JPH0616446B2 - Method for producing metallic magnetic powder - Google Patents

Method for producing metallic magnetic powder

Info

Publication number
JPH0616446B2
JPH0616446B2 JP60069177A JP6917785A JPH0616446B2 JP H0616446 B2 JPH0616446 B2 JP H0616446B2 JP 60069177 A JP60069177 A JP 60069177A JP 6917785 A JP6917785 A JP 6917785A JP H0616446 B2 JPH0616446 B2 JP H0616446B2
Authority
JP
Japan
Prior art keywords
magnetic powder
surface area
specific surface
feooh
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60069177A
Other languages
Japanese (ja)
Other versions
JPS61229305A (en
Inventor
謙二 荻須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60069177A priority Critical patent/JPH0616446B2/en
Publication of JPS61229305A publication Critical patent/JPS61229305A/en
Publication of JPH0616446B2 publication Critical patent/JPH0616446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高い抗磁力及び飽和磁束密度が要求される高
密度記録用磁気記録媒体に用いて好適な金属磁性粉末の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a metal magnetic powder suitable for use in a magnetic recording medium for high density recording, which requires high coercive force and saturation magnetic flux density. is there.

〔発明の概要〕 本発明は、オキシ水酸化鉄を還元して金属磁性粉末を製
造するにあたり、原料として枝分かれのないγ−FeO
OH(レピッドクロサイト)を用いるとともに、これを
脱水して得られる多孔質状態のγ−Fe表面に金
属の水酸化物,酸化物または複合酸化物を被着させ、還
元時の形状の崩れを改善し、針状性を損なうことなく高
い比表面積を有する金属磁性粉末を得ようとするもので
ある。
[Outline of the Invention] In the present invention, in the production of metal magnetic powder by reducing iron oxyhydroxide, γ-FeO having no branching as a raw material is used.
While using OH (lepid crosite), a metal hydroxide, oxide or composite oxide is deposited on the surface of porous γ-Fe 2 O 3 obtained by dehydrating the OH (lepid crosite), and It is intended to improve the shape collapse and obtain a metal magnetic powder having a high specific surface area without impairing the acicularity.

〔従来の技術〕[Conventional technology]

磁気テープや磁気ディスク等の磁気記録媒体としては、
ポリエステルフィルム等の非磁性支持体上に、強磁性体
の微粉末である磁性粉や樹脂結合剤,有機溶剤,各種添
加剤等を混合分散して調製される磁性塗料を塗布して磁
性層を形成した、いわゆる塗布型の磁気記録媒体が多用
されている。そして、この種の磁気記録媒体にあって
は、高密度記録化に対応し高性能化を図るために、抗磁
力Hcの大きなFe,Ni,Co等の強磁性金属あるい
は合金の粉末(金属磁性粉末)が磁性粉として使われる
ようになっている。
As magnetic recording media such as magnetic tapes and magnetic disks,
The magnetic layer is formed by coating a magnetic coating material prepared by mixing and dispersing magnetic powder, which is a fine powder of ferromagnetic material, resin binder, organic solvent, various additives, etc., on a non-magnetic support such as polyester film. The formed so-called coating type magnetic recording medium is often used. In this type of magnetic recording medium, in order to cope with high density recording and to improve performance, powder of ferromagnetic metal or alloy such as Fe, Ni, Co having a large coercive force Hc (metal magnetism) is used. Powder) is used as a magnetic powder.

この金属磁性粉末の製造方法としては、種々の方法があ
るが、例えば特開昭57−63605号公報や特開昭5
7−63606号公報等に記載されるように、オキシ水
酸化鉄を水素等の還元性気流中で還元する還元法が実用
的な方法として知られている。
There are various methods for producing the metallic magnetic powder, and for example, JP-A-57-63605 and JP-A-5-63605.
As described in 7-63606, etc., a reduction method of reducing iron oxyhydroxide in a reducing gas stream such as hydrogen is known as a practical method.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、上述の還元法による場合、原料であるオキシ
水酸化鉄の選択が難しい。すなわち、上記オキシ水酸化
鉄としては、α−FeOOH(ゲータイト)やγ−Fe
OOH(レピッドクロサイト)等が知られているが、α
−FeOOHは枝分かれが発生し易い結晶で、これを出
発原料とする場合には、この枝分かれが焼結の原因とな
り易い。一方、γ−FeOOHは枝分かれのない良好な
針状性を有する粒子であるが、これを出発原料とする場
合には、還元時に形状が崩れ易い。特に、粒子の微細化
を図り比表面積を大きくしていくと、この傾向が顕著で
ある。
By the way, in the case of the above-mentioned reduction method, it is difficult to select iron oxyhydroxide as a raw material. That is, as the iron oxyhydroxide, α-FeOOH (goethite) or γ-Fe
OOH (Lepid Crosite) is known, but α
-FeOOH is a crystal in which branching easily occurs, and when this is used as a starting material, this branching easily causes sintering. On the other hand, γ-FeOOH is a particle having good acicularity without branching, but when it is used as a starting material, the shape is likely to collapse during reduction. In particular, this tendency is remarkable when the particles are made finer and the specific surface area is increased.

そこで本発明は、上述のような実情に鑑みて提案された
ものであって、比表面積が大きく、針状性が良好で、優
れた磁気特性を発揮する金属磁性粉末を得ることが可能
な金属磁性粉末の製造方法を提供することを目的とす
る。
Therefore, the present invention has been proposed in view of the above circumstances, a metal having a large specific surface area, good acicularity, and a metal magnetic powder that exhibits excellent magnetic properties can be obtained. It is an object to provide a method for producing magnetic powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上述の如き目的を達成せんものと長期に亘
り鋭意研究の結果、γ−FeOOHは脱水のみにより針
状性を保持したまま多孔質(マイクロポーラス)なγ−
Feに容易に変換することができ、さらにこのγ
−Fe金属酸化物等または水酸化物を被着するこ
とにより結晶を補強することができ、還元時に形状の崩
れが生ずることがなく微細な金属磁性粉末を作成するこ
とができることを見出し本発明を完成するに至ったもの
であって、γ−FeOOHを150〜250℃で脱水し
比表面積が60〜250m2/gの多孔質なγ−Fe
を得、このγ−Fe表面にCo,Ni,Fe,
Zn,Sn,Ti,Al,Cr,Cu及びMnの水酸化
物,酸化物または複合酸化物から選ばれた化合物を被着
した後、還元性気流中で還元することを特徴とするもの
である。
As a result of earnest research over a long period of time, the inventors of the present invention have achieved the above-mentioned object, and as a result, γ-FeOOH has a porous (microporous) γ-position while maintaining the acicularity only by dehydration.
It can be easily converted to Fe 2 O 3 , and this γ
It was found that the crystal can be reinforced by depositing —Fe 2 O 3 metal oxide or the like or hydroxide, and a fine metal magnetic powder can be produced without causing shape collapse during reduction. The present invention has been completed, and γ-FeOOH was dehydrated at 150 to 250 ° C. to form a porous γ-Fe 2 O having a specific surface area of 60 to 250 m 2 / g.
3 give, Co in the gamma-Fe 2 O 3 surface, Ni, Fe,
It is characterized in that a compound selected from hydroxides, oxides or complex oxides of Zn, Sn, Ti, Al, Cr, Cu and Mn is deposited and then reduced in a reducing air flow. .

本発明においては、先ず、出発原料としてγ−FeOO
H(レピッドクロサイト)を用意する。
In the present invention, first, γ-FeOO is used as a starting material.
Prepare H (Rapid Crosite).

このγ−FeOOHの結晶は、Fe(OH)を20〜
30℃で酸化することにより形成される。このとき、水
ガラス(Si0.5〜1.0原子%)を加えておけば、
得られるγ−FeOOHの粒子サイズを極めて微細にコ
ントロールすることができる。ここでは、後述のγ−F
に変換したときに、このγ−Feの比表
面積が60〜250m2/gとなるようにする。
This γ-FeOOH crystal has a Fe (OH) 2 content of 20-
It is formed by oxidation at 30 ° C. At this time, if water glass (Si 0.5 to 1.0 atomic%) is added,
The particle size of the obtained γ-FeOOH can be controlled extremely finely. Here, γ-F described later
When converted to e 2 O 3 , the specific surface area of γ-Fe 2 O 3 is set to 60 to 250 m 2 / g.

次に、このγ−FeOOHを、150〜250℃程度の
比較的低温で脱水することにより、γ−Feに変
換する。生成するγ−Fe粒子は、γ−FeOO
Hの針状性が維持され、極めて多数の微細孔(マイクロ
ポア)を有する。
Next, this γ-FeOOH is converted to γ-Fe 2 O 3 by dehydration at a relatively low temperature of about 150 to 250 ° C. The γ-Fe 2 O 3 particles produced are γ-FeOO
The acicularity of H is maintained and it has an extremely large number of micropores.

このように、γ−FeOOHは脱水により容易にマイク
ロポアをもったγ−Feとなる。一方、α−Fe
OOH、脱水のみでは、α−Feとなる。このγ
−Feは、α−Feに比較して、コバルト
フェライト等のピネル型化合物の被着が可能になるとい
う利点がある。
Thus, γ-FeOOH easily becomes γ-Fe 2 O 3 having micropores by dehydration. On the other hand, α-Fe
OOH and dehydration alone produce α-Fe 2 O 3 . This γ
-Fe 2 O 3 has an advantage over the α-Fe 2 O 3 in that a pinel type compound such as cobalt ferrite can be deposited.

そして、このような多孔質のγ−Fe粒子に対
し、金属の水酸化物,酸化物または複合酸化物のうち1
種以上を被着し、上記γ−Fe粒子のマイクロポ
アにこれら化合物を充填するとともにその表面を被覆す
る。
Then, for such a porous γ-Fe 2 O 3 particle, one of metal hydroxides, oxides or composite oxides is used.
One or more seeds are applied, and the micropores of the γ-Fe 2 O 3 particles are filled with these compounds and the surface thereof is coated.

上記金属の水酸化物,酸化物または複合酸化物として
は、Co,Ni,Fe,Zn,Sn,Ti,Al,C
r,Cu及びMnの水酸化物,酸化物または複合酸化物
が使用可能である。
Examples of hydroxides, oxides or complex oxides of the above metals include Co, Ni, Fe, Zn, Sn, Ti, Al and C.
Hydroxides, oxides or complex oxides of r, Cu and Mn can be used.

なお、上述の金属の水酸化物,酸化物または複合酸化物
を被着した後、さらにこれらの化合物上をケイ素化合物
(例えば水ガラス等)で被覆して、後述の還元工程時の
焼結(シンタリング)を防止するようにしてもよい。
In addition, after depositing the above-mentioned metal hydroxide, oxide, or composite oxide, further coating these compounds with a silicon compound (for example, water glass, etc.), and sintering at the time of the reduction step described later ( (Sintering) may be prevented.

最後に、上述の化合物を被着したγ−Fe粒子
を、例えば水素ガス等の還元性ガスの気流下で還元して
金属磁性粉末を得る。この還元の温度条件としては、3
75〜450℃程度である。
Finally, the γ-Fe 2 O 3 particles coated with the above compound are reduced under a stream of a reducing gas such as hydrogen gas to obtain metallic magnetic powder. The temperature condition for this reduction is 3
It is about 75 to 450 ° C.

上記γ−Fe粒子は、多数のマイクロポアを有す
るが、これらマイクロポア中には上述の金属の水酸化
物,酸化物または複合酸化物が充填され補強されている
ので、たとえ比表面積が大きな粒子であってもこの還元
時にその形状が崩れることはなく、良好な針状性を有す
る微細な金属磁性粉末を製造することができる。
The γ-Fe 2 O 3 particles have a large number of micropores, and since these micropores are filled with and reinforced with the above-mentioned metal hydroxides, oxides or complex oxides, even if the specific surface area is Even if it is a large particle, its shape does not collapse during this reduction, and it is possible to produce a fine metal magnetic powder having good acicularity.

〔作用〕[Action]

このように、金属磁性粉末の原料としてγ−FeOOH
(レピッドクロサイト)を用い、これを脱水してマイク
ロポアを有するγ−Feに変換し、このマイクロ
ポア中に金属の水酸化物,酸化物または複合酸化物を充
填して結晶を補強しているので、還元時に比表面積の大
きな微細粒子であっても形状の崩れが生ずることはな
く、針状性は維持される。
As described above, γ-FeOOH is used as the raw material of the metallic magnetic powder.
(Lepid crosite) is dehydrated and converted into γ-Fe 2 O 3 having micropores, and the micropores are filled with a metal hydroxide, oxide or composite oxide to be crystallized. Since it reinforces, even if it is fine particles having a large specific surface area, the shape of the fine particles does not collapse, and the acicularity is maintained.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明はこれら実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.

実施例1. 比表面積が130m2/gのγ−FeOOHを温度22
0℃,窒素N気流中で3時間脱水し、マイクロポーラ
スなγ−Fe粒子を得た。得られた粒子の比表面
積は150m2/gであった。
Example 1. Γ-FeOOH having a specific surface area of 130 m 2 / g was used at a temperature of 22
It was dehydrated at 0 ° C. in a nitrogen N 2 stream for 3 hours to obtain microporous γ-Fe 2 O 3 particles. The specific surface area of the obtained particles was 150 m 2 / g.

つづいて、このγ−Fe粒子をNaOH溶液(5
N)中に分散し、Co5原子%相当の塩化コバルト(C
oCl)を投入し、100℃で1時間加熱撹拌した。
Subsequently, the γ-Fe 2 O 3 particles were mixed with a NaOH solution (5
Cobalt chloride (C) equivalent to 5 atomic% Co
oCl 2 ) was added and the mixture was heated with stirring at 100 ° C. for 1 hour.

これを洗浄後、焼結防止のために水ガラス(JIS−1
号)をSiが6原子%となるように投入し、pHを7〜
8に調整して激しく撹拌した。
After washing this, water glass (JIS-1
No.) so that Si is 6 atomic%, and the pH is 7 to
It was adjusted to 8 and stirred vigorously.

さらに、洗浄,濾過,乾燥し、温度500℃,N雰囲
気中で焼結した後、水素H気流中で温度400℃の条
件で4時間還元し、金属磁性粉末を得た。
Further, after washing, filtering and drying, sintering in a N 2 atmosphere at a temperature of 500 ° C., reduction was carried out in a hydrogen H 2 stream at a temperature of 400 ° C. for 4 hours to obtain a magnetic metal powder.

実施例2. 比表面積が68m2/gのγ−FeOOHを温度280
℃,窒素N気流中で1時間脱水し、マイクロポーラス
なγ−Fe粒子を得た。得られた粒子の比表面積
は100m2/gであった。
Example 2. Γ-FeOOH having a specific surface area of 68 m 2 / g is heated at a temperature of 280
Dehydration was carried out in a nitrogen N 2 stream at 1 ° C. for 1 hour to obtain microporous γ-Fe 2 O 3 particles. The specific surface area of the obtained particles was 100 m 2 / g.

つづいて、このγ−Fe粒子をNaOH溶液(5
N)中に分散し、Co10原子%相当のCoFe
ができるように塩化コバルト(CoCl)及び塩化第
1鉄(FeCl)を投入し、100℃で1時間加熱撹
拌した。
Subsequently, the γ-Fe 2 O 3 particles were mixed with a NaOH solution (5
N), CoFe 2 O 3 equivalent to 10 atomic% of Co
Cobalt chloride (CoCl 2 ) and ferrous chloride (FeCl 2 ) were added thereto so that the mixture was heated and stirred at 100 ° C. for 1 hour.

これを洗浄後、焼結防止のために水ガラス(JIS−1
号)をSiが6原子%となるように投入し、pHを7〜
8に調整して激しく撹拌した。
After washing this, water glass (JIS-1
No.) so that Si is 6 atomic%, and the pH is 7 to
It was adjusted to 8 and stirred vigorously.

さらに、洗浄,濾過,乾燥し、温度500℃,N雰囲
気中で焙焼した後、水素H気流中で温度400℃の条
件で4時間還元し、金属磁性粉末を得た。
Further, after washing, filtering and drying, roasting in a N 2 atmosphere at a temperature of 500 ° C., reduction was carried out in a hydrogen H 2 stream at a temperature of 400 ° C. for 4 hours to obtain a metal magnetic powder.

実施例3. 比表面積が130m2/gのγ−FeOOHを温度220
℃,窒素N気流中で2時間脱水し、マイクロポーラス
なγ−Fe粒子を得た。得られた粒子の比表面積
は160m2/gであった。
Example 3. Γ-FeOOH having a specific surface area of 130 m 2 / g is used at a temperature of 220
Dehydration was carried out in a nitrogen N 2 gas stream at a temperature of 2 ° C. for 2 hours to obtain microporous γ-Fe 2 O 3 particles. The specific surface area of the obtained particles was 160 m 2 / g.

つづいて、このγ−Fe粒子をNaOH溶液(5
N)中に分散し、Co5原子%相当の塩化コバルト(C
oCl)を投入し、100℃で1時間加熱撹拌した。
Subsequently, the γ-Fe 2 O 3 particles were mixed with a NaOH solution (5
Cobalt chloride (C) equivalent to 5 atomic% Co
oCl 2 ) was added and the mixture was heated with stirring at 100 ° C. for 1 hour.

これを洗浄後、焼結防止のために水ガラス(JIS−1
号)をSiが6原子%となるように投入し、pHを7〜
8に調整して激しく撹拌した。
After washing this, water glass (JIS-1
No.) so that Si is 6 atomic%, and the pH is 7 to
It was adjusted to 8 and stirred vigorously.

さらに、洗浄,濾過,乾燥し、温度500℃,N雰囲
気中で焙焼した後、水素H気流中で温度370℃の条
件で4時間還元し、金属磁性粉末を得た。
Further, after washing, filtering and drying, roasting in a N 2 atmosphere at a temperature of 500 ° C., reduction was carried out in a hydrogen H 2 stream at a temperature of 370 ° C. for 4 hours to obtain a metal magnetic powder.

比較例. 比表面積95m2/gのγ−FeOOHに対し、脱水をせ
ずにそのまま水ガラスによる表面処理を施した。
Comparative example. Γ-FeOOH having a specific surface area of 95 m 2 / g was directly subjected to surface treatment with water glass without dehydration.

次いで、水素気流中,温度400℃で還元し、金属磁性
酸化物を得た。
Then, it was reduced in a hydrogen stream at a temperature of 400 ° C. to obtain a metal magnetic oxide.

上述の各実施例及び比較例で得られた金属磁性粉末につ
いて、磁気特性及び比表面積を測定した。結果を次表に
示す。
The magnetic properties and the specific surface area of the metal magnetic powders obtained in each of the above Examples and Comparative Examples were measured. The results are shown in the table below.

この表より、本発明の各実施例では、比表面積の極めて
大きな金属磁性粉末が得られ、特に、実施例3において
は、従来の方法では考えられないような大きな比表面積
が達成されたことがわかる。また、各実施例で得られた
金属磁性粉末は、磁気特性にも優れ、針状性も良好なも
のであった。
From this table, in each of the examples of the present invention, a metal magnetic powder having an extremely large specific surface area was obtained, and in particular, in Example 3, a large specific surface area that could not be considered by the conventional method was achieved. Recognize. Further, the metal magnetic powders obtained in the respective examples were also excellent in magnetic properties and had good acicularity.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明によれば、金
属磁性粉末の原料としてγ−FeOOH(レピッドクロ
サイト)を用い、(これを脱水してマイクロポアを有す
るγ−Feに変換し、このマイクロポア中に金属
の水酸化物,酸化物または複合酸化物を充填して結晶を
補強した後、還元しているので、還元時に形状の崩れが
発生することがなく、γ−FeOOHの有する良好な針
状性を維持したまま比表面積の大きな金属磁性粉末を製
造することができる。
As is clear from the above description, according to the present invention, γ-FeOOH (rapid crosite) is used as a raw material of the metallic magnetic powder (γ-Fe 2 O 3 having micropores by dehydrating this). The micropores are filled with metal hydroxides, oxides or composite oxides to reinforce the crystal and then reduced, so that the shape of the micropores does not collapse during the reduction. It is possible to produce a metal magnetic powder having a large specific surface area while maintaining the good acicularity of —FeOOH.

この際、金属磁性粉末の磁気特性を損なうこともなく、
特に例えばコバルトフェライト等のスピネル型化合物や
水酸化コバルト等を用いれば、磁気特性の向上を図るこ
ともできる。
At this time, without impairing the magnetic properties of the magnetic metal powder,
In particular, if spinel type compounds such as cobalt ferrite and cobalt hydroxide are used, the magnetic properties can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】γ−FeOOHを150〜250℃で脱水
し比表面積が60〜250m2/gの多孔質なγ−Fe
を得、 このγ−Fe表面にCo,Ni,Fe,Zn,S
n,Ti,Al,Cr,Cu及びMnの水酸化物,酸化
物または複合酸化物から選ばれた化合物を被着した後、 還元性気流中で還元することを特徴とする金属磁性粉末
の製造方法。
1. Porous γ-Fe 2 having a specific surface area of 60 to 250 m 2 / g obtained by dehydrating γ-FeOOH at 150 to 250 ° C.
O 3 was obtained, and Co, Ni, Fe, Zn, S were formed on the surface of γ-Fe 2 O 3.
Production of metal magnetic powder characterized by depositing a compound selected from hydroxides, oxides or complex oxides of n, Ti, Al, Cr, Cu and Mn, followed by reduction in a reducing air stream Method.
JP60069177A 1985-04-03 1985-04-03 Method for producing metallic magnetic powder Expired - Fee Related JPH0616446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069177A JPH0616446B2 (en) 1985-04-03 1985-04-03 Method for producing metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069177A JPH0616446B2 (en) 1985-04-03 1985-04-03 Method for producing metallic magnetic powder

Publications (2)

Publication Number Publication Date
JPS61229305A JPS61229305A (en) 1986-10-13
JPH0616446B2 true JPH0616446B2 (en) 1994-03-02

Family

ID=13395175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069177A Expired - Fee Related JPH0616446B2 (en) 1985-04-03 1985-04-03 Method for producing metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH0616446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045135C (en) * 1994-03-07 1999-09-15 中国科学院山西煤炭化学研究所 Gama Fe2O3 magnetic powder prepn. method
JP2010083719A (en) * 2008-09-30 2010-04-15 Dowa Metals & Mining Co Ltd Porous maghemite, method for producing tmaghemite and method for treating water to be treated

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233319B2 (en) * 1973-01-12 1977-08-27
JPS52135895A (en) * 1976-05-09 1977-11-14 Toda Kogyo Corp Process for preparing cobaltt modified acicular crystal magnetic ironoxide particle
JPS5853045B2 (en) * 1980-10-01 1983-11-26 関東電化工業株式会社 Manufacturing method of magnetic powder
JPS5932105A (en) * 1982-08-17 1984-02-21 Mitsui Toatsu Chem Inc Novel method of manufacturing ferromagnetic iron powder
JPS59103310A (en) * 1982-10-06 1984-06-14 Ishihara Sangyo Kaisha Ltd Manufacture of cobalt-containing magnetic iron oxide

Also Published As

Publication number Publication date
JPS61229305A (en) 1986-10-13

Similar Documents

Publication Publication Date Title
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPS5835241B2 (en) Method for producing alloy magnetic powder mainly composed of iron and copper
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JPH0616446B2 (en) Method for producing metallic magnetic powder
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
JP2001081506A (en) Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JP2756467B2 (en) Metal magnetic powder for short wavelength magnetic recording medium and magnetic recording medium using the same
JPS6123304A (en) Improved magnetic ion oxide pigment and recording medium
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPS62204B2 (en)
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JP2002050508A (en) Method of manufacturing magnetic powder
JPS5813008B2 (en) Manufacturing method of magnetic iron powder
JP3020374B2 (en) Method for producing cobalt-containing magnetic iron oxide powder
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP3242102B2 (en) Magnetic powder and method for producing the same
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3244830B2 (en) Cobalt-containing magnetic iron oxide powder and method for producing the same
JP2000203847A (en) Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees