JPH06164660A - Gain fluctuation compensating circuit - Google Patents

Gain fluctuation compensating circuit

Info

Publication number
JPH06164660A
JPH06164660A JP43A JP33487892A JPH06164660A JP H06164660 A JPH06164660 A JP H06164660A JP 43 A JP43 A JP 43A JP 33487892 A JP33487892 A JP 33487892A JP H06164660 A JPH06164660 A JP H06164660A
Authority
JP
Japan
Prior art keywords
circuit
signal
gain
channel
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP3230106B2 (en
Inventor
Yoichi Saito
洋一 斉藤
Satoru Tano
哲 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33487892A priority Critical patent/JP3230106B2/en
Publication of JPH06164660A publication Critical patent/JPH06164660A/en
Application granted granted Critical
Publication of JP3230106B2 publication Critical patent/JP3230106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To provide a means for providing a demodulated signal without being degraded and providing digital signal processing for securing the stability of operations by properly estimating gain fluctuation even when any non-linear operation caused by delay detection is existent by providing a gain compensating circuit and a weight estimating circuit. CONSTITUTION:First of all, concerning a pi/4-QPSK input signal 1, orthogonal phase detection is performed at an oscillator 5 provided with a frequency almost equal to the central frequency, after the signal is passed through a low-pass filter 6 for removing the higher harmonic wave component and the noise, the amplitude level is optimumly adjusted at an amplifier 7, and the signal is converted to a digital signal by an A/D converter 8. Next, signals xk and yk of I and Q channels are turned to be (1+wx)-times and (1+wy)-times by a gain compensating circuit 13 respectively based on gain fluctuation values wx and wy estimated at a weight estimating circuit 14, and the gain fluctuation is compensated. A transmitting signal is demodulated by a four-phase delay detection circuit 15, and an identifier 16 selects the MSB signal of a simply demodulated signal Uk and outputs it as 2 and 2'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、QPSK信号等のベー
スバンド帯遅延検波回路の構成法に属し、特にアナログ
回路で生じるゲイン変動を補償する回路に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a baseband delay detection circuit for a QPSK signal or the like, and more particularly to a circuit for compensating for gain fluctuation occurring in an analog circuit.

【0002】[0002]

【従来の技術】QPSKや16QAM信号の復調器は、
図1に示すように入力信号1と入力信号の中心周波数に
同期した搬送波5を4の直交位相検波器において複素乗
算し、6の低域フィルタで高調波成分及び雑音を除去し
た後、振幅レベル調整用の増幅器7を介して8の識別器
(A/D変換器)へ入力し、識別再生信号2,2′を得
ている。しかし、一般的に4,6,7はアナログアクテ
ィブ素子により構成されているため、周囲温度や経時変
化によりゲイン変動が発生し、I,Qチャネルのレベル
にアンバランスが生じて復調特性が劣化する。
2. Description of the Related Art Demodulators for QPSK and 16QAM signals are
As shown in FIG. 1, the input signal 1 and the carrier wave 5 synchronized with the center frequency of the input signal are complex-multiplied by the quadrature phase detector 4 and the low-pass filter 6 removes the harmonic components and noise, and then the amplitude level It is inputted to the discriminator (A / D converter) 8 through the adjusting amplifier 7 to obtain the discrimination reproduction signals 2 and 2 '. However, since 4, 6 and 7 are generally composed of analog active elements, gain fluctuations occur due to ambient temperature and changes over time, imbalances occur in the levels of the I and Q channels, and demodulation characteristics deteriorate. .

【0003】この問題を解決するため、従来は図1に示
すように(特許第1506432号“多値識別器”)A
/D変換器から得られる識別信号2と誤差信号3の排他
的論理和9出力を10の低域フィルタにより積分して、
A/D変換器直前の増幅器にフィードバックをかけて
I,Qチャネルの信号を所望レベルに保っていた。本回
路の基本原理は、2,3の排他的論理和をとると復調動
作が線形のためどの象限の信号に対してもゲインが1よ
り大の場合は正、1より小の場合は負となることを利用
している。
In order to solve this problem, conventionally, as shown in FIG. 1 (Patent No. 1506432, "Multivalued discriminator"), A
The exclusive OR 9 output of the identification signal 2 and the error signal 3 obtained from the / D converter is integrated by a low-pass filter of 10,
Feedback is applied to the amplifier immediately before the A / D converter to keep the I and Q channel signals at desired levels. The basic principle of this circuit, if demodulation operation to take the exclusive OR of 2 is larger than 1 gain for any quadrant of the signal for the linear positive, and negative if than one small I'm taking advantage of it.

【0004】しかし、ベースバンド帯遅延検波のように
ゲイン変動の発生した後で非線形演算を行なう場合には
従来の手法を適用することができない。1例として、π
/4−QPSK遅延検波について考察する。図2は本発
明の構成を示しているが、ハッチを施した13,14を
除けば通常のベースバンド帯遅延検波回路である。各ブ
ロックに付した番号は図1と共通している。まずゲイン
変動がない場合、A/D変換器出力のサンプル値(x
k ,yk )及び遅延検波出力Uk (ukx,uky)をX−
Y平面上にプロットするとそれぞれ図6(a),(b)
のような信号となる。次に、ゲイン変動によりI,Qチ
ャネルのゲインがそれぞれ0.9,1.2となった場
合、(xk ,yk )及びUk (ukx,uky)はそれぞれ
図7(a),(b)のようになる。同図(b)から明ら
かなように、ある象限に復調された信号について誤差信
号は一定の極性を示さないため、従来の回路構成ではレ
ベル変動を補償できない。
However, the conventional method cannot be applied to the case where the nonlinear calculation is performed after the gain variation occurs like the baseband differential detection. As an example, π
Consider / 4-QPSK differential detection. Although FIG. 2 shows the configuration of the present invention, it is a normal baseband delay detection circuit except for the hatched parts 13 and 14. The numbers given to each block are the same as those in FIG. First, when there is no gain fluctuation, the sampled value (x
k , y k ) and the differential detection output U k (u kx , u ky ) are X−
Plots on the Y plane show FIGS. 6 (a) and 6 (b), respectively.
It becomes a signal like. Next, when the gains of the I and Q channels are 0.9 and 1.2, respectively, due to the gain variation, (x k , y k ) and U k (u kx , u ky ) are respectively shown in FIG. , (B). As is clear from FIG. 6B, the error signal does not exhibit a constant polarity with respect to the signal demodulated in a certain quadrant, so that the conventional circuit configuration cannot compensate the level fluctuation.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためになされたものであり、その目的は遅
延検波による非線形操作が存在してもゲイン変動を正し
く推定して劣化のない復調信号を得ること、及び動作の
安定性を確保するためディジタル信号処理で実現する手
段を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to correctly estimate a gain variation and to prevent deterioration even if there is a non-linear operation by differential detection. It is to provide a means realized by digital signal processing in order to obtain a non-demodulated signal and to secure the operation stability.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の特徴は、受信信号をその中心周波数とほぼ等
しい周波数を有する局部発振器で複素乗積検波し、低域
フィルタにより高調波成分及び雑音を除去して得られる
同相(I)・直交(Q)成分をA/D変換した後、1シ
ンボル間の複素サンプル値を複素乗算するベースバンド
遅延検波回路において、該A/D変換器出力のI,Q成
分をそれぞれ独立に所定の量だけ重み付けするゲイン補
償回路と、重み付けする所定量を推定する重み推定回路
とから成るゲイン変動補償回路を有し、該ゲイン補償回
路は、I,Q両チャネル共に正規のゲイン1に重み推定
回路から得られる変動分を加算して新たなゲインとし、
第1の重み推定回路はIチャネル用重み係数を推定する
もので、該遅延検波回路出力のIチャネル誤差信号と、
該ゲイン補償回路のIチャネル出力信号及びそれを1シ
ンボル遅延させた信号の3信号を乗算し、その出力を微
小係数でスケーリングした信号を積分してIチャネルの
重み係数推定量とし、第2の重み推定回路はQチャネル
用重み係数を推定するもので、該遅延検波回路のQチャ
ネル出力信号とQチャネル誤差信号を乗算し、その出力
を前記微小係数でスケーリングした信号を積分してQチ
ャネルの重み係数推定量とするゲイン変動補償回路にあ
る。
The feature of the present invention for achieving the above object is that a received signal is subjected to complex product detection by a local oscillator having a frequency substantially equal to its center frequency, and a harmonic component is obtained by a low pass filter. And a baseband differential detection circuit for A / D-converting in-phase (I) / quadrature (Q) components obtained by removing noise, and then complex-multiplying a complex sample value between one symbol by the A / D converter. The gain compensation circuit includes a gain compensation circuit that independently weights the output I and Q components by a predetermined amount, and a weight estimation circuit that estimates a predetermined amount to be weighted. For both Q channels, the fluctuation amount obtained from the weight estimation circuit is added to the regular gain 1 to obtain a new gain,
The first weight estimation circuit estimates the I-channel weighting coefficient, and calculates the I-channel error signal output from the differential detection circuit,
The I-channel output signal of the gain compensating circuit and three signals of the signal delayed by one symbol are multiplied, and the output signal is scaled by a small coefficient to integrate it to obtain an I-channel weighting coefficient estimator. The weight estimation circuit estimates the weighting coefficient for the Q channel. The weighting estimation circuit multiplies the Q channel output signal of the differential detection circuit by the Q channel error signal, and integrates the output obtained by scaling the output by the minute coefficient to obtain the Q channel output signal. It is in the gain fluctuation compensating circuit which is used as the weight coefficient estimation amount.

【0007】本発明の別の特徴は、受信信号をその中心
周波数とほぼ等しい周波数を有する局部発振器で複素乗
積検波し、低域フィルタにより高調波成分及び雑音を除
去して得られる同相(I)・直交(Q)成分をA/D変
換した後、1シンボル間の複素サンプル値を複素乗算す
るベースバンド遅延検波回路において、該A/D変換器
出力のI,Q成分をそれぞれ独立に所定の量だけ重み付
けするゲイン補償回路と、重み付けする所定量を推定す
る重み推定回路とから成るゲイン変動補償回路を有し、
該ゲイン補償回路は、正規のゲイン1に重み推定回路か
ら得られる変動分を加算して新たなゲインとし、該重み
推定回路は、該遅延検波回路のIチャネル出力信号とそ
の識別結果より得られる誤差信号を共通の入力信号とし
て、A/D変換器出力のI,Q成分を1シンボル遅延さ
せた信号とI,Qチャネルに対応したゲイン補償回路出
力信号を乗算し、その結果を更に該誤差信号と乗算し、
その出力を微小係数でスケーリングした信号を積分して
I,Q両チャネルそれぞれのゲイン変動分の推定量とす
るゲイン変動補償回路にある。
Another feature of the present invention is that the received signal is subjected to complex product detection by a local oscillator having a frequency substantially equal to its center frequency, and a low-pass filter removes harmonic components and noise to obtain an in-phase (I In a baseband differential detection circuit that performs A / D conversion on a quadrature (Q) component and then complex-multiplies a complex sample value for one symbol, the I and Q components of the output of the A / D converter are independently determined. A gain fluctuation compensating circuit including a gain compensating circuit for weighting only the amount of, and a weight estimating circuit for estimating a predetermined amount for weighting,
The gain compensation circuit adds a fluctuation amount obtained from the weight estimation circuit to the normal gain 1 to obtain a new gain, and the weight estimation circuit is obtained from the I channel output signal of the differential detection circuit and its discrimination result. Using the error signal as a common input signal, the signal obtained by delaying the I and Q components of the A / D converter output by one symbol is multiplied by the gain compensation circuit output signal corresponding to the I and Q channels, and the result is further Multiply by the signal,
The gain fluctuation compensating circuit integrates a signal obtained by scaling the output with a small coefficient to obtain an estimated amount of the gain fluctuation of each of the I and Q channels.

【0008】[0008]

【実施例】[実施例1]QPSK受信信号の複素包絡線
[Embodiment 1] A complex envelope of a QPSK received signal

【0009】[0009]

【数1】 [Equation 1]

【0010】とする。ここで、h(t)は伝送路のイン
パルスレスポンス、φk は差動符号化された位相角で、
φk =φk-1 +mk π/2+θ(mk =0,1,2,
3)である。また、θはQPSKの場合0、π/4−Q
PSKの場合π/4となる。復調器のI,Qチャネルの
ゲインをそれぞれdgx,dgyとすれば、時刻t=k
Tにおける復調信号Rk は次式で与えられる。
[0010] Where h (t) is the impulse response of the transmission line, φ k is the differentially encoded phase angle,
φ k = φ k-1 + m k π / 2 + θ (m k = 0, 1, 2,
3). Further, θ is 0 in the case of QPSK, π / 4-Q
In the case of PSK, it becomes π / 4. If the gains of the I and Q channels of the demodulator are dgx and dgy, respectively, time t = k
The demodulated signal R k at T is given by the following equation.

【0011】 Rk =dgx・cosφk +jdgy・sinφk =xk +jyk (2)[0011] R k = dgx · cosφ k + jdgy · sinφ k = x k + jy k (2)

【0012】例えば、π/4−QPSK復調信号をX−
Y平面上に表すと、ゲイン変動が無くdgx=dgy=
1の場合には図6(a)のように、ゲイン変動が存在す
ると図7(a)のようになる。次に、I,Qチャネルに
それぞれ1+wx ,1+wyの重み付けを行なった後遅
延検波を行なうと、
For example, the π / 4-QPSK demodulated signal is X-
Expressed on the Y plane, there is no gain variation and dgx = dgy =
In the case of 1, as shown in FIG. 6A, when there is a gain variation, it becomes as shown in FIG. 7A. Next, when the I and Q channels are respectively weighted with 1 + w x and 1 + w y and then differential detection is performed,

【0013】Zk =(1+wx )xk +j(1+wy
k より、 Uk =Zk ・Z* k-1={(1+wx2kk-1 +(1+wy2kk-1 } +j(1+wx )(1+wy )(ykk-1 −xkk-1 ) (3)
Z k = (1 + w x ) x k + j (1 + w y ).
From y k , U k = Z k · Z * k-1 = {(1 + w x ) 2 x k x k-1 + (1 + w y ) 2 y k y k-1 } + j (1 + w x ) (1 + w y ). (Y k x k-1 −x k y k-1 ) (3)

【0014】が得られる。識別信号をDk =dk,x +j
k,y とし、I,Qチャネルの誤差信号をそれぞれe
k,x ,ek,y とすると、
Is obtained. The identification signal is D k = d k , x + j
Let d k, y be the error signals of the I and Q channels, e
If k, x and e k, y ,

【0015】 ek,x =dk,x −(1+wx2kk-1 −(1+wy2kk-1 (4) ek,y =dk,y −(1+wx )(1+wy )(xk-1k −xkk-1 ) (5) となる。E k, x = d k, x − (1 + w x ) 2 x k x k−1 − (1 + w y ) 2 y k y k−1 (4) e k, y = d k, y − ( 1 + w x) (1 + w y) (x k-1 y k -x k y k-1) and made (5).

【0016】誤差の2乗平均を最小とするように重み係
数を推定するには、式(4)の瞬時誤差の2乗からwx
に関する傾斜を求めてそれと反対の方向に逐次制御すれ
ばよい。従って、
In order to estimate the weighting coefficient so that the mean square of the error is minimized, w x is calculated from the square of the instantaneous error of the equation (4).
It is only necessary to obtain the inclination with respect to and sequentially control in the opposite direction. Therefore,

【0017】[0017]

【数2】 [Equation 2]

【0018】として求まる。ここで、μはステップサイ
ズパラメータと呼ばれる微小係数である。また、誤差e
k,x と重み係数wx は無相関であるから式(6)の右辺
第2項に(1+wx )を乗算してもwx の修正に影響を
及ぼさない。従って、wx の修正は次式により行なう。
Can be obtained as Here, μ is a small coefficient called a step size parameter. Also, the error e
Since k, x and the weighting coefficient w x are uncorrelated, multiplying the second term on the right side of Expression (6) by (1 + w x ) does not affect the modification of w x . Therefore, w x is corrected by the following equation.

【0019】 wx ←wx +μek,x (1+wx )xk (1+wx )xk-1 (6′)W x ← w x + μe k, x (1 + w x ) x k (1 + w x ) x k-1 (6 ′)

【0020】これよりwx はゲイン補償回路のIチャネ
ル出力と遅延検波出力のIチャネル誤差信号から修正す
ることができる。
From this, w x can be corrected from the I channel output signal of the gain compensation circuit and the I channel error signal of the differential detection output.

【0021】次に式(5)よりNext, from equation (5)

【数3】 [Equation 3]

【0022】となり、Qチャネルの重み係数は次式で修
正される。
Then, the weighting factor of the Q channel is modified by the following equation.

【0023】 wy ←wy +μek,y (1+wx )(ykk-1 −xkk-1 ) (7)W y ← w y + μe k, y (1 + w x ) (y k x k-1 −x k y k-1 ) (7)

【0024】ここで、Iチャネルの場合と同様にek,y
とwy の無相関性を利用すると
Here, as in the case of the I channel, e k, y
And using the decorrelation of w y

【0025】 wy ←wy +μek,y (1+wx )(1+wy )(ykk-1 −xkk-1 ) (7′)W y ← w y + μe k, y (1 + w x ) (1 + w y ) (y k x k-1 −x k y k-1 ) (7 ′)

【0026】と変形される。従って、wy は遅延検波回
路のQチャネル出力とQチャネル誤差信号の積によって
修正することができる。
It is transformed into Therefore, w y can be modified by the product of the Q channel output of the differential detection circuit and the Q channel error signal.

【0027】なお、周囲温度や経時劣化によるゲイン変
動はその変化速度は小さいため、μはA/D変換器の量
子化雑音程度の大きさでよい。
Since the change rate of the gain fluctuation due to the ambient temperature and deterioration over time is small, μ may be as large as the quantization noise of the A / D converter.

【0028】図2はπ/4−QPSK復調器を例にして
本発明の構成を示したもので、ハッチした部分を除けば
通常のベースバンド帯遅延検波回路となる。まず、π/
4−QPSK入力信号1は中心周波数とほぼ等しい周波
数を有する発振器5で直交位相検波され(4)、高調波
成分及び雑音を除去する低域フィルタ6を通過後、増幅
器7で振幅レベルを最適に調整されA/D変換器8でデ
ィジタル信号に変換される。次に、重み推定回路14で
推定されたゲイン変動値wx ,wy に基づき、I,Qチ
ャネルの信号xk ,yk はゲイン補償回路13において
それぞれ(1+wx ),(1+wy )倍され、ゲイン変
動が補償される。15は4相遅延検波回路であり、送信
信号が復調される。識別器16は、単に復調された信号
k のMSB信号を選択し、2,2′として出力する。
FIG. 2 shows the configuration of the present invention by taking a .pi. / 4-QPSK demodulator as an example, and it is a normal baseband delay detection circuit except for the hatched portion. First, π /
The 4-QPSK input signal 1 is quadrature detected by an oscillator 5 having a frequency substantially equal to the center frequency (4), passes through a low-pass filter 6 that removes harmonic components and noise, and then an amplifier 7 optimizes the amplitude level. It is adjusted and converted into a digital signal by the A / D converter 8. Next, based on the gain fluctuation values w x and w y estimated by the weight estimation circuit 14, the I and Q channel signals x k and y k are multiplied by (1 + w x ) and (1 + w y ) in the gain compensation circuit 13, respectively. The gain fluctuation is compensated. Reference numeral 15 is a four-phase differential detection circuit, which demodulates the transmission signal. The discriminator 16 simply selects the MSB signal of the demodulated signal U k and outputs it as 2, 2 ′.

【0029】図3は、ゲイン補償回路13の具体例であ
り、正規のゲイン1に対し変動分wx ,wy をそれぞれ
加算して(22)、I,Qチャネルの復調信号xk ,y
k に乗算する(21)。
FIG. 3 shows a specific example of the gain compensating circuit 13. The fluctuation amounts w x and w y are added to the regular gain 1 (22) to obtain demodulated signals x k and y for the I and Q channels.
Multiply k (21).

【0030】図4は4相遅延検波回路の具体例であり、
入力複素信号Zk と1シンボル遅延した複素共役信号Z
* k-1との乗算がなされる。
FIG. 4 shows a concrete example of a four-phase differential detection circuit.
Input complex signal Z k and complex conjugate signal Z delayed by one symbol
* multiplication with k-1 is done.

【0031】図5は重み推定回路の具体例であり、同図
(a)は重み係数wx を得る回路構成である。本回路の
入力信号は、ゲイン補償回路13のIチャネル出力x′
k と減算回路12から得られたIチャネルの誤差信号e
k,x である。wx 推定回路の動作は、xk とxk を1シ
ンボル遅延させた信号を乗算し、その結果をek,x と乗
算する。更にその結果をステップサイズパラメータμで
乗算し、その結果を加算器22と1シンボル遅延回路2
3により積分して出力する。
FIG. 5 shows a specific example of the weight estimation circuit, and FIG. 5A shows a circuit configuration for obtaining the weight coefficient w x . The input signal of this circuit is the I channel output x ′ of the gain compensation circuit 13.
k and the I channel error signal e obtained from the subtraction circuit 12
k, x . The operation of the w x estimation circuit multiplies x k and a signal obtained by delaying x k by one symbol , and multiplies the result by e k, x . Further, the result is multiplied by the step size parameter μ, and the result is added by the adder 22 and the 1-symbol delay circuit 2
It is integrated by 3 and output.

【0032】同図(b)は重み係数wy を得る回路構成
である。本回路の入力信号は、遅延検波回路15のQチ
ャネル出力uk,y と減算回路12から得られたQチャネ
ルの誤差信号ek,y である。wy 推定回路の動作は、u
k,y とek,y を乗算し更にステップサイズパラメータμ
で乗算して、その結果を加算器22と1シンボル遅延回
路23により積分して出力する。
FIG. 9B shows a circuit configuration for obtaining the weighting coefficient w y . The input signals of this circuit are the Q channel output u k, y of the differential detection circuit 15 and the Q channel error signal e k, y obtained from the subtraction circuit 12. The operation of the w y estimation circuit is u
k, y and e k, further step size parameter by multiplying the y mu
And the result is integrated by the adder 22 and the 1-symbol delay circuit 23 and output.

【0033】ここで、wx を得る回路において減算回路
12から得られたIチャネルの誤差信号ek,x をその極
性信号に置換してもよいことは明らかである。また、w
y を得る回路においてuk,y とek,y をそれらの極性信
号に置換してもよいことは明らかであり、この場合乗算
器は排他的論理和に置換可能となる。
Here, it is obvious that the I-channel error signal e k, x obtained from the subtraction circuit 12 may be replaced with the polarity signal in the circuit for obtaining w x . Also, w
It is clear that in the circuit for obtaining y , u k, y and e k, y may be replaced by their polarity signals, in which case the multiplier can be replaced by an exclusive OR.

【0034】[実施例2]次に図8と図9により本発明
の第2の実施例を説明する。
[Second Embodiment] Next, a second embodiment of the present invention will be described with reference to FIGS.

【0035】QPSK受信信号の複素包絡線をThe complex envelope of the QPSK received signal is

【数4】 [Equation 4]

【0036】とする。ここで、h(t)は伝送路のイン
パルスレスポンス、φk は差動符号化された位相角で、
φk =φk-1 +mk π/2+θ(mk =0,1,2,
3)である。また、θはQPSKの場合0、π/4−Q
PSKの場合π/4となる。復調器のI,Qチャネルの
ゲインをそれぞれdgx,dgyとすれば、時刻t=k
Tにおける復調信号Rk は次式で与えられる。
It is assumed that Where h (t) is the impulse response of the transmission line, φ k is the differentially encoded phase angle,
φ k = φ k-1 + m k π / 2 + θ (m k = 0, 1, 2,
3). Further, θ is 0 in the case of QPSK, π / 4-Q
In the case of PSK, it becomes π / 4. If the gains of the I and Q channels of the demodulator are dgx and dgy, respectively, time t = k
The demodulated signal R k at T is given by the following equation.

【0037】 Rk =dgx・cosφk +jdgy・sinφk =xk +jyk (12)[0037] R k = dgx · cosφ k + jdgy · sinφ k = x k + jy k (12)

【0038】例えば、π/4−QPSK復調信号をX−
Y平面上に表すと、ゲイン変動が無くdgx=dgy=
1の場合には図6(a)のように、ゲイン変動が存在す
ると同図(b)のようになる。次に、I,Qチャネルに
それぞれ1+wx ,1+wyの重み付けを行なった後遅
延検波を行なうと、
For example, the π / 4-QPSK demodulated signal is X-
Expressed on the Y plane, there is no gain variation and dgx = dgy =
In the case of 1, when there is a gain variation as shown in FIG. 6A, it becomes as shown in FIG. Next, when the I and Q channels are respectively weighted with 1 + w x and 1 + w y and then differential detection is performed,

【0039】Zk =(1+wx )xk +j(1+wy
k より、 Uk =Zk ・Z* k-1={(1+wx2kk-1 +(1+wy2kk-1 } +j(1+wx )(1+wy )(ykk-1 −xkk-1 ) (13)
Z k = (1 + w x ) x k + j (1 + w y ).
From y k , U k = Z k · Z * k-1 = {(1 + w x ) 2 x k x k-1 + (1 + w y ) 2 y k y k-1 } + j (1 + w x ) (1 + w y ). (Y k X k-1 −x k y k-1 ) (13)

【0040】が得られる。識別信号をDk =dk,x +j
k,y とし、Iチャネルの誤差信号をek,x とすると、
Is obtained. The identification signal is D k = d k , x + j
If d k, y and the I channel error signal is e k, x ,

【0041】 ek,x =dk,x −(1+wx2kk-1 −(1+wy2kk-1 (14) となる。E k, x = d k, x − (1 + w x ) 2 x k x k−1 − (1 + w y ) 2 y k y k−1 (14)

【0042】誤差の2乗平均を最小とするように重み係
数を推定するには、式(14)の瞬時誤差の2乗からw
x ,wy に関する傾斜を求めてそれと反対の方向に逐次
制御すればよい。従って、
In order to estimate the weighting coefficient so that the mean square of the error is minimized, w is calculated from the square of the instantaneous error in the equation (14).
x, it may be sequentially controlled in the direction opposite to that seeking inclined about w y. Therefore,

【0043】[0043]

【数5】 [Equation 5]

【0044】として求まる。ここで、μはステップサイ
ズパラメータと呼ばれる微小係数であり、任意に与える
微小値である。
Is obtained as Here, μ is a minute coefficient called a step size parameter, which is an arbitrarily small value.

【0045】式(15)(16)より、重み係数の推定
値はゲイン変動を受けた復調信号とゲイン補償回路出力
とIチャネル誤差信号との積によって与えられる。ま
た、周囲温度や経時劣化によるゲイン変動はその変化速
度は小さいため、μはA/D変換器の量子化雑音程度の
大きさでよい。
From equations (15) and (16), the estimated value of the weighting factor is given by the product of the demodulated signal that has undergone gain fluctuation, the gain compensation circuit output, and the I channel error signal. Further, since the change rate of the gain fluctuation due to the ambient temperature and deterioration with time is small, μ may be as large as the quantization noise of the A / D converter.

【0046】図2はπ/4−QPSK復調器を例にして
本発明の構成を示したもので、ハッチした部分を除けば
通常のベースバンド帯遅延検波回路となる。まず、π/
4−QPSK入力信号1は中心周波数とほぼ等しい周波
数を有する発振器5で直交位相検波され、高調波成分及
び雑音を除去する低域フィルタ6を通過後、増幅器7で
振幅レベルを最適に調整されA/D変換器8でディジタ
ル信号に変換される。次に、重み推定回路14で推定さ
れたゲイン変動値wx ,wy に基づき、I,Qチャネル
の信号xk ,yk はゲイン補償回路13においてそれぞ
れ(1+wx ),(1+wy )倍され、ゲイン変動が補
償される。15は4相遅延検波回路であり、送信信号が
復調される。識別器16は、単に復調された信号Uk
MSB信号を選択し、2,2′として出力する。
FIG. 2 shows the configuration of the present invention by taking a .pi. / 4-QPSK demodulator as an example, which is a normal baseband delay detection circuit except for the hatched portion. First, π /
The 4-QPSK input signal 1 is quadrature-phase detected by an oscillator 5 having a frequency substantially equal to the center frequency, passes through a low-pass filter 6 that removes harmonic components and noise, and is then adjusted to an optimum amplitude level by an amplifier 7 A The signal is converted into a digital signal by the / D converter 8. Next, based on the gain fluctuation values w x and w y estimated by the weight estimation circuit 14, the I and Q channel signals x k and y k are multiplied by (1 + w x ) and (1 + w y ) in the gain compensation circuit 13, respectively. The gain fluctuation is compensated. Reference numeral 15 is a four-phase differential detection circuit, which demodulates the transmission signal. The discriminator 16 simply selects the MSB signal of the demodulated signal U k and outputs it as 2, 2 ′.

【0047】ゲイン補償回路、及び4相遅延検波回路と
しては実施例1の場合と同様の回路が用いられる。
As the gain compensation circuit and the four-phase differential detection circuit, the same circuits as in the case of the first embodiment are used.

【0048】図9は重み推定回路の具体例であり、推定
値wx ,wy を得る回路構成は同一である。本回路の入
力信号は、減算回路12から得られたIチャネルの誤差
信号ek,x と8及び13の出力信号である。wx 推定回
路の動作は、まずxk を1シンボル遅延させた後(1+
k )xk と乗算し、その結果をek,x と乗算する。更
にその結果をステップサイズパラメータμで乗算し、そ
の結果を加算器22と1シンボル遅延回路23により積
分して出力する。
FIG. 9 is a specific example of the weight estimation circuit, and the circuit configurations for obtaining the estimated values w x and w y are the same. The input signals of this circuit are the I channel error signals e k, x obtained from the subtraction circuit 12 and the output signals of 8 and 13. The w x estimation circuit operates by delaying x k by one symbol and then (1+
w k ) x k and the result is multiplied by e k, x . Further, the result is multiplied by the step size parameter μ, and the result is integrated by the adder 22 and the 1-symbol delay circuit 23 and output.

【0049】なお、第2の実施例ではゲイン補償回路を
A/D変換器の出力や識別器の出力といった多くの回路
と接続するので接続上の問題が生じることがあるが、第
1の実施例ではそのような問題はない。
In the second embodiment, since the gain compensation circuit is connected to many circuits such as the output of the A / D converter and the output of the discriminator, a connection problem may occur, but the first embodiment is used. In the example there is no such problem.

【0050】[0050]

【発明の効果】図7(b),(c)はゲイン変動補償回
路無しと有りの場合の復調信号を示しており、補償によ
り正しい位置に復調信号が得られていることがわかる。
移動通信等、屋外で用いられる携帯無線端末では周囲温
度等の使用環境が厳しく、アナログアクティブ回路のゲ
イン変動による特性劣化が避けられない状況で本発明の
効果は大である。
7 (b) and 7 (c) show demodulated signals with and without the gain fluctuation compensating circuit, and it can be seen that the demodulated signal is obtained at the correct position by compensation.
The effect of the present invention is great in a situation where a portable wireless terminal used outdoors such as mobile communication has a severe environment such as ambient temperature and unavoidable characteristic deterioration due to gain variation of the analog active circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】線形復調器で用いられているゲイン変動補償回
路である。
FIG. 1 is a gain variation compensation circuit used in a linear demodulator.

【図2】本発明の実施例で、π/4−QPSK復調器に
適用した場合のブロック図である。
FIG. 2 is a block diagram when applied to a π / 4-QPSK demodulator in an embodiment of the present invention.

【図3】図2に示したゲイン補償回路の具体例である。FIG. 3 is a specific example of the gain compensation circuit shown in FIG.

【図4】同様に図2に示した遅延検波回路15の具体例
である。
FIG. 4 is also a concrete example of the differential detection circuit 15 shown in FIG.

【図5】同様に図2に示した重み推定回路14の具体例
で、(a)はIチャネル、(b)はQチャネル用の回路
構成である。
5 is a specific example of the weight estimation circuit 14 shown in FIG. 2 as well, in which (a) is a circuit configuration for the I channel and (b) is a circuit configuration for the Q channel.

【図6】ゲイン変動が無い場合のπ/4−QPSK復調
信号の信号空間ダイアグラムで、(a)はA/D変換器
出力を、(b)は遅延検波器出力を示している。
FIG. 6 is a signal space diagram of a π / 4-QPSK demodulated signal when there is no gain fluctuation, (a) shows an A / D converter output, and (b) shows a delay detector output.

【図7】ゲイン変動(Iチャネルが0.9倍、Qチャネ
ルが1.2倍)が存在する場合の例で、(a)はA/D
変換器出力を、(b)は遅延検波出力を、(c)はゲイ
ン変動補償回路を付加した場合の遅延検波出力をそれぞ
れ示している。
FIG. 7 is an example when there is a gain variation (I channel 0.9 times, Q channel 1.2 times), and (a) is A / D.
The converter output, (b) shows the differential detection output, and (c) shows the differential detection output when the gain variation compensation circuit is added.

【図8】本発明の別の実施例のブロック図である。FIG. 8 is a block diagram of another embodiment of the present invention.

【図9】図8の実施例における重み推定回路を示す。9 shows a weight estimation circuit in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 信号入力端子 2,2′ I,Qチャネルの識別信号出力端子 3,3′ I,Qチャネルの誤差信号出力端子 4 直交位相検波器 5 局部発振器 6 低域通過フィルタ 7 増幅器 8 A/D変換器 9 排他的論理和回路 10 ループフィルタ 12 減算器 13 ゲイン補償回路 14 重み推定回路 15 4相遅延検波回路 16 識別器 21 乗算器 22 加算器又は減算器 23 1シンボル遅延素子 1 signal input terminal 2, 2'I, Q channel identification signal output terminal 3, 3 'I, Q channel error signal output terminal 4 quadrature phase detector 5 local oscillator 6 low pass filter 7 amplifier 8 A / D conversion Unit 9 exclusive OR circuit 10 loop filter 12 subtractor 13 gain compensation circuit 14 weight estimation circuit 15 four-phase delay detection circuit 16 discriminator 21 multiplier 22 adder or subtractor 23 1 symbol delay element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 受信信号をその中心周波数とほぼ等しい
周波数を有する局部発振器で複素乗積検波し、低域フィ
ルタにより高調波成分及び雑音を除去して得られる同相
(I)・直交(Q)成分をA/D変換した後、1シンボ
ル間の複素サンプル値を複素乗算するベースバンド遅延
検波回路において、 該A/D変換器出力のI,Q成分をそれぞれ独立に所定
の量だけ重み付けするゲイン補償回路と、重み付けする
所定量を推定する重み推定回路とから成るゲイン変動補
償回路を有し、 該ゲイン補償回路は、I,Q両チャネル共に正規のゲイ
ン1に重み推定回路から得られる変動分を加算して新た
なゲインとし、 第1の重み推定回路はチャネル用重み係数を推定するも
ので、該遅延検波回路出力のIチャネル誤差信号と、該
ゲイン補償回路のIチャネル出力信号及びそれを1シン
ボル遅延させた信号の3信号を乗算し、その出力を微小
係数でスケーリングした信号を積分してIチャネルの重
み係数推定量とし、 第2の重み推定回路はQチャネル用重み係数を推定する
もので、該遅延検波回路のQチャネル出力信号とQチャ
ネル誤差信号を乗算し、その出力を前記微小係数でスケ
ーリングした信号を積分してQチャネルの重み係数推定
量とすること、を特徴とするゲイン変動補償回路。
1. An in-phase (I) / quadrature (Q) obtained by subjecting a received signal to complex product detection with a local oscillator having a frequency substantially equal to its center frequency and removing a harmonic component and noise with a low-pass filter. In a baseband differential detection circuit that performs A / D conversion on components and then complex-multiplies complex sample values for one symbol, a gain that independently weights I and Q components of the A / D converter output by predetermined amounts. A gain fluctuation compensating circuit including a compensating circuit and a weight estimating circuit for estimating a predetermined amount to be weighted is provided, and the gain compensating circuit has a normal gain of 1 for both I and Q channels and a fluctuation component obtained from the weight estimating circuit. Is added to obtain a new gain, and the first weight estimation circuit estimates the channel weighting coefficient. The I-channel error signal of the differential detection circuit output and the I-channel error signal of the gain compensation circuit are added. The channel output signal and a signal obtained by delaying it by one symbol are multiplied by three signals, and the output signal is scaled by a small coefficient and integrated to obtain a weighting coefficient estimator for the I channel. For estimating the weighting coefficient for use, the Q-channel output signal of the differential detection circuit is multiplied by the Q-channel error signal, and the output is integrated by scaling the signal scaled by the minute coefficient to obtain the Q-channel weighting coefficient estimation amount. A gain fluctuation compensating circuit characterized by:
【請求項2】 請求項1に記載の重み推定回路の構成に
関して、第1の重み推定回路が、Iチャネルの誤差信号
をその極性信号に変換して乗算し、第2の重み推定回路
が該遅延検波回路のQチャネル出力信号とQチャネル誤
差信号のいずれか一方又は両方を極性信号に変換して乗
算すること、を特徴とするゲイン変動補償回路。
2. The structure of the weight estimation circuit according to claim 1, wherein the first weight estimation circuit converts the I-channel error signal into its polarity signal and multiplies it, and the second weight estimation circuit A gain fluctuation compensating circuit, characterized in that either or both of a Q channel output signal and a Q channel error signal of a differential detection circuit are converted into a polarity signal and multiplied.
【請求項3】 受信信号をその中心周波数とほぼ等しい
周波数を有する局部発振器で複素乗積検波し、低域フィ
ルタにより高調波成分及び雑音を除去して得られる同相
(I)・直交(Q)成分をA/D変換した後、1シンボ
ル間の複素サンプル値を複素乗算するベースバンド遅延
検波回路において、 該A/D変換器出力のI,Q成分をそれぞれ独立に所定
の量だけ重み付けするゲイン補償回路と、重み付けする
所定量を推定する重み推定回路とから成るゲイン変動補
償回路を有し、 該ゲイン補償回路は、正規のゲイン1に重み推定回路か
ら得られる変動分を加算して新たなゲインとし、 該重み推定回路は、該遅延検波回路のIチャネル出力信
号とその識別結果より得られる誤差信号を共通の入力信
号として、A/D変換器出力のI,Q成分を1シンボル
遅延させた信号とI,Qチャネルに対応したゲイン補償
回路出力信号を乗算し、その結果を更に該誤差信号と乗
算し、その出力を微小係数でスケーリングした信号を積
分してI,Q両チャネルそれぞれのゲイン変動分の推定
量とすること、を特徴とするゲイン変動補償回路。
3. In-phase (I) / quadrature (Q) obtained by subjecting a received signal to complex product detection with a local oscillator having a frequency substantially equal to its center frequency and removing a harmonic component and noise with a low-pass filter. In a baseband differential detection circuit that performs A / D conversion on components and then complex-multiplies complex sample values for one symbol, a gain that independently weights I and Q components of the A / D converter output by predetermined amounts. The gain compensation circuit includes a compensation circuit and a weight estimation circuit that estimates a predetermined amount to be weighted. The gain compensation circuit adds a variation obtained from the weight estimation circuit to the regular gain 1 to obtain a new gain compensation circuit. The gain estimation circuit uses the I-channel output signal of the differential detection circuit and the error signal obtained from the discrimination result as a common input signal to determine the I and Q components of the A / D converter output. The signal delayed by one symbol and the output signal of the gain compensation circuit corresponding to the I and Q channels are multiplied, the result is further multiplied by the error signal, and the output is integrated by scaling the signal with a small coefficient to obtain I and Q. A gain fluctuation compensating circuit, characterized in that it is an estimated amount of gain fluctuations of both channels.
JP33487892A 1992-11-24 1992-11-24 Gain fluctuation compensation circuit Expired - Fee Related JP3230106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33487892A JP3230106B2 (en) 1992-11-24 1992-11-24 Gain fluctuation compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33487892A JP3230106B2 (en) 1992-11-24 1992-11-24 Gain fluctuation compensation circuit

Publications (2)

Publication Number Publication Date
JPH06164660A true JPH06164660A (en) 1994-06-10
JP3230106B2 JP3230106B2 (en) 2001-11-19

Family

ID=18282235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33487892A Expired - Fee Related JP3230106B2 (en) 1992-11-24 1992-11-24 Gain fluctuation compensation circuit

Country Status (1)

Country Link
JP (1) JP3230106B2 (en)

Also Published As

Publication number Publication date
JP3230106B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US4085378A (en) QPSK demodulator
US5093847A (en) Adaptive phase lock loop
JP2601027B2 (en) Technology to combine diversity at the maximum ratio
CA2371891C (en) Timing recovery device and demodulator using the same
US4736455A (en) Interference cancellation system
US6904274B2 (en) System and method for inverting automatic gain control (AGC) and soft limiting
KR100581059B1 (en) Appratus and its Method for I/Q Imbalance Compensation by using Variable Loop Gain in Demodulator
WO1996012361A1 (en) Symbol synchronizer using modified early/punctual/late gate technique
WO1996012367A1 (en) Carrier tracking loop for qpsk demodulator
AU638362B2 (en) Digital radio receiver having amplitude limiter and logarithmic detector
KR100587951B1 (en) Apparatus and Method for AGC and I/Q Imbalance Compensation in a quadrature demodulating receiver
US6351293B1 (en) Decision directed phase detector
JPH04233335A (en) Receiving method of discrete signal and receiver
US4631489A (en) FM signal magnitude quantizer and demodulator compatible with digital signal processing
JP3228358B2 (en) Quadrature phase error compensation circuit
US20040036528A1 (en) Method and apparatus for phase-domain semi-coherent demodulation
US5940451A (en) Automatic gain control in quadrature phase shift keying demodulator
WO1996012223A1 (en) Numerically controlled oscillator with complex exponential outputs using recursion technique
US6032029A (en) Receiver selecting either a first demodulated signal or a second demodulated signal in accordance with characteristics of a received signal
JP3742257B2 (en) Demodulator
JP3230106B2 (en) Gain fluctuation compensation circuit
JP2002199039A (en) Receiving method and receiver in communication system
JP3018840B2 (en) Fading compensator
JP3498600B2 (en) Carrier phase estimator and demodulator using carrier phase estimator
JP3281527B2 (en) Frequency offset compensator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010807

LAPS Cancellation because of no payment of annual fees