JPH06164285A - Manufacture of thickness-shear crystal vibrator - Google Patents

Manufacture of thickness-shear crystal vibrator

Info

Publication number
JPH06164285A
JPH06164285A JP18510393A JP18510393A JPH06164285A JP H06164285 A JPH06164285 A JP H06164285A JP 18510393 A JP18510393 A JP 18510393A JP 18510393 A JP18510393 A JP 18510393A JP H06164285 A JPH06164285 A JP H06164285A
Authority
JP
Japan
Prior art keywords
axis
crystal
angle
degrees
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18510393A
Other languages
Japanese (ja)
Other versions
JP2545692B2 (en
Inventor
Tetsuo Konno
哲郎 今野
Hirofumi Yanagi
弘文 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP5185103A priority Critical patent/JP2545692B2/en
Publication of JPH06164285A publication Critical patent/JPH06164285A/en
Application granted granted Critical
Publication of JP2545692B2 publication Critical patent/JP2545692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To manufacture a thickness-shear crystal vibrator remarkably small and having stable principal vibration characteristic easily and with high production efficiency. CONSTITUTION:An ordinary AT cut crystal master plate 22 provided with coordinates(X, Y', Z') in which X'-axis and Y'-axis are set by rotating Y-axis and Z-axis by about 35 deg. around the X-axis of crystal is used, and thickness can be uniformalized along the Z'-axis and it can be thinned as advancing from a center part to both terminal parts by applying cylindrical surface working to the plane on one side of the crystal master plate 22 along the direction of Z'-axis. Thence, X''-axis and Z''-axis are set by rotating the X-axis and Z'-axis by an angle (phi) (phi=3-30 deg.) around the Y'-axis, and the crystal master plate is divided into plural pieces along a cut plane set so as to be parallel with the X''-axis and also to incline by a prescribed angle (zeta) in the direction of Z''-axis for the plane of X''-axis-Y'-axis. In such a case, the angle (phi) is set at about 15 deg., and correspondingly, the angle (zeta) is set at about 5 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は厚みすべり振動を行なう
水晶振動子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a crystal unit that vibrates in thickness shear.

【0002】[0002]

【従来の技術とその問題点】従来、厚みすべり振動を行
なう水晶振動子として、円板状のATカット水晶振動子
があった。このATカット水晶振動子は、周波数温度特
性が優れているため広く普及されているが、小型化が困
難であるという欠点を持っていた。
2. Description of the Related Art Conventionally, there has been a disk-shaped AT-cut crystal resonator as a crystal resonator that causes thickness shear vibration. This AT-cut crystal oscillator is widely used because of its excellent frequency-temperature characteristics, but it has a drawback that it is difficult to miniaturize it.

【0003】また、矩形形状のATカット水晶振動子も
提案されている。しかしこれにおいても、水晶振動子を
小型化して、水晶片の幅と厚みの比、すなわち辺比を小
さくすると、主振動レベルが低下するとともに不要振動
の数およびレベルが増大し、主振動特性が低下して実用
には不適であった。
A rectangular AT-cut crystal oscillator has also been proposed. However, even in this case, when the crystal unit is downsized to reduce the width-thickness ratio of the crystal element, that is, the side ratio, the main vibration level is lowered and the number and level of unnecessary vibrations are increased, and the main vibration characteristics are It fell and was not suitable for practical use.

【0004】さらに、水晶片の側面を約5度傾斜させた
矩形状ATカット水晶振動子が提案されている。これ
は、輪郭系振動との結合を小さくすることによって主振
動特性の低下を防止しようとしたものであるが、この水
晶振動子においても、小型化していくと主振動レベルが
低下してしまうという欠点は解消されなかった。
Further, a rectangular AT-cut crystal resonator in which the side surface of the crystal piece is inclined by about 5 degrees has been proposed. This is intended to prevent the main vibration characteristic from being deteriorated by reducing the coupling with the contour system vibration. However, even in this crystal unit, the main vibration level is lowered as the size is reduced. The drawbacks were not eliminated.

【0005】このように従来は、いずれの方法において
も主振動特性を低下させずに小型化可能な水晶振動子を
製造することは困難であった。
As described above, it has heretofore been difficult to manufacture a crystal unit that can be miniaturized without deteriorating the main vibration characteristic by any of the methods.

【0006】[0006]

【発明の目的】本発明の目的は、主振動レベルを低下さ
せることなく極めて小型化することが可能な厚みすべり
水晶振動子、および輪郭系の不要振動群を主振動領域か
ら遠ざけることができ、主振動にて安定的に発振できる
厚みすべり水晶振動子を、簡単かつ生産効率よく製造す
る方法を提供することにある。
It is an object of the present invention to allow a thickness-sliding quartz crystal resonator, which can be extremely miniaturized without lowering the main vibration level, and an unnecessary vibration group of a contour system, to be kept away from the main vibration region. An object of the present invention is to provide a method for easily and efficiently manufacturing a thickness-sliding quartz crystal resonator that can oscillate stably with main vibration.

【0007】[0007]

【目的を達成するための手段】上記目的を達成するため
に本発明では、水晶のX軸と、このX軸を中心としてY
軸をZ軸方向に約35度だけ回転して設定されたY´軸
と、Y´軸と同様に回転して設定されたZ´軸とに各片
が沿うように形成された矩形状のATカット水晶原板を
用い、水晶原板が、Z´軸方向に沿って均一な厚さにな
るとともにX軸方向に沿って中央部から両端部に行くに
従って薄くなるように加工し、この水晶原板において、
Y´軸を中心としてX軸およびZ軸を所定角度φだけそ
れぞれ回転してX″軸およびZ″軸を設定し、X″軸方
向に平行でかつX″軸−Y´軸平面に対しZ″軸方向に
所定角度ζだけ傾斜するように設定した切断面に沿っ
て、水晶原板を複数個に分割することを特徴とするもの
である。
In order to achieve the above object, according to the present invention, the X axis of the crystal and the Y axis with the X axis as the center.
A rectangular shape in which each piece is formed along a Y'axis set by rotating the axis about 35 degrees in the Z-axis direction and a Z'axis set by rotating in the same manner as the Y'axis. Using an AT-cut quartz crystal blank, the quartz crystal blank is processed to have a uniform thickness along the Z′-axis direction and become thinner along the X-axis direction from the center to both ends. ,
The X ″ axis and the Z ″ axis are set by rotating the X axis and the Z axis about the Y ′ axis by a predetermined angle φ, respectively, and the Z ″ axis and the Z ″ axis are parallel to the X ″ axis direction and Z ′ with respect to the X ″ axis-Y ′ axis plane. It is characterized in that the original quartz plate is divided into a plurality of pieces along a cutting surface set to be inclined by a predetermined angle ζ in the axial direction.

【0008】なお、角度φは3度ないし30度の範囲内
で設定されており、角度ζは角度φに対応して定められ
るものである。
The angle φ is set within the range of 3 degrees to 30 degrees, and the angle ζ is determined in correspondence with the angle φ.

【0009】[0009]

【作用】本発明により製造した棒状の厚みすべり水晶振
動子は、従来よりも小型化しても、輪郭系の振動との結
合が疎にできるとともに、主振動の共振レベルが高くな
るため、安定した発振が行なえる。
The rod-shaped thickness-sliding quartz crystal oscillator manufactured according to the present invention is stable even if it is made smaller than the conventional one, because the coupling with the vibration of the contour system can be loosened and the resonance level of the main vibration becomes high. It can oscillate.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。ま
ず、本発明の方法により製造した厚みすべり水晶振動子
について説明する。図1に示すX軸,Y軸,Z軸は、そ
れぞれ水晶の電気軸、機械軸、光軸である。ここで、本
発明において用いているATカット水晶原板の座標軸
は、X軸を中心として、Y軸をZ軸方向に角度θだけ回
転して設定したY´軸と、Z軸を同方向に角度θだけ回
転して設定したZ´軸となっている。この角度θは約3
5度である。
EXAMPLES Examples of the present invention will be described below. First, the thickness-sliding quartz crystal resonator manufactured by the method of the present invention will be described. The X axis, Y axis, and Z axis shown in FIG. 1 are the electric axis, mechanical axis, and optical axis of the crystal, respectively. Here, the coordinate axes of the AT-cut quartz crystal original plate used in the present invention are the Y ′ axis set by rotating the Y axis in the Z axis direction by an angle θ with the X axis as the center, and the Z axis in the same direction. The Z'axis is set by rotating by θ. This angle θ is about 3
It is 5 degrees.

【0011】このようなATカット水晶原板の座標軸
(X,Y´,Z´)から、本発明ではさらに回転した座
標軸を設定している。すなわち、Y´軸を中心として、
X軸をZ´軸方向に角度φだけ回転してX″軸が設定さ
れ、Z´軸を同方向に角度φだけ回転してZ″軸が設定
される。角度φは3度〜30度の範囲に設定される。
In the present invention, further rotated coordinate axes are set based on the coordinate axes (X, Y ', Z') of such an AT-cut crystal original plate. That is, with the Y'axis as the center,
The X ″ axis is set by rotating the X axis in the Z ′ axis direction by an angle φ, and the Z ″ axis is set by rotating the Z ′ axis in the same direction by an angle φ. The angle φ is set in the range of 3 degrees to 30 degrees.

【0012】図1〜5に、本発明に係る製造方法により
製造した水晶片1を示している。なお、以下の実施例に
おいては、長さLが約6mm、幅wが約1mm、厚さt
が約0.4mm、辺比(幅w/厚さt)が2.5の水晶
片を製造した例を示している。
1 to 5 show a crystal piece 1 manufactured by the manufacturing method according to the present invention. In the following examples, the length L is about 6 mm, the width w is about 1 mm, and the thickness t.
Is about 0.4 mm and the side ratio (width w / thickness t) is 2.5.

【0013】この水晶片1は、その長手方向がX″軸方
向に一致し、主面1bは、X″軸−Z″平面に平行に形
成されており、もう一つの主面1aはX″軸−Z″平面
に平行な面からY´軸方向に凸状の曲面に形成されてい
る。すなわち、水晶片1の一方の主面1aが、Z´軸に
平行な円柱の側面の一部をなすように研磨加工されて形
成されている。これによって、主面1aは、Z´軸方向
に沿って均一な厚みとなるとともに、X″軸方向に沿っ
て、中央部が厚く両端部に行くに従って薄くなるシリン
ドリカル形状になっている。そして、長手方向の側面1
c,1dは、X″軸−Y´軸平面に対し、角度ζだけ
Z″方向へ傾斜している。本発明においては、角度ζは
1度〜6度の範囲において、角度φに基づき図6の関係
より決定される。水晶片1の端面1e,1fは、Y´軸
−Z″軸平面に平行になるように加工されている。図
3,5に示すように、円柱面加工がZ´軸方向に行なわ
れるため、端面1e,1fにおいては、厚さの変化が生
じている。
In the crystal piece 1, the longitudinal direction thereof coincides with the X "axis direction, the main surface 1b is formed parallel to the X" axis-Z "plane, and the other main surface 1a is X". It is formed into a convex curved surface in the Y′-axis direction from a plane parallel to the axis −Z ″ plane. That is, one main surface 1a of the crystal blank 1 is a part of a side surface of a cylinder parallel to the Z ′ axis. Thus, the main surface 1a has a uniform thickness along the Z'-axis direction, and has a thick central portion at both end portions along the X "-axis direction. It has a cylindrical shape that becomes thinner as it goes. And the longitudinal side surface 1
c and 1d are inclined in the Z ″ direction by an angle ζ with respect to the X ″ -axis-Y ′ axis plane. In the present invention, the angle ζ is determined from the relationship of FIG. 6 based on the angle φ within the range of 1 degree to 6 degrees. The end faces 1e and 1f of the crystal blank 1 are processed so as to be parallel to the Y'axis-Z "axis plane. As shown in FIGS. 3 and 5, cylindrical surface processing is performed in the Z'axis direction. In the end faces 1e and 1f, the thickness changes.

【0014】図7〜9には、上記のような水晶片の製造
工程を示している。まず、水晶から切断角度約35度に
て切出した通常のATカット水晶原板22を用意する。
そしてこのATカット水晶原板22の一方の面に、Z´
軸方向に沿って円柱面加工を行なった後、角度φ,ζを
もって斜めに切断する。このようにして切断した水晶片
21は、長手方向が、X軸をZ´軸方向に角度φだけ回
転させたX″軸に一致しており、一方の主面21aは上
記の円柱面加工によって、Z´軸に沿って厚みが均一
で、X軸に沿って中央部から両端部に行くに従って厚み
が薄くなるように形成されている。また水晶片21の長
手方向の側面(この面が切断面となる。)21c,21
dは、X″軸−Y´軸平面に対しZ″軸方向に角度ζだ
け傾斜している。そして端面21e,21fは、Y´軸
−Z´軸平面と平行になっている。なお、この実施例に
おいては、角度φ=約15度としており、図2の関係に
基づいて角度ζは約5度に設定している。このようにし
て水晶片21を製造する場合、通常市販されているAT
カット水晶原板から多数の水晶片21を容易に得ること
ができ、生産効率がよい。
7 to 9 show a manufacturing process of the above crystal piece. First, a normal AT-cut crystal original plate 22 cut out from a crystal at a cutting angle of about 35 degrees is prepared.
Then, on one surface of this AT-cut crystal original plate 22, Z '
After the cylindrical surface is machined along the axial direction, it is cut obliquely at angles φ and ζ. The crystal piece 21 cut in this manner has its longitudinal direction aligned with the X ″ axis obtained by rotating the X axis in the Z ′ axis direction by an angle φ, and one main surface 21a is formed by the above cylindrical surface processing. , Z ′ axis has a uniform thickness, and the thickness decreases from the central portion toward both ends along the X axis. 21c, 21
d is inclined by an angle ζ in the Z ″ -axis direction with respect to the X ″ -axis-Y′-axis plane. The end faces 21e and 21f are parallel to the Y'axis-Z'axis plane. In this embodiment, the angle φ is about 15 degrees, and the angle ζ is set to about 5 degrees based on the relationship shown in FIG. When the crystal blank 21 is manufactured in this manner, an AT that is usually commercially available
A large number of crystal pieces 21 can be easily obtained from the cut crystal original plate, and the production efficiency is good.

【0015】また、このようにして得た水晶片21の端
面21e,21fを研磨加工などしてZ″軸と平行にす
ることもできる。こうすると、前述の実施例の水晶片1
と同形状の水晶片となり、長手方向の側面と幅方向の側
面とが直交するため保持構造などが簡単になる。
The end faces 21e, 21f of the crystal piece 21 thus obtained can be made parallel to the Z ″ axis by polishing or the like.
The crystal piece has the same shape as that of (1), and the side surface in the longitudinal direction and the side surface in the width direction are orthogonal to each other, which simplifies the holding structure.

【0016】なお、上記実施例の水晶片21において、
両主面にそれぞれ円柱面加工を施すこともできる。そう
すると、両端部の厚さをさらに薄くすることができる。
この場合は円柱面加工の際の曲率半径を大きくする必要
がある。
In the crystal piece 21 of the above embodiment,
Cylindrical surface processing can be applied to both main surfaces. Then, the thickness of both ends can be further reduced.
In this case, it is necessary to increase the radius of curvature when machining the cylindrical surface.

【0017】図10〜13に本発明に係る水晶片の第3
の例を示している。この水晶片31は、上記の例よりも
辺比w/tを大きくし、角度φ=約10度、角度ζ=約
5.1度に設定した。そして、水晶素片の両側部を傾斜
面に加工するベベル加工をZ´軸に沿って施して形成さ
れたものである。これによって、水晶片31は、Z´軸
に沿って厚さが均一になり、両端部はX軸に沿って端縁
方向へ行くに従って厚さが薄くなっている。そして、水
晶片31は、長手方向がX″軸方向と一致しており、主
面31a,31bは両端部がベベル加工されている。長
手方向の側面31c,31dは、X″軸−Y´軸平面に
対し、Z″軸方向に角度ζだけ傾斜している。端面31
e,31fはY´軸−Z″軸平面と平行になるように加
工されている。なお、ベベル加工は一方の主面にのみ行
なってもよい。また、端面は、Y´軸−Z´軸平面と平
行なままにしてもよい。
FIGS. 10 to 13 show a third crystal piece according to the present invention.
Shows an example of. The crystal piece 31 has a larger side ratio w / t than in the above example, and the angle φ is set to about 10 degrees and the angle ζ is set to about 5.1 degrees. Then, it is formed by performing bevel processing for processing both sides of the crystal element into inclined surfaces along the Z ′ axis. As a result, the crystal piece 31 has a uniform thickness along the Z ′ axis, and both end portions have a thickness that decreases toward the edge along the X axis. The crystal piece 31 has its longitudinal direction aligned with the X ″ -axis direction, and both ends of the principal surfaces 31a and 31b are beveled. The side surfaces 31c and 31d in the longitudinal direction have X ″ -axis-Y ′. The end surface 31 is inclined with respect to the axial plane in the Z ″ -axis direction by an angle ζ.
e and 31f are processed so as to be parallel to the Y′-axis-Z ″ -axis plane. The beveling may be performed on only one of the main surfaces. The end surfaces are Y′-axis-Z ′. It may remain parallel to the axial plane.

【0018】図14〜17に本発明の第4の実施例を示
している。この水晶片41の製造にあたっては、Y軸を
中心にして、X軸をZ´軸の反対方向に角度φだけ回転
してX″軸が設定され、Z軸を同方向に角度φだけ回転
してZ″軸が設定されている。この実施例においては、
角度φが約5度で角度ζが5度強に設定している。そし
て、このZ″軸に沿って、水晶片41の両主面41a,
41bにバイシリンドリカル加工を施している。これに
よって、水晶片41はZ″軸に沿って厚さが均一にな
り、X″軸に沿って中央部から両端部に行くに従って薄
く形成されている。長手方向の側面41c,41dは
X″軸−Y´軸平面に対しZ″軸方向に角度ζだけ傾斜
している。端面41e,41fは、Y´軸−Z″軸平面
に平行になるように加工されている。
14 to 17 show a fourth embodiment of the present invention. In manufacturing the crystal piece 41, the X ″ axis is set by rotating the X axis in the direction opposite to the Z ′ axis by an angle φ about the Y axis, and the Z axis is rotated in the same direction by an angle φ. Z ″ axis is set. In this example,
The angle φ is set to about 5 degrees and the angle ζ is set to slightly more than 5 degrees. Then, along the Z ″ axis, both main surfaces 41a of the crystal piece 41,
41b is bicylindrical processed. As a result, the crystal piece 41 has a uniform thickness along the Z ″ axis and is formed thinner along the X ″ axis from the center to both ends. The longitudinal side surfaces 41c and 41d are inclined with respect to the X "-axis-Y'-axis plane in the Z" -axis direction by an angle ζ. The end faces 41e and 41f are processed so as to be parallel to the Y′-axis-Z ″ -axis plane.

【0019】水晶は三方晶系に属するため、X″軸,
Z″軸を設定する際に、Y軸を中心にして3〜30度の
範囲で、X軸およびZ´軸をどちら側へ回転しても同様
な効果を呈することができる。
Since quartz belongs to the trigonal system, the X ″ axis,
When the Z ″ axis is set, the same effect can be obtained by rotating the X axis and the Z ′ axis to either side within the range of 3 to 30 degrees around the Y axis.

【0020】本発明に係る水晶片は上記のように形成さ
れる。次にこの駆動方法について図18,19を参照し
て説明する。
The crystal piece according to the present invention is formed as described above. Next, this driving method will be described with reference to FIGS.

【0021】水晶片11の両主面11a,11bの中央
部には、駆動電極12,13がそれぞれ蒸着などにより
形成されており、駆動電極12,13からは引出電極1
2a,13aが、水晶片11の端部まで延出されてい
る。駆動電極に電界を印加すると、水晶片11は発振す
る。この駆動方法については、上記第1〜4の実施例に
おける水晶片すべてに関して同様である。
Driving electrodes 12 and 13 are respectively formed on the central portions of both main surfaces 11a and 11b of the crystal blank 11 by vapor deposition or the like. From the driving electrodes 12 and 13, the extraction electrode 1 is formed.
2a and 13a are extended to the end of the crystal piece 11. When an electric field is applied to the drive electrodes, the crystal blank 11 oscillates. This driving method is the same for all the crystal pieces in the first to fourth embodiments.

【0022】本出願人は様々な条件で実験を行なってい
る。まず、そのうちの2つの例について、図20,図2
1を参照して説明する。これらの実験においては、第1
の実施例において示した水晶片11と同様に、長さL=
約6mm,厚さt=約0.4mmの水晶片の一方の主面
にシリンドリカル加工を施して形成したものを用いた。
The applicant has conducted experiments under various conditions. First, FIG. 20 and FIG.
This will be described with reference to FIG. In these experiments,
In the same manner as the crystal piece 11 shown in the embodiment of FIG.
A crystal piece having a thickness of about 6 mm and a thickness t of about 0.4 mm was formed by cylindrically processing one main surface of the crystal piece.

【0023】第1の実験として、角度φ=約15度、角
度ζ=約5度の条件に基づいて形成した上記の水晶片の
共振周波数を測定した。この水晶片の幅wと共振周波数
との関係を図20に示している。なお、このグラフ中
で、×は主振動を示し、この×と重なる〇の大きさは共
振レベルの高さを示している。他の〇は副振動を示し、
共振レベルが低い振動は点で示している。この結果を見
ると、幅wが1mm付近および1.35mm付近におい
て、主振動の共振レベルが非常に高く、主振動に近接し
た副振動は少なく、最も良好な振動特性を示すことがわ
かる。しかし、それ以外の範囲においても、幅wが1.
55mmよりも小さいものは概ね良好な振動特性を示し
ている。
As a first experiment, the resonance frequency of the above crystal piece formed under the conditions of angle φ = about 15 degrees and angle ζ = about 5 degrees was measured. The relationship between the width w of the crystal piece and the resonance frequency is shown in FIG. In this graph, x indicates the main vibration, and the size of ◯ overlapping this x indicates the height of the resonance level. Other circles indicate secondary vibration,
Vibrations with low resonance levels are indicated by dots. From these results, it can be seen that the resonance level of the main vibration is very high and the sub-vibrations close to the main vibration are small and the best vibration characteristics are exhibited in the widths w near 1 mm and around 1.35 mm. However, the width w is 1.
Those smaller than 55 mm generally show good vibration characteristics.

【0024】第2の実験においては、角度φ=約30
度、角度ζ=約4.5度の条件に基づいて形成した上記
の水晶片の共振周波数を測定した。この水晶片の幅wと
共振周波数との関係を図21に示しており、グラフ中の
記号は図20に示したものと同様である。これによると
幅wが0.95mm〜1.35mm程度の範囲におい
て、主振動の共振レベルが高く、主振動に近接する副振
動は少なく振動特性が優れている。特に1.25mm以
下において顕著である。
In the second experiment, the angle φ = about 30
The resonance frequency of the above-mentioned crystal piece formed under the condition of the angle and angle ζ = about 4.5 degrees was measured. The relationship between the width w of the crystal piece and the resonance frequency is shown in FIG. 21, and the symbols in the graph are the same as those shown in FIG. According to this, when the width w is in the range of about 0.95 mm to 1.35 mm, the resonance level of the main vibration is high, the secondary vibration close to the main vibration is small, and the vibration characteristics are excellent. Especially, it is remarkable at 1.25 mm or less.

【0025】本出願人は、上記第1,第2の実験以外に
も様々な条件において実験を行なった。次に、図22〜
28に示す実験について説明する。これらのグラフにお
いて、縦軸は共振レベルの大きさを示し、横軸は周波数
を示している。
The applicant of the present invention conducted experiments under various conditions other than the above first and second experiments. Next, from FIG.
The experiment shown in 28 will be described. In these graphs, the vertical axis represents the size of the resonance level and the horizontal axis represents the frequency.

【0026】図22は、従来の水晶振動子すなわち角度
φが0度のものについて、幅wを約1.00mmとした
場合の共振レベルの測定結果である。これによると、主
振動Aの共振レベルは十分高いものの、主振動と近接す
る周波数の副振動Bの共振レベルが大きく実用に不適で
あることがわかる。
FIG. 22 shows the measurement result of the resonance level when the width w is set to about 1.00 mm in the conventional crystal oscillator, that is, the one in which the angle φ is 0 degree. According to this, although the resonance level of the main vibration A is sufficiently high, the resonance level of the sub-vibration B having a frequency close to the main vibration is large and is not suitable for practical use.

【0027】図23〜27は角度φが5度,10度,1
5度,30度,45度の水晶振動子について、幅wを約
1.00mmとした場合のそれぞれの測定結果を示した
ものである。これらは全て主振動Aの共振レベルが十分
大きく、この主振動に近接する周波数の副振動は殆どな
く実用に適していることがわかる。図28に示すφ=約
30度の場合にやや大きめの副振動Bが見られるが、こ
れも主振動Aから離れているため、実用に支障はないと
みなされる。
23 to 27, the angle φ is 5 °, 10 °, 1
It shows the respective measurement results when the width w was set to about 1.00 mm for the crystal oscillators of 5 degrees, 30 degrees, and 45 degrees. It can be seen that all of them have a sufficiently high resonance level of the main vibration A, and there is almost no sub-vibration having a frequency close to this main vibration, which is suitable for practical use. When φ = about 30 degrees shown in FIG. 28, a slightly larger auxiliary vibration B is seen, but since this is also away from the main vibration A, it is considered that there is no problem in practical use.

【0028】そして、図28には角度φが60度で幅が
約1.00mmの水晶振動子についての測定結果を示し
ている。主振動Aの共振レベルは高いけれどもこれと近
接する副振動Bの共振レベルが大きいため、実用には不
適である。
Then, FIG. 28 shows the measurement results for the crystal unit having an angle φ of 60 degrees and a width of about 1.00 mm. Although the resonance level of the main vibration A is high, the resonance level of the sub-vibration B adjacent thereto is large, which is not suitable for practical use.

【0029】次に図29に示すグラフについて説明す
る。このグラフは、長さLが約5.90mm,幅wが約
1.00mmで、角度φが0度,5度,10度,15
度,30度,45度の水晶振動子について、それぞれク
リスタルインピーダンス(以下「CI値」という。)を
測定した結果を示している。なお、測定値にばらつきが
あったのでその中央付近を〇で示し、ばらつきの範囲を
実線で示している。また、比較例として従来実用に供さ
れている水晶振動子、すなわち、幅wが1.67mm前
後で角度φが0度の水晶振動子のCI値およびそのばら
つきの範囲を△および破線で示している。なお、CI値
は主振動レベルが高い程小さくなるものであり、この値
が小さい程実用に適するものである。
Next, the graph shown in FIG. 29 will be described. This graph shows that the length L is about 5.90 mm, the width w is about 1.00 mm, and the angles φ are 0 degrees, 5 degrees, 10 degrees, and 15 degrees.
The results of measuring the crystal impedance (hereinafter referred to as "CI value") of the crystal oscillators of 30 degrees, 30 degrees, and 45 degrees are shown. Since there were variations in the measured values, the area near the center is indicated by a circle, and the range of variation is indicated by a solid line. Further, as a comparative example, a CI value and a range of its variation of a crystal resonator conventionally used for practical use, that is, a crystal resonator having a width w of about 1.67 mm and an angle φ of 0 degree are shown by Δ and a broken line. There is. The CI value decreases as the main vibration level increases, and the smaller the value, the more suitable it is for practical use.

【0030】このグラフより明らかなように、角度φが
0度である従来の水晶振動子においては、幅wが1.6
7mm前後の大きさのものはCI値が十分低く実用に適
していたが、幅wが約1.00mmと小さい場合にはC
I値が高過ぎて使用不能であるため、水晶振動子の小型
化はできなかった。これに対して、角度φが5度,10
度,15度,30度のものは、幅wが1.00mm前後
であってもCI値が小さく十分実用に適している。ただ
し、角度φが45度のものは、CI値が高く、実用には
適さないことがわかった。
As is clear from this graph, in the conventional crystal unit having the angle φ of 0 degree, the width w is 1.6.
The size of about 7 mm had a sufficiently low CI value and was suitable for practical use, but when the width w was as small as about 1.00 mm, C
Since the I value was too high to be used, the crystal unit could not be miniaturized. On the other hand, the angle φ is 5 degrees, 10
Degrees of 15 degrees and 30 degrees have a small CI value and are sufficiently suitable for practical use even if the width w is around 1.00 mm. However, it was found that the one having an angle φ of 45 degrees had a high CI value and was not suitable for practical use.

【0031】このように、図22〜28に示す測定結果
と図29に示す測定結果とを総合し、実験誤差やばらつ
きを考慮に入れると、水晶振動子の角度φが3〜30度
程度の範囲にあるときに、幅wを約1.00mmまで小
さくできると判断できる。
As described above, when the measurement results shown in FIGS. 22 to 28 and the measurement results shown in FIG. 29 are combined and the experimental error and variations are taken into consideration, the angle φ of the crystal oscillator is about 3 to 30 degrees. When it is within the range, it can be determined that the width w can be reduced to about 1.00 mm.

【0032】主振動の共振レベルや副振動の数およびレ
ベルの点から、実用に最適な角度φと角度ζとの組み合
わせを実験的に求め、グラフにプロットしたものが図6
である。このグラフより、上記のように角度φが3度〜
30度の範囲内にあるときの角度ζは1度〜6度の範囲
にあることがわかる。なお、角度ζの範囲が5度前後で
あることは、従来品とほぼ同じである。
From the points of resonance level of the main vibration and the number and level of the sub vibrations, the optimum combination of the angle φ and the angle ζ for practical use is experimentally obtained and plotted in the graph in FIG.
Is. From this graph, the angle φ is 3 degrees as described above.
It can be seen that the angle ζ when in the range of 30 degrees is in the range of 1 degree to 6 degrees. Note that the range of the angle ζ is about 5 degrees, which is almost the same as the conventional product.

【0033】以上のように、角度φ=3〜30度の範囲
の水晶振動子は、主振動の共振レベルが高くかつ主振動
に近接する副振動は少なく、またCI値が低く、実用的
に十分な性能を有することが明らかになった。
As described above, the crystal oscillator in the range of the angle φ = 3 to 30 degrees has a high resonance level of the main vibration, few secondary vibrations close to the main vibration, and a low CI value, and is practically used. It became clear that it had sufficient performance.

【0034】なお、従来のATカット水晶原板と同様
に、本発明における角度θは34度〜36度の範囲であ
り、角度ζは1〜6度の範囲である。
The angle θ in the present invention is in the range of 34 to 36 degrees, and the angle ζ is in the range of 1 to 6 degrees, as in the case of the conventional AT-cut crystal original plate.

【0035】以上のように、本発明によると辺比が小さ
く主振動特性の優れた水晶振動子が得られる。従って、
水晶振動子の幅を小さくしても、主振動特性が低下する
ことがないため、従来よりも小型化することが可能であ
る。
As described above, according to the present invention, a crystal resonator having a small side ratio and excellent main vibration characteristics can be obtained. Therefore,
Even if the width of the crystal unit is reduced, the main vibration characteristic does not deteriorate, so that the crystal unit can be made smaller than the conventional one.

【0036】[0036]

【発明の効果】以上のように本発明によると、極めて小
型で、主振動領域から不要振動をほとんど除去して、主
振動特性を安定化することができる厚みすべり水晶振動
子を、容易かつ生産効率よく製造することができる。そ
してこの厚みすべり水晶振動子は、製造上の公差を大き
くしても、安定した発振を行なうことができる。
As described above, according to the present invention, it is possible to easily and easily produce a thickness-sliding quartz crystal resonator which is extremely small in size and which can eliminate unnecessary vibrations from the main vibration region and stabilize the main vibration characteristics. It can be manufactured efficiently. The thickness-slipped quartz crystal resonator can stably oscillate even if the manufacturing tolerance is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法により製造した水晶片を示す
斜視図
FIG. 1 is a perspective view showing a crystal piece manufactured by a method according to the present invention.

【図2】図1に示す水晶片の正面図FIG. 2 is a front view of the crystal piece shown in FIG.

【図3】図1に示す水晶片の側面図FIG. 3 is a side view of the crystal piece shown in FIG.

【図4】図1に示す水晶片の底面図4 is a bottom view of the crystal piece shown in FIG. 1. FIG.

【図5】図2のS−S線矢視図5 is a view taken along the line SS in FIG.

【図6】角度φと角度ζの関係を示すグラフFIG. 6 is a graph showing the relationship between angle φ and angle ζ.

【図7】本発明に係る水晶片の製造方法を示す説明図FIG. 7 is an explanatory view showing a method for manufacturing a crystal piece according to the present invention.

【図8】図7に示す方法により製造した水晶片の側面図8 is a side view of a crystal piece manufactured by the method shown in FIG.

【図9】図7のT−T線矢視図9 is a view taken along the line TT of FIG.

【図10】水晶片の他の実施例の正面図FIG. 10 is a front view of another embodiment of the crystal piece.

【図11】図10に示す水晶片の側面図11 is a side view of the crystal piece shown in FIG.

【図12】図10に示す水晶片の底面図FIG. 12 is a bottom view of the crystal piece shown in FIG.

【図13】図10のU−U線矢視図13 is a view taken along the line UU of FIG.

【図14】水晶片のさらに他の実施例の正面図FIG. 14 is a front view of still another embodiment of the crystal piece.

【図15】図14に示す水晶片の側面図FIG. 15 is a side view of the crystal piece shown in FIG.

【図16】図14に示す水晶片の底面図16 is a bottom view of the crystal piece shown in FIG.

【図17】図14のV−V線矢視図FIG. 17 is a view taken along the line VV of FIG.

【図18】水晶片に駆動電極を形成した水晶振動子の正
面図
FIG. 18 is a front view of a crystal unit in which drive electrodes are formed on a crystal piece.

【図19】図18に示す水晶振動子の背面図19 is a rear view of the crystal unit shown in FIG.

【図20】角度φ=約15度の水晶振動子の幅と共振周
波数との関係図
FIG. 20 is a relationship diagram between the width and the resonance frequency of a crystal unit with an angle φ of about 15 degrees.

【図21】角度φ=約30度の他の水晶振動子の幅と共
振周波数の関係図
FIG. 21 is a diagram showing the relationship between the width and the resonance frequency of another crystal unit having an angle φ of about 30 degrees.

【図22】角度φ=0度の水晶振動子の共振レベルと周
波数との関係図
FIG. 22 is a diagram showing the relationship between the resonance level and the frequency of a crystal unit with an angle φ = 0 degree.

【図23】角度φ=5度の水晶振動子の共振レベルと周
波数との関係図
FIG. 23 is a relationship diagram between a resonance level and a frequency of a crystal unit with an angle φ = 5 degrees.

【図24】角度φ=10度の水晶振動子の共振レベルと
周波数との関係図
FIG. 24 is a relationship diagram between a resonance level and a frequency of a crystal unit with an angle φ = 10 degrees.

【図25】角度φ=15度の水晶振動子の共振レベルと
周波数との関係図
FIG. 25 is a relationship diagram between a resonance level and a frequency of a crystal unit with an angle φ = 15 degrees.

【図26】角度φ=30度の水晶振動子の共振レベルと
周波数との関係図
FIG. 26 is a relationship diagram between the resonance level and the frequency of the crystal unit with an angle φ = 30 degrees.

【図27】角度φ=45度の水晶振動子の共振レベルと
周波数との関係図
FIG. 27 is a relationship diagram between the resonance level and the frequency of a crystal unit with an angle φ = 45 degrees.

【図28】角度φ=60度の水晶振動子の共振レベルと
周波数との関係図
FIG. 28 is a diagram showing the relationship between the resonance level and the frequency of a crystal unit with an angle φ = 60 degrees.

【図29】水晶振動子の角度φとCI値との関係図FIG. 29 is a relationship diagram between the crystal unit angle φ and the CI value.

【符号の説明】[Explanation of symbols]

1,11,21,31,41…水晶片 11a,11b,21a,21b,31a,31b,4
1a,41b…主面 11c,11d,21c,21d,31c,31d,4
1c,41d…側面(切断面) 22…ATカット水晶原板 θ,φ,ζ…角度 t…厚さ w…幅
1, 11, 21, 31, 41 ... Crystal pieces 11a, 11b, 21a, 21b, 31a, 31b, 4
1a, 41b ... Main surfaces 11c, 11d, 21c, 21d, 31c, 31d, 4
1c, 41d ... Side surface (cut surface) 22 ... AT-cut crystal original plate θ, φ, ζ ... Angle t ... Thickness w ... Width

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水晶のX軸と、このX軸を中心としてY
軸をZ軸方向に約35度だけ回転して設定されたY´軸
と、Y´軸と同様に回転して設定されたZ´軸とに各片
が沿うように形成された矩形状のATカット水晶原板を
用い、 上記水晶原板が、上記Z´軸方向に沿って均一な厚さに
なるとともに、上記X軸方向に沿って中央部から両端部
に行くに従って薄くなるように加工し、 上記水晶原板において、上記Y´軸を中心として上記X
軸および上記Z軸を所定角度φだけそれぞれ回転して
X″軸およびZ″軸を設定し、 上記X″軸方向に平行でかつX″軸−Y´軸平面に対し
Z″軸方向に所定角度ζだけ傾斜するように設定した切
断面に沿って、上記水晶原板を複数個に分割することを
特徴とする厚みすべり水晶振動子の製造方法。
1. An X-axis of a crystal and Y around the X-axis.
A rectangular shape in which each piece is formed along a Y'axis set by rotating the axis about 35 degrees in the Z-axis direction and a Z'axis set by rotating in the same manner as the Y'axis. Using an AT-cut crystal original plate, the crystal original plate is processed to have a uniform thickness along the Z′-axis direction and become thinner along the X-axis direction from the center to both ends, In the above-mentioned crystal original plate, the above-mentioned X centering around the above Y'axis
Axis and the Z axis are respectively rotated by a predetermined angle φ to set the X ″ axis and the Z ″ axis, which are parallel to the X ″ axis direction and predetermined in the Z ″ axis direction with respect to the X ″ axis-Y ′ axis plane. A method of manufacturing a thickness-sliding quartz crystal resonator, characterized in that the above-mentioned quartz original plate is divided into a plurality of pieces along a cutting plane set so as to be inclined by an angle ζ.
【請求項2】 上記角度φは3度ないし30度の範囲内
で設定されており、上記角度ζは上記角度φに対応して
定められていることを特徴とする請求項1記載の厚みす
べり水晶振動子の製造方法。
2. The thickness slip according to claim 1, wherein the angle φ is set within a range of 3 degrees to 30 degrees, and the angle ζ is determined corresponding to the angle φ. Crystal oscillator manufacturing method.
JP5185103A 1993-07-27 1993-07-27 Manufacturing method of thickness-sliding crystal unit Expired - Lifetime JP2545692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185103A JP2545692B2 (en) 1993-07-27 1993-07-27 Manufacturing method of thickness-sliding crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185103A JP2545692B2 (en) 1993-07-27 1993-07-27 Manufacturing method of thickness-sliding crystal unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3405483A Division JPS59158612A (en) 1983-03-01 1983-03-01 Thickness shear crystal oscillator

Publications (2)

Publication Number Publication Date
JPH06164285A true JPH06164285A (en) 1994-06-10
JP2545692B2 JP2545692B2 (en) 1996-10-23

Family

ID=16164911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185103A Expired - Lifetime JP2545692B2 (en) 1993-07-27 1993-07-27 Manufacturing method of thickness-sliding crystal unit

Country Status (1)

Country Link
JP (1) JP2545692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7908722B2 (en) * 2004-07-14 2011-03-22 H.C. Materials Corporation Process for the preparation of piezoelectric crystal elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636814A (en) * 1979-09-03 1981-04-10 Yushin Seiki Kogyo Kk Composite switch for vehicle
JPS586617A (en) * 1981-07-04 1983-01-14 Nippon Dempa Kogyo Co Ltd Quartz oscillator
JPS59158612A (en) * 1983-03-01 1984-09-08 Seikosha Co Ltd Thickness shear crystal oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636814A (en) * 1979-09-03 1981-04-10 Yushin Seiki Kogyo Kk Composite switch for vehicle
JPS586617A (en) * 1981-07-04 1983-01-14 Nippon Dempa Kogyo Co Ltd Quartz oscillator
JPS59158612A (en) * 1983-03-01 1984-09-08 Seikosha Co Ltd Thickness shear crystal oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7908722B2 (en) * 2004-07-14 2011-03-22 H.C. Materials Corporation Process for the preparation of piezoelectric crystal elements

Also Published As

Publication number Publication date
JP2545692B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP3096472B2 (en) SC-cut crystal unit
WO2005008887A1 (en) Sc cut quartz oscillator
JP2545692B2 (en) Manufacturing method of thickness-sliding crystal unit
US4017753A (en) Shaped quartz crystal resonator
JPH0349307A (en) Rectangular crystal resonator for overtone
JPH0463567B2 (en)
JP3194442B2 (en) SC-cut crystal unit
JPH0818370A (en) Manufacture of crystal vibrator
JPH0888536A (en) Overtone rectangular crystal oscillator
JPH05243889A (en) Thickness-shear piezoelectric oscillator
JP3231055B2 (en) SC-cut crystal unit
JPS5928714A (en) Crystal oscillator
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JPH0342525B2 (en)
JP4064189B2 (en) End face processing method of crystal unit
JPS62239707A (en) Crystal resonator
JPH0124367B2 (en)
JPH0918279A (en) Quartz vibrator
JPS5824969B2 (en) Atsuden Jixindoushi
JPH06104685A (en) Crystal resonator
JPS5852366B2 (en) Havasu Berria Tsuden Shindoushi
JPH07202629A (en) Crystal oscillator and manufacture of the same
JPS5945243B2 (en) Crystal oscillator
JPS5912805Y2 (en) Width shear oscillator
JPH0685598A (en) Crystal oscillator for sc cut