projection magnification / 3, or the amount of distortion. The change amounts ΔP under the exposure conditions Α and B are respectively Let ΔΡ A and ΔΡ B. Then, assuming that the time constants under the exposure conditions A and B are τ A and B, respectively, and the saturation values of the variation ΔP under the exposure conditions A and B are PA and PB, respectively. The changes ΔPA and ΔΡ are each expressed as a function of time t as follows: The following model represents the variation between t O ≤ t ≤ tl with the irradiation start time t 0 as 0 in FIG.
△ PA-PA { 1 _exp(— 1 て A) } ( 1 A)  △ PA-PA {1 _exp (— 1 A)} (1 A)
△ P P B { 1— exp (- t Zて B) } ( 1 B) また、 第 2図において、 t 1 < tの間の変動特性のモデルは、 t = t 1での変 化量 Δ ΡΑ, ΔΡΒをそれぞれ PA 1, PB 1 とすると、 一例として次のように 表すことができる。 なお、 変動特性のモデルとしては、 経過時間 tに対するテー ブルのようなものを用いてもよい。  △ PPB {1— exp (− t Z B)} (1 B) In FIG. 2, the model of the fluctuation characteristic during t 1 <t is expressed as the change Δ ΡΑ, Let ΔΡΒ be PA 1 and PB 1, respectively, as an example. As a model of the fluctuation characteristic, a table such as a table for the elapsed time t may be used.
Δ P A= P A 1 - exp{- ( t - t 1 ) / τ A} ( 2 A)  Δ P A = P A 1-exp {-(t-t 1) / τ A} (2 A)
Δ P B = P B 1 · exp{- ( t - t 1 ) / τ B} ( 2 B)  Δ P B = P B 1exp {-(t-t1) / τB} (2B)
これらのモデルに対して、 照射開始からの経過時間 tを逐次代入することによ つて、 主制御系 1 4はその経過時間 tでの結像特性の変化量△ ΡΑ, Δ ΡΒを求 めることができる。 なお、 t 0 t≤ t 1の間の積算入射エネルギー量は、 経過 時間 tに比例するため、 その経過時間 tを積算入射エネルギー量に対応させるこ ともできる。  By successively substituting the elapsed time t from the irradiation start into these models, the main control system 14 obtains the change amounts △ ΡΑ and Δ の of the imaging characteristics at the elapsed time t. be able to. Since the cumulative incident energy during t 0 t ≤ t 1 is proportional to the elapsed time t, the elapsed time t can be made to correspond to the cumulative incident energy.
以上のように、 変動特性のモデルは、 1つの露光条件について 1つずつ別なも のが対応する。 これらの場合、 飽和値 PA, P Bは、 与えられたエネルギーに対 して変動量 (飽和レベルで) がどのくらい発生するかを表す係数 (通常、 ェネル ギ一量と変化量とは比例する) であり、 時定数 τΑ, て Βは変化の速さ (どのく らいの時間で飽和に達するか) を示す係数である。 また、 単位時間当たりの入射 エネルギー量 (照度) によって飽和値 ΡΑ, Ρ Β、 及び時定数て A, て Bの値は 変動するため、 それらの飽和値 PA, PB、 及び時定数 τΑ, て Βの値は例えば 照明光の照度の関数として記憶されている。 As described above, different models of the variation characteristics correspond to different exposure conditions one by one. In these cases, the saturation values PA and PB are coefficients (usually proportional to energy and change) that indicate how much variation (at saturation level) occurs for a given energy. The time constants τΑ and Β are coefficients that indicate the speed of change (how long it takes to reach saturation). In addition, since the saturation values ΡΑ, Β 及 び and the time constants A, B vary depending on the amount of incident energy (illuminance) per unit time, their saturation values PA, PB, and the time constant τΑ, Β The value of It is stored as a function of the illuminance of the illumination light.
更に、 環境センサ 3 0を介して検出される大気圧、 温度、 及び湿度等によって も投影光学系 P Lの結像特性が変動するため、 主制御系 1 4の記憶部にはそれら の環境条件の変化に対して結像特性の変化量を求めるための変動特性のモデルも 記憶されている。 そして、 主制御系 1 4は、 環境条件の変化に応じた結像特性の 変化量、 及び上記の入射エネルギー量に応じた結像特性の変化量の和を結像特性 制御系 1 6に供.給し、 結像特性制御系 1 6では供給された結像特性の変化量の和 を相殺するように駆動素子 8, 1 5, 1 9, 2 1のうちの少なくとも一つを介し て結像特性を補正する。 また、 デフォーカスの補正に関して主制御系 1 4は、 ゥ ェハステージ駆動系 2 6に対して A Fセンサ 2 7, 2 8のフォーカス信号の目標 値に対するオフセットを変更する。  Further, since the imaging characteristics of the projection optical system PL fluctuate depending on the atmospheric pressure, temperature, humidity, and the like detected through the environment sensor 30, the storage unit of the main control system 14 stores those environmental conditions. A variation characteristic model for obtaining the amount of change in the imaging characteristic with respect to the variation is also stored. Then, the main control system 14 supplies the change amount of the imaging characteristic according to the change of the environmental condition and the sum of the change amount of the imaging characteristic according to the incident energy amount to the imaging characteristic control system 16. In the imaging characteristic control system 16, imaging is performed via at least one of the driving elements 8, 15, 19, 21 so as to cancel the sum of the supplied changes in the imaging characteristics. Correct the image characteristics. Further, regarding the defocus correction, the main control system 14 changes the offset of the focus signals of the AF sensors 27 and 28 with respect to the target value with respect to the wafer stage drive system 26.
次に、 本例の投影露光装置で二重露光法で露光を行う場合の結像特性の補正動 作の一例につき説明する。 この場合、 本例ではウェハ上の化学増幅型レジストの 引き置き時間を短縮するために、 1ロット内の各ウェハに対してそれぞれ第 1の レチクル R 1のパターン像を露光条件 Aで露光する動作と、 第 2のレチクル R 2 のパターン像を露光条件 Bで露光する動作とが交互に繰り返される。 なお、 レチ クルの交換頻度を少なくして、 露光工程のスループットを高めるためには、 1枚 目のウェハの露光終了後にはレチクル交換を行うことなく、 2枚目のウェハに対 して先ず第 2のレチクル R 2のパターン像を露光し、 その後でレチクル交換を行 つて第 1のレチクル R 1のパターン像を露光し、 以下、 レチクル交換を各ウェハ への露光の中間時点で行うことが望ましい。  Next, an example of the operation of correcting the imaging characteristics when performing exposure by the double exposure method in the projection exposure apparatus of this embodiment will be described. In this case, in this example, the operation of exposing the pattern image of the first reticle R 1 to each wafer in one lot under the exposure condition A is performed in order to shorten the time for putting the chemically amplified resist on the wafer. And the operation of exposing the pattern image of the second reticle R 2 under the exposure condition B are alternately repeated. In order to reduce the frequency of reticle replacement and increase the throughput of the exposure process, after exposing the first wafer, the reticle must not be replaced after the first wafer has been exposed. Exposure of the pattern image of the second reticle R2, and then exchanging the reticle to expose the pattern image of the first reticle R1, and thereafter, it is desirable to perform the reticle exchange at an intermediate point of the exposure of each wafer. .
このように各ウェハに対して露光条件 A及び Bで順次露光すると、 結像特性は 2つの露光条件 A及び Bでの結像特性の変動特性が一定の割合で混じり合った特 性で変化するとみなすことができる。 但し、 露光条件 A, Bの結像特性が混じり 合った状態で投影光学系 P Lが照射されても、 露光条件 Aと Bとでは照明光 I L の通過位置が異なり、 露光条件 Aにとつての変化特性と、 露光条件 Bにとつての 変化特性とは異なるため、 露光条件 Aと Bとでは互いに別の係数 (飽和値、 及び 時定数) で結像特性の変化量の計算を行う必要がある。  As described above, when each wafer is sequentially exposed under the exposure conditions A and B, the imaging characteristics change when the fluctuation characteristics of the imaging characteristics under the two exposure conditions A and B are mixed at a constant rate. Can be considered. However, even if the projection optical system PL is irradiated in a state where the imaging characteristics of the exposure conditions A and B are mixed, the passing position of the illumination light IL is different between the exposure conditions A and B. Since the change characteristics are different from the change characteristics for exposure condition B, it is necessary to calculate the amount of change in the imaging characteristics using different coefficients (saturation value and time constant) for exposure conditions A and B. is there.
第 4図は、 露光条件 A, Bの結像特性が混じり合った状態とみなせる場合の、 露光条件 A及び Bのもとでの結像特性の変動量を示すモデルの係数の決定方法の 説明図であり、 第 4図において、 横軸は 2つの露光条件 A, Bでの全照射エネル ギー量に対する露光条件 Bの照射エネルギー量の比率 εである。 その照射エネル ギ一量は、 レチクルの透過率と、 レジストの露光条件により決定されるレチクル に対する照度 (光学系 4内でインテグレ一タセンサ 4 a によってモニタされる投 影光学系 P Lに対する単位時間当たりの入射エネルギー) と、 照射時間との積で あり、 露光条件 A及び Bでの照射エネルギー量をそれぞれ∑ E A及び∑ E Bとす ると、 比率 εは次のようになる。 Fig. 4 shows the case where it can be considered that the imaging characteristics of exposure conditions A and B are mixed. FIG. 4 is an explanatory diagram of a method of determining a coefficient of a model indicating a variation amount of an imaging characteristic under exposure conditions A and B. In FIG. 4, a horizontal axis indicates a total irradiation energy under two exposure conditions A and B. The ratio ε of the amount of irradiation energy under the exposure condition B to the amount of energy. The irradiation energy is determined by the transmittance of the reticle and the illuminance on the reticle determined by the exposure conditions of the resist (per unit time with respect to the projection optical system PL monitored by the integrator sensor 4a in the optical system 4). Incident energy) and the irradiation time. If the irradiation energy amounts under the exposure conditions A and B are ∑EA and ∑EB, respectively, the ratio ε is as follows.
ε =∑ Ε Βノ (∑ Ε Α +∑ Ε Β ) ( 3 )  ε = ∑ ∑ Ε ノ (∑ Ε Α + ∑ Ε Β) (3)
この比率 εは、 第 1図の照射量モニタ 2 4の出力、 及び露光シーケンスを決め るパラメ一タ (例えば、 露光量、 ショット数等) により計算できる。 あるいは、 ウェハ Wの代わりに照射量モニタ 2 を露光領域に設定して、 上記の二重露光動 作を実際に行って、 即ちダミーの露光シーケンスを実行することによって、 照射 量モニタ 2 4の出力の積算値の実測値から求めることも可能である。  The ratio ε can be calculated from the output of the dose monitor 24 in FIG. 1 and parameters (eg, the dose, the number of shots, etc.) that determine the exposure sequence. Alternatively, by setting the dose monitor 2 in the exposure area instead of the wafer W and actually performing the above-described double exposure operation, that is, by executing a dummy exposure sequence, the output of the dose monitor 24 is obtained. It is also possible to obtain from the actually measured value of the integrated value.
また、 第 4図の左側の縦軸は露光条件 Αでの係数 k A、 右側の縦軸は露光条件 Bでの係数 k Bを表し、 実線の曲線 3 4 A及び 3 4 Bがそれぞれ係数 k A及び k Bを表している。 係数 k A, k Bとは、 例えば第 2図を参照して説明した飽和値 P A, P B ( ( 1 A ) 式、 ( 1 B ) 式参照) を照明光の照度から求めるための比 例係数である。 この場合、 比率 εが 0の場合の露光条件 Aでの係数 k Aの値 k A oは、 1ロットのウェハに対して露光条件 Aのみで連続的に露光を行う場合の、 結像特性の変動特性を表す係数であり、 比率 εが 1の場合の露光条件 Bでの係数 k Βの値 k Β 0は、 1ロットのウェハに対して露光条件 Βのみで連続的に露光を 行う場合の、 結像特性の変動特性を表す係数である。 Also, the vertical axis on the left side of FIG. 4 represents the coefficient k A under the exposure condition Α, and the vertical axis on the right side represents the coefficient k B under the exposure condition B, and the solid curves 34 A and 34 B correspond to the coefficient k A and kB are shown. The coefficients k A and k B are, for example, proportional coefficients for obtaining the saturation values PA and PB (see equations (1A) and (1B)) described with reference to FIG. 2 from the illuminance of the illumination light. It is. In this case, the value k A o of the coefficient k A under the exposure condition A when the ratio ε is 0 is the value of the imaging characteristic in the case where one lot of wafers are continuously exposed only under the exposure condition A. The value of the coefficient k Β 0 under the exposure condition B when the ratio ε is 1 is the coefficient representing the fluctuation characteristics. Are coefficients representing the fluctuation characteristics of the imaging characteristics.
そして、 各ウェハ毎に二重露光が行われる 0 < ε < 1の範囲では、 露光条件 A 及び Bの影響が混じり合うと共に、 本例では一例として露光条件 Bの方が同じ照 射エネルギーでも変化率が大きいため、 比率 εが 0から大きくなるに従って曲線 In the range of 0 <ε <1, where the double exposure is performed for each wafer, the effects of exposure conditions A and B are mixed, and in this example, exposure condition B changes even with the same irradiation energy as an example. Because the ratio is large, the curve increases as the ratio ε increases from 0.
3 4 Αで示すように露光条件 Αでの係数 k Αは次第に大きくなる。 逆に、 比率 ε が 1から小さくなるに従って曲線 3 4 Βで示すように露光条件 Βでの係数 k Βは 次第に小さくなる。 この場合、 例えばシミュレーション等によって、 比率 εが 1 に近いときの係数 k Aの値 k Ai、 及び比率 εが 0に近いときの係数 k Βの値 k を求めておいてもよい。 例えば値 は、 露光条件 Bの影響を大きく受けた 場合の露光条件 Aのもとでの変化量を示す係数であり、 0<ε < 1の範囲での係 数 kA, k Bは、 2つの露光条件 A, Bの影響が混じり合った平均的な係数とみ なすことができる。 As shown by 4, the coefficient k 露 光 under the exposure condition Α gradually increases. Conversely, as the ratio ε decreases from 1, the coefficient k 露 光 under the exposure condition Β gradually decreases as shown by the curve 34 Β. In this case, the ratio ε is 1 The value k Ai of the coefficient k A when it is close to, and the value k of the coefficient k と き when the ratio ε is close to 0 may be obtained in advance. For example, the value is a coefficient indicating the amount of change under exposure condition A when greatly affected by exposure condition B. The coefficients kA and kB in the range of 0 <ε <1 are two It can be regarded as an average coefficient in which the effects of exposure conditions A and B are mixed.
そして、 曲線 34 Aは、 近似的には、 ε = 1で、 係数 k Αの値が係数 k Βに対 して (kAi— k B。) だけ大きくなるように、 即ち各 εに対して kA0に (kAi -k Α0) · εを加算した値を対応させて求めてもよい。 同様に、 曲線 34 Βは、 近似的には、 ε = 0で、 係数 k Βの値が係数 k Αに対して (kAo—k Bi) だけ 小さくなるように、 即ち各 εに対して k B。から (k B。一 k Bj · ( 1— ε ) を減算した値を対応させて求めてもよい。 このように係数 kA, k Bの値を算出 することを、 ここでは平均的に係数を求めるとみなす。 Curve 34A is approximately such that ε = 1 and the value of the coefficient k な る is larger by (kAi-kB.) With respect to the coefficient k 即 ち, that is, kA for each ε The value obtained by adding (kAi−kΑ0) · ε to 0 may be obtained in association with the value. Similarly, the curve 34 Β is approximately such that ε = 0 and the value of the coefficient k Β is smaller than the coefficient k k by (kAo−k Bi), ie, k B for each ε . The value obtained by subtracting (k B. 1 k Bj · (1− ε) from the above may be obtained in association with the above. Calculating the values of the coefficients kA and k B in this way means that the coefficients are averaged here. Consider asking.
又は、 より正確に曲線 34 A, 34 Bの特性を求めるために、 予め比率 εを 0 〜 1まで所定ステップで変えながら露光実験を行って係数 k A, k Bの値を確認 し、 この結果より曲線 34A, 34 Bの特性を比率 εに関する関数 (例えば二次 関数等) 、 又は比率 εの所定ステップ毎のテーブルとして求めてもよい。 この場 合には、 その関数、 又はテーブルを主制御系 1 4内の記憶部に記憶しておき、 二 重露光時に比率 εより係数 k Α及び k Βの値を求めればよい。 また、 第 4図の係 数 kA, k Bは飽和値 PA, P Bを求めるための係数であるが、 時定数て A, て Bについても第 4図の曲線 3 A, 3 Bと同様の特性を求めておけばよい。 次に、 第 5図及び第 6図を参照して二重露光時の結像特性の補正動作につき説 明する。第 5図は、第 1図の投影光学系 P Lが十分冷却状態にある時点 t Sより、 露光条件 A, Bを交互に繰り返しながら二重露光する場合を示し、 この第 5図に おいて、 横軸は経過時間 t、 縦軸は結像特性の補正量 Cの絶対値を表している。 この場合、 補正量 Cは、 結像特性の変化量 Δ Ρに対して絶対値が同じで符号が逆 の値である。 また、 ウェハ 1枚当たり、 1回ずっレチクル交換を行いながら二重 露光する方法であるため、 露光条件 Aで露光する期間 T Aと露光条件 Bで露光す る期間 TBとがほぼ一定周期で交互に繰り返されている。 この場合の露光条件 A と露光条件 Bとの照射エネルギー量の比率 εを ε Xであるとする。 このとき、 主 制御系 14は、 記憶してある第 4図の曲線 34 A, 34 Bの特性から、 比率 ε x での露光条件 A及び Bでの係数 k A, k Bの値 kAx, k Bxを求める。 同様に、 時定数の係数についても比率 ε Xから求める。 Alternatively, in order to more accurately obtain the characteristics of the curves 34A and 34B, an exposure experiment is performed while changing the ratio ε in a predetermined step from 0 to 1 in advance to confirm the values of the coefficients kA and kB. The characteristics of the curves 34A and 34B may be obtained as a function (for example, a quadratic function or the like) relating to the ratio ε, or a table for each predetermined step of the ratio ε. In this case, the function or the table may be stored in the storage unit in the main control system 14, and the values of the coefficients kΑ and k よ り may be obtained from the ratio ε during the double exposure. The coefficients kA and kB in Fig. 4 are the coefficients for obtaining the saturation values PA and PB, but the time constants A and B are the same as the curves 3A and 3B in Fig. 4. You should ask for. Next, with reference to FIGS. 5 and 6, a description will be given of the operation of correcting the imaging characteristics at the time of double exposure. FIG. 5 shows a case where double exposure is performed while the exposure conditions A and B are alternately repeated from the time point t S when the projection optical system PL in FIG. 1 is sufficiently cooled. The horizontal axis represents the elapsed time t, and the vertical axis represents the absolute value of the correction amount C of the imaging characteristic. In this case, the correction amount C is a value having the same absolute value and the opposite sign to the change amount Δ Ρ of the imaging characteristic. In addition, since double exposure is performed while exchanging the reticle once per wafer, the exposure period TA under the exposure condition A and the exposure period TB under the exposure condition B alternate alternately at a substantially constant cycle. Has been repeated. In this case, the ratio ε of the irradiation energy amount between the exposure condition A and the exposure condition B is εX. At this time, The control system 14 obtains the values kAx and kBx of the coefficients kA and kB under the exposure conditions A and B at the ratio εx from the stored characteristics of the curves 34A and 34B in FIG. Similarly, the time constant coefficient is obtained from the ratio ε X.
これらの係数よリ主制御系 14は、 例えば ( 1 Α) 式〜 (2 Β) 式で示す変動 特性のモデルによって、 期間 Τ Αの露光条件 Αでの結像特性の変化量 ΔΡΑ、 及 び期間 Τ Βの露光条件 Βでの結像特性の変化量 Δ Ρ Βを逐次計算で求めている。 第 5図において、 露光条件 Α及び Βでの結像特性の変化量 Δ ΡΑ、 及び ΔΡΒは それぞれ実線の曲線 35 Α及び 35 Bで表されている。 投影光学系 PLが全く冷 却状態であっても (t = t S) 、 露光条件 A, Bによって投影光学系 P L中の光 路が異なるため、 結像特性の変化量 ΔΡ (ΔΡΑ, ΔΡΒ) の値は微妙に異なつ ており、 その結果として補正量 Cも微妙に異なっている。  Based on these coefficients, the main control system 14 determines the amount of change ΔΡΑ in the imaging characteristic under the exposure condition 期間 during the period Τ モ デ ル by using the model of the variation characteristic represented by the equations (1Α) to (2Β), for example. The change amount Δ Ρ 像 of the imaging characteristic under the exposure condition Β of the period Τ で is sequentially calculated. In FIG. 5, the change amounts Δ 結 and ΔΡΒ of the imaging characteristics under the exposure conditions Α and Β are represented by solid-line curves 35 Α and 35 B, respectively. Even when the projection optical system PL is in a completely cooled state (t = tS), the optical path in the projection optical system PL varies depending on the exposure conditions A and B, so that the amount of change in the imaging characteristics ΔΡ (ΔΡΑ, ΔΡΒ) Are slightly different, and as a result, the correction amount C is also slightly different.
そして、 主制御系 14は、 期間 TAでは露光条件 Aのもとで算出した変化量△ Then, in the period TA, the main control system 14 calculates the change amount も と calculated under the exposure condition A.
P Aを相殺するように補正量 Cの値を設定し、 期間 TBでは露光条件 Bのもとで 算出した変化量 Δ P Bを相殺するように補正量 Cの値を設定する。 これにより、 各露光条件で結像特性の変化量が異なっても、 結像特性の変化量を常時適正に補 正できるようになる。 The value of the correction amount C is set so as to offset P A, and in the period TB, the value of the correction amount C is set so as to offset the change amount ΔP B calculated under the exposure condition B. Thus, even if the amount of change in the imaging characteristics differs under each exposure condition, the amount of change in the imaging characteristics can always be properly corrected.
次に、 第 6図を参照しながら、 露光条件 A, Bが交互に切り換えられているの にも関わらず、 それぞれの露光条件では第 4図で定まる 1組の係数 kAx, k B x等を求める計算で済むことの説明を行う。 第 6図は、 第 5図の露光条件 Aの曲 線 35 Aの最初の部分に対応する部分の拡大図であり、 この第 6図において、 実 線の曲線 36 Aは露光条件 Aのもとでの実際の結像特性の変化量 ΔΡ Aを示して おり、 変化量 ΔΡΑは、 露光条件 Aで露光される期間 T Aでは変化が大きく、 露 光条件 Bで露光される期間 TBでは変化が小さい。 また、 曲線 36 Aが期間 TA と期間 TBとの境界部の期間 TC 1, TC 2で低下しているのは、 レチクル交換 時間、 又はウェハ交換時間に相当して照明光が照射されていない状態を示してい る。 第 5図では、 このように変化量 ΔΡが低下している部分は省略している。 理 想的には、 この実線の曲線 36 Aの変化に応じて補正すべきであるが、 2つの露 光条件 A , Bが混じつた状態を厳密に計算するのは困難である。  Next, referring to FIG. 6, a set of coefficients kAx, kBx, etc. determined in FIG. 4 are determined for each exposure condition, even though the exposure conditions A and B are alternately switched. A description will be given of the fact that the required calculation is sufficient. FIG. 6 is an enlarged view of a portion corresponding to the first part of the curved line 35A of the exposure condition A in FIG. 5, and in FIG. Shows the actual amount of change Δ 結 A in the imaging characteristics, and the amount of change ΔΡΑ is large during the exposure period TA under the exposure condition A, and small during the exposure period TB under the exposure condition B. . Also, the curve 36A decreases in the period TC1 and TC2 at the boundary between the period TA and the period TB when the illumination light is not irradiated for the reticle exchange time or the wafer exchange time. Is shown. In FIG. 5, the portion where the variation ΔΡ is reduced is omitted. Ideally, it should be corrected according to the change of the solid curve 36A, but it is difficult to calculate exactly the state where the two exposure conditions A and B are mixed.
これに対して、 第 6図の点線の曲線 37 Aは、 第 4図に示すように露光条件 A 及び Bの平均的な係数に従って計算した結像特性の変化量 Δ Ρ Α (この符号を反 転したものが結像特性の補正量 Cとなる) を示す。 また、 期間 T Bでは、 第 5図 の曲線 3 5 Bに基づいて結像特性の補正量 Cが決定される。 本例では、 結像特性 の変化の時定数に比べて十分短い間隔で露光条件 A, Bが切り換えられるので、 補正誤差 (曲線 3 6 Aと曲線 3 7 Aとの差) は十分小さく問題にならない。 この ように本例によれば、 1枚のウェハ毎にレチクル交換を行って二重露光法で露光 を行う場合にも、 投影光学系 P Lに対する入射エネルギーや環境条件の変化に基 づく結像特性の変化量を高精度に補正できる。 On the other hand, the dotted curve 37A in FIG. And the change amount Δ Ρ の of the imaging characteristic calculated according to the average coefficient of B and B (the inverse of this sign becomes the correction amount C of the imaging characteristic). In the period TB, the correction amount C of the imaging characteristic is determined based on the curve 35B in FIG. In this example, the exposure conditions A and B are switched at a sufficiently short interval compared to the time constant of the change in the imaging characteristics, so that the correction error (the difference between the curves 36A and 37A) is sufficiently small to cause a problem. No. As described above, according to this example, even when the reticle is replaced for each wafer and the exposure is performed by the double exposure method, the imaging characteristics based on the change in the incident energy to the projection optical system PL and the environmental conditions are changed. Can be corrected with high accuracy.
また、 第 6図において、 時点 t Sから始まる期間 T A ( T A 1 ) 内では 1枚目 のウェハに対して第 1のレチクル R 1のパターン像が露光され、 次の期間 T B内 の前半の期間 T B 1では 1枚目のウェハに対して第 2のレチクル R 2のパターン 像が露光されている。 そして、 期間 T Bの後半の期間 T B 2では 2枚目のウェハ に対して第 2のレチクル R 2のパターン像が露光され、 次の期間 T A内の前半の 期間 T A 2では 2枚目のウェハに対して第 1のレチクル R 1のパターン像が露光 されている。 そして、 後半の期間 T A 3では 3枚目のウェハに対して第 1のレチ クル R 1のパターン像が露光され、 以下、 各ウェハの露光の中間でレチクル交換 が行われている。  In FIG. 6, the pattern image of the first reticle R1 is exposed on the first wafer during the period TA (TA1) starting from the time point tS, and the first half of the next period TB is performed. In TB1, the pattern image of the second reticle R2 is exposed on the first wafer. Then, in the second half of the period TB, the pattern image of the second reticle R2 is exposed on the second wafer in the second period TB2, and in the first half of the next period TA, the second wafer is exposed in the second period TA2. On the other hand, the pattern image of the first reticle R1 has been exposed. Then, in the latter half period TA3, the pattern image of the first reticle R1 is exposed on the third wafer, and thereafter, the reticle is exchanged in the middle of the exposure of each wafer.
半導体などのデバイスは、デバイスの機能 ·性能設計を行うステツプ、 この設計 ステツプに基づいたレチクルを製作するステツプ、 シリコン材料からウェハを製 作するステップ、前述した実施例の露光装置によリレチクルのパターンをウェハ に露光するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング 工程、 パッケージ工程を含む) 、 検査ステップ等を経て製造される。  For a device such as a semiconductor, a step for designing the function and performance of the device, a step for manufacturing a reticle based on the design step, a step for manufacturing a wafer from a silicon material, a pattern of a reticle by the exposure apparatus of the above-described embodiment. It is manufactured through a step of exposing the wafer to a wafer, a step of assembling devices (including a dicing step, a bonding step, and a package step), and an inspection step.
また、 上記の実施の形態では、 二重露光を行うために、 2枚のレチクル R l, R 2を用意しているが、 例えば 1枚のレチクルの右半面に第 1のパターン、 左半 面に第 2のパターンを描画しておき、 これら第 1、 及び第 2のパターンを交互に 露光するようにしてもよい。  In the above embodiment, two reticles Rl and R2 are prepared for performing double exposure. For example, the first pattern and the left half of the reticle are provided on the right half of one reticle. Alternatively, the second pattern may be drawn in advance, and the first and second patterns may be alternately exposed.
また、 上記の実施の形態は、 切り換える露光条件は条件 A, Bの 2条件であつ たが、 それが 3個以上の露光条件になっても同様に適用が可能である。 即ち、 3 個の露光条件の場合、 第 4図を 3次元のグラフとして、 3個の露光条件の相互の 照射エネルギー量の比率から結像特性の変化量を示す係数を求めればよい。 In the above embodiment, the exposure conditions to be switched are the two conditions A and B, but the same can be applied even when the number of exposure conditions becomes three or more. In other words, in the case of three exposure conditions, FIG. A coefficient indicating the amount of change in the imaging characteristics may be obtained from the ratio of the amount of irradiation energy.
また、 上記の実施の形態を簡素化して適用することも可能である。 例えば、 第 5図の露光条件 Aの曲線 3 5 Aと露光条件 Bの曲線 3 5 Bとの差があまりない場 合、 両者の曲線 3 5 A, 3 5 Bの中間的な係数 1種類のみで変化量 Δ Ρを計算し て、 露光条件 A, B共に同じ補正を行うことも考えられる。 この場合、 主制御系 1 4の計算の負荷が軽くなリ、 かつ係数の管理も容易になる。  Further, it is also possible to simplify and apply the above embodiment. For example, if there is not much difference between the curve 35 A of the exposure condition A and the curve 35 B of the exposure condition B in FIG. 5, only one kind of an intermediate coefficient between the curves 35 A and 35 B is used. It is conceivable to calculate the amount of change Δ で and perform the same correction for both exposure conditions A and B. In this case, the calculation load of the main control system 14 is reduced, and the management of the coefficients is facilitated.
また、 第 5図の曲線 3 5 A, 3 5 Bを直線で近似して結像特性の補正を行って ちょい。  Also, adjust the imaging characteristics by approximating the curves 35A and 35B in Fig. 5 with straight lines.
更に別の簡素化の例として、露光条件 Aでの露光時は露光条件 Aが 1 0 0 % (第 4図の ε = 0 ) の計算式で変化量を計算し、 露光条件 Βでの露光時は露光条件 Β が 1 0 0 % (第 4図の ε = 1 ) の計算式で変化量を計算し、 補正量は、 2つの露 光条件の和を使うことも考えられる。 この方式では、 2つの露光条件の混じり合 いの効果は無視してお互いに独立に計算して単に加算するだけで、 第 5図のダラ フを考える必要がない。 この方法は、 混じり合いによる影響が小さいときは、 計 算の負荷、 係数の設定負荷が少ないので有効である。  As another example of simplification, when exposing under exposure condition A, the amount of change is calculated using the formula of exposure condition A of 100% (ε = 0 in Fig. 4), and exposure under exposure condition Β In such a case, the amount of change is calculated using a calculation formula where the exposure condition 1 is 100% (ε = 1 in Fig. 4), and the correction amount may be the sum of the two exposure conditions. In this method, the effects of the mixture of the two exposure conditions are ignored, and they are calculated independently of each other and simply added, without having to consider the Daraf in FIG. This method is effective when the influence of mixing is small because the calculation load and the coefficient setting load are small.
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得ることは勿論である。 産業上の利用可能性  It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. Industrial applicability
本発明の露光方法によれば、 露光条件の切り換え動作に応じて投影光学系の結 像特性を補正しているため、 複数の露光条件を交互に切り換えながら多重露光す るような場合に、 露光工程のスループットを低下させることなく、 結像特性の変 動を抑えて所望の結像状態を正確に維持できる利点がある。  According to the exposure method of the present invention, since the imaging characteristics of the projection optical system are corrected in accordance with the switching operation of the exposure conditions, the exposure is performed when multiple exposures are performed while the plurality of exposure conditions are alternately switched. There is an advantage that a desired imaging state can be accurately maintained by suppressing a change in imaging characteristics without reducing the throughput of the process.
また、 複数の露光条件のそれぞれの露光時間の比率に応じて投影光学系の結像 特性を補正する場合には、 簡単な計算を行うだけで容易に結像特性の変動を抑え ることができる。  In addition, when correcting the imaging characteristics of the projection optical system according to the ratio of the respective exposure times of a plurality of exposure conditions, fluctuations in the imaging characteristics can be easily suppressed by performing a simple calculation. .
また、 マスクパターンを複数用意し、 これら複数のマスクパターンの像を互い に異なる露光条件で基板上の同一の感応層に露光する場合には、 1枚の基板 (ゥ ェハ) 毎にマスク (レチクル) のパターンを交換しながら多重露光を行うような 場合でも、 投影光学系での露光エネルギービームの吸収による結像特性の変動を 正確に補正できる利点がある。 Also, when a plurality of mask patterns are prepared and the images of the plurality of mask patterns are exposed to the same sensitive layer on the substrate under mutually different exposure conditions, a mask (a wafer) is provided for each substrate (wafer). Such as performing multiple exposure while changing the pattern of the reticle) Even in this case, there is an advantage that the fluctuation of the imaging characteristic due to the absorption of the exposure energy beam in the projection optical system can be accurately corrected.
また、 露光条件が、 露光エネルギービームの照明条件、 投影光学系の開口数、 及びマスクのパターンの種類の何れかである場合には、 結像特性に対する影響の 大きい露光条件が考慮されるため、結像特性の変動をより正確に補正できる。 ま た、 複数の異なる露光条件で露光する際に、 それぞれの露光条件で投影光学系に 入射する露光エネルギービームの量の比率に応じて投影光学系の結像特性を補正 する場合には、 結像特性の変動をより正確に補正できる。  Further, when the exposure condition is any one of the illumination condition of the exposure energy beam, the numerical aperture of the projection optical system, and the type of the mask pattern, the exposure condition having a large influence on the imaging characteristics is considered. Fluctuations in the imaging characteristics can be corrected more accurately. Further, when performing exposure under a plurality of different exposure conditions, when correcting the imaging characteristics of the projection optical system according to the ratio of the amount of the exposure energy beam incident on the projection optical system under each exposure condition, Variations in image characteristics can be corrected more accurately.
次に、本発明の露光装置によれば、本発明の露光方法を使用できる利点がある。  Next, according to the exposure apparatus of the present invention, there is an advantage that the exposure method of the present invention can be used.

Claims

請 求 の 範 囲 The scope of the claims
1 .マスクパターンの像で投影光学系を介して基板を露光する露光方法において、 前記基板上のある一つのレイヤに対して複数の異なる露光条件を順次切り換え て露光を行うに際して、 前記露光条件の切り換えを考慮して前記投影光学系の結 像特性を補正することを特徴とする露光方法。 1. An exposure method for exposing a substrate via a projection optical system with an image of a mask pattern, wherein when performing exposure by sequentially switching a plurality of different exposure conditions to a certain layer on the substrate, An exposure method, wherein the imaging characteristic of the projection optical system is corrected in consideration of switching.
2 . 前記複数の異なる露光条件で露光する際に、 それぞれの露光条件で前記投影 光学系に入射する露光ビームのエネルギー量の比率に応じて前記投影光学系の結 像特性を補正することを特徴とする請求の範囲第 1項記載の露光方法。  2. When performing exposure under the plurality of different exposure conditions, the imaging characteristic of the projection optical system is corrected according to the ratio of the energy amount of the exposure beam incident on the projection optical system under each exposure condition. The exposure method according to claim 1, wherein:
3 . 前記複数の露光条件のそれぞれの露光時間の比率に応じて前記投影光学系の 結像特性を補正することを特徴とする請求の範囲第 2項記載の露光方法。  3. The exposure method according to claim 2, wherein an imaging characteristic of the projection optical system is corrected according to a ratio of each exposure time of the plurality of exposure conditions.
4 . 前記複数の異なる露光条件それぞれでの前記投影光学系に入射する露光ビー ムのエネルギー量の比率に応じて、前記結像特性の変化を求めるためのパラメ一 タを決定する請求の範囲第 2項記載の露光方法。  4. A parameter for determining a change in the imaging characteristic is determined according to a ratio of an energy amount of an exposure beam incident on the projection optical system under each of the plurality of different exposure conditions. The exposure method according to item 2.
5 . 前記投影光学系に入射する露光ビームは前記基板からの反射ビームを含むこ とを特徴とする請求の範囲第 2項記載の露光方法。  5. The exposure method according to claim 2, wherein the exposure beam incident on the projection optical system includes a reflected beam from the substrate.
6 . 前記マスクパターンを複数用意し、 該複数のマスクパターンの像を互いに異 なる露光条件で前記基板上のレイヤに露光することを特徴とする請求の範囲第 1 項記載の露光方法。  6. The exposure method according to claim 1, wherein a plurality of the mask patterns are prepared, and an image of the plurality of mask patterns is exposed to a layer on the substrate under different exposure conditions.
7 . 前記複数のマスクパターンのうちの第 1マスクパターンを用いて前記基板上 の複数の部分領域のそれぞれを露光した後に、 前記第 1マスクパターンとは異な る第 2マスクパターンを用いて前記複数の部分領域のそれぞれを露光することを 特徴とする請求の範囲第 6項記載の露光方法。  7. After exposing each of the plurality of partial regions on the substrate using a first mask pattern of the plurality of mask patterns, the plurality of partial regions are exposed using a second mask pattern different from the first mask pattern. 7. The exposure method according to claim 6, wherein each of the partial regions is exposed.
8 . 前記露光条件は、 前記マスクパターンに対する露光ビームの照明に関する条 件、 前記投影光学系の開口数に関する条件、 前記マスクパターンの種類に関する 条件、及び前記投影光学系内の光学フィルタに関する条件のうちの少なくとも 1 つを含むことを特徴とする請求の範囲第 1項記載の露光方法。  8. The exposure condition includes a condition relating to illumination of the exposure beam on the mask pattern, a condition relating to the numerical aperture of the projection optical system, a condition relating to the type of the mask pattern, and a condition relating to an optical filter in the projection optical system. 2. The exposure method according to claim 1, comprising at least one of the following.
9 .前記照明に関する条件は、前記マスクパターンに露光ビームを照射する照明系 内の前記投影光学系の瞳面とほぼ共役な面内におけるエネルギー強度分布を含む ことを特徴とする請求の範囲第 8項記載の露光方法。 9. The illumination-related conditions include an energy intensity distribution in a plane substantially conjugate to a pupil plane of the projection optical system in an illumination system that irradiates the mask pattern with an exposure beam. 9. The exposure method according to claim 8, wherein:
1 0 . 前記マスクパターンは位相シフトパターンを含むことを特徴とする請求の 範囲第 8項記載の露光方法。  10. The exposure method according to claim 8, wherein the mask pattern includes a phase shift pattern.
1 1 . 前記光学フィルタは、 前記投影光学系の光軸近傍の所定領域で前記露光ビ ームを制限することを特徴とする請求の範囲第 8項記載の露光方法。  9. The exposure method according to claim 8, wherein the optical filter limits the exposure beam in a predetermined area near an optical axis of the projection optical system.
1 2 . 前記光学フィルタは、 所定領域に位相部材を有することを特徴とする請求 の範囲第 8項記載の露光方法。  12. The exposure method according to claim 8, wherein the optical filter has a phase member in a predetermined region.
1 3 . 前記結像特性は、倍率、像面湾曲、 ディストーション、 コマ収差のうちの少 なくとも一つを含むことを特徴とする請求の範囲第 1項記載の露光方法。  13. The exposure method according to claim 1, wherein the imaging characteristic includes at least one of magnification, curvature of field, distortion, and coma.
1 4 . 前記結像特性の補正は、 前記投影光学系の一部のレンズ素子の位置調整を 含むことを特徴とする請求の範囲第 1項記載の露光方法。  14. The exposure method according to claim 1, wherein the correction of the imaging characteristics includes a position adjustment of a part of lens elements of the projection optical system.
1 5 . 前記パラメータは、 前記露光ビームの照射による前記投影光学系の結像特 性の変化を求めるためのモデル関数の係数を含むことを特徴とする請求の範囲第 4項記載の露光方法。  15. The exposure method according to claim 4, wherein the parameter includes a coefficient of a model function for determining a change in the imaging characteristic of the projection optical system due to the irradiation of the exposure beam.
1 6 . 請求の範囲第 1項記載の露光方法を用いて製造されたデバイス。  16. A device manufactured by using the exposure method according to claim 1.
1 7 . マスクパターンの像で投影光学系を介して基板を露光する露光装置におい て、  1 7. In an exposure apparatus that exposes a substrate with an image of a mask pattern via a projection optical system,
前記基板上のある一つのレイヤに対して複数の異なる露光条件を順次切り換え て露光を行う露光システムと、  An exposure system for performing exposure by sequentially switching a plurality of different exposure conditions for one layer on the substrate,
前記露光条件の切り換えを考慮して前記投影光学系の結像特性を補正する補正 システムと、 を有することを特徴とする露光装置。  An exposure apparatus, comprising: a correction system that corrects an imaging characteristic of the projection optical system in consideration of switching of the exposure condition.
1 8 . 前記補正システムは、 前記複数の異なる露光条件それぞれでの前記投影光 学系に入射する露光ビームのエネルギー量の比率に応じて前記投影光学系の結像 特性を補正することを特徴とする請求の範囲第 1 7項記載の露光装置。  18. The correction system corrects an imaging characteristic of the projection optical system according to a ratio of an energy amount of an exposure beam incident on the projection optical system under each of the plurality of different exposure conditions. The exposure apparatus according to claim 17, wherein
1 9 . 前記露光条件は、 前記マスクパターンに対する露光ビームの照明に関する 条件、 前記投影光学系の開口数に関する条件、 前記マスクのパターンの種類に関 する条件、 及び前記投影光学系内の光学フィルタに関する条件のうちの少なくと も一つを含むことを特徴とする請求の範囲第 1 7項記載の露光装置。  19. The exposure conditions include conditions relating to illumination of the exposure beam on the mask pattern, conditions relating to the numerical aperture of the projection optical system, conditions relating to the type of pattern of the mask, and optical filters in the projection optical system. The exposure apparatus according to claim 17, wherein at least one of the conditions is included.
2 0 . 前記照明に関する条件を変更するために、 前記マスクパターンに露光ビ一 ムを照射する照明系内の前記投影光学系の瞳面とほぼ共役な面内におけるェネル ギー強度分布を変更する光学部材を有することを特徴とする請求の範囲第 1 7項 記載の露光装置。 20. In order to change the condition related to the illumination, the exposure pattern The exposure apparatus according to claim 17, further comprising an optical member that changes an energy intensity distribution in a plane substantially conjugate to a pupil plane of the projection optical system in an illumination system that irradiates a beam.
2 1 . 前記補正システムは、 前記投影光学系内の一部のレンズ素子を駆動する駆 動システムを有することを特徴とする請求の範囲第 1 7項記載の露光装置。 21. The exposure apparatus according to claim 17, wherein the correction system includes a driving system that drives a part of lens elements in the projection optical system.
2 2 . 前記補正システムは、 前記マスクパターンを有するマスクを駆動する駆動 システムを有することを特徴とする請求の範囲第 1 7項記載の露光装置。 22. The exposure apparatus according to claim 17, wherein the correction system includes a driving system that drives a mask having the mask pattern.
2 3 . 前記補正システムは、 前記投影光学系内の密閉空間の圧力を調整する圧力 コントローラ一を有することを特徴とする請求の範囲第 1 7項記載の露光装置。 23. The exposure apparatus according to claim 17, wherein the correction system includes a pressure controller that adjusts a pressure in a closed space in the projection optical system.
2 4 . 前記基板の露光が行われる環境をチェックする環境センサを有し、 前記補 正システムは前記環境センサから得られる情報も考慮して前記投影光学系の結像 特性を補正することを特徴とする請求の範囲第 1 7項記載の露光装置。 24. An environment sensor for checking an environment in which the substrate is exposed, wherein the correction system corrects an imaging characteristic of the projection optical system in consideration of information obtained from the environment sensor. The exposure apparatus according to claim 17, wherein
2 5 . スキャン方式で、 前記基板を移動しながら前記基板を露光することを特徴 とする請求の範囲第 1 7項記載の方法。  25. The method according to claim 17, wherein the substrate is exposed while moving the substrate by a scanning method.
PCT/JP1998/005184 1997-11-18 1998-11-18 Exposure method and aligner WO1999026279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU11734/99A AU1173499A (en) 1997-11-18 1998-11-18 Exposure method and aligner
US09/571,685 US20030016339A1 (en) 1997-11-18 2000-05-16 Exposure method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9316921A JPH11150053A (en) 1997-11-18 1997-11-18 Exposure method and device
JP9/316921 1997-11-18

Publications (1)

Publication Number Publication Date
WO1999026279A1 true WO1999026279A1 (en) 1999-05-27

Family

ID=18082410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005184 WO1999026279A1 (en) 1997-11-18 1998-11-18 Exposure method and aligner

Country Status (3)

Country Link
JP (1) JPH11150053A (en)
AU (1) AU1173499A (en)
WO (1) WO1999026279A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586954B2 (en) * 2003-04-04 2010-11-24 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4684563B2 (en) * 2004-02-26 2011-05-18 キヤノン株式会社 Exposure apparatus and method
US7382438B2 (en) * 2005-08-23 2008-06-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5006762B2 (en) * 2007-11-05 2012-08-22 キヤノン株式会社 Exposure apparatus and device manufacturing method
NL2003919A (en) 2008-12-24 2010-06-28 Asml Netherlands Bv An optimization method and a lithographic cell.
DE102011113521A1 (en) * 2011-09-15 2013-01-03 Carl Zeiss Smt Gmbh Microlithographic extreme UV (EUV) projection exposure apparatus for imaging reflective mask on photosensitive layer, has drive element that is adapted to reflective switching elements to emit projection and heating light rays
JP7213757B2 (en) * 2019-05-31 2023-01-27 キヤノン株式会社 Exposure apparatus and article manufacturing method
JP2023178029A (en) 2022-06-03 2023-12-14 キヤノン株式会社 Determination method, exposure method, information processor, program, exposure device, and article manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794393A (en) * 1993-09-21 1995-04-07 Nikon Corp Projection aligner
JPH08288192A (en) * 1995-04-13 1996-11-01 Nikon Corp Projection aligner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794393A (en) * 1993-09-21 1995-04-07 Nikon Corp Projection aligner
JPH08288192A (en) * 1995-04-13 1996-11-01 Nikon Corp Projection aligner

Also Published As

Publication number Publication date
JPH11150053A (en) 1999-06-02
AU1173499A (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JP3395280B2 (en) Projection exposure apparatus and method
JP3186011B2 (en) Projection exposure apparatus and device manufacturing method
US8233133B2 (en) Exposure method, exposure apparatus, and method for producing device
JP3402850B2 (en) Projection exposure apparatus and device manufacturing method using the same
US7941232B2 (en) Control method, control system, and program
US7965387B2 (en) Image plane measurement method, exposure method, device manufacturing method, and exposure apparatus
US7760326B2 (en) Exposure apparatus and aberration correction method
JP5264116B2 (en) Imaging characteristic variation prediction method, exposure apparatus, and device manufacturing method
US7083290B2 (en) Adjustment method and apparatus of optical system, and exposure apparatus
TWI357537B (en) Lithographic apparatus, control system and device
NL2007052A (en) Calibration method and inspection apparatus.
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2005008754A1 (en) Flare measurement method, exposure method, and flare measurement mask
US9891525B2 (en) Exposure method, exposure apparatus, and article manufacturing method
US7804581B2 (en) Exposure apparatus and method of manufacturing device
WO1999031716A1 (en) Aligner, exposure method and method of manufacturing device
WO1999026279A1 (en) Exposure method and aligner
JP6554141B2 (en) Determination method, exposure method, information processing apparatus, program, and article manufacturing method
JP2009218492A (en) Method of measuring wavefront error, method of adjusting wavefront error, and method of manufacturing semiconductor device
JP3414476B2 (en) Projection exposure equipment
KR20020071726A (en) Exposure method and apparatus
US20030016339A1 (en) Exposure method and apparatus
JPH11258498A (en) Projective lens and scanning exposure device
KR100781099B1 (en) Method of estimating lithography system, method of adjusting substrate processing apparatus, lithography system, and exposure apparatus
JPH0817713A (en) Projection aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA