JPH0616402A - Method for refining nitrous oxide - Google Patents

Method for refining nitrous oxide

Info

Publication number
JPH0616402A
JPH0616402A JP4169110A JP16911092A JPH0616402A JP H0616402 A JPH0616402 A JP H0616402A JP 4169110 A JP4169110 A JP 4169110A JP 16911092 A JP16911092 A JP 16911092A JP H0616402 A JPH0616402 A JP H0616402A
Authority
JP
Japan
Prior art keywords
nitrous oxide
oxide
purification
manganese
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4169110A
Other languages
Japanese (ja)
Other versions
JP3260826B2 (en
Inventor
Takashi Shimada
孝 島田
Keiichi Iwata
恵一 岩田
Masako Yasuda
雅子 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP16911092A priority Critical patent/JP3260826B2/en
Publication of JPH0616402A publication Critical patent/JPH0616402A/en
Application granted granted Critical
Publication of JP3260826B2 publication Critical patent/JP3260826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain a high-purity refined gas by surely removing oxygen contained in nitrous oxide or in a gas contg, nitrous oxide as the impurity without by-producing the impurity such as nitrogen to be generated by the decomposition of nitrous oxide. CONSTITUTION:Nitrous oxide or a gas contg. nitrous oxide diluted with nitrogen, argon, etc., is brought into contact with a catalyst consisting essentially of manganese oxide, especially a lower manganese oxide. Besides, the catalyst is brought into contact with nitrous oxide, as required, prior to refining and pretreated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜酸化窒素の精製方法に
関し、さらに詳細には亜酸化窒素中に不純物として含ま
れる酸素を極低濃度まで除去しうる亜酸化窒素の精製方
法に関する。亜酸化窒素はLSI製造時に表面絶縁膜用
シリコン酸化膜形成に使用されるなど半導体製造時に使
用されているが、成膜技術の進歩とともに不純物の極め
て少ないものが要求されつつある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying nitrous oxide, and more particularly to a method for purifying nitrous oxide capable of removing oxygen contained as an impurity in nitrous oxide to an extremely low concentration. Nitrous oxide is used in semiconductor manufacturing, such as used for forming a silicon oxide film for a surface insulating film in LSI manufacturing, but with the progress of film forming technology, it is required to have very few impurities.

【0002】[0002]

【従来の技術】半導体製造時に使用される亜酸化窒素は
一般的には純亜酸化窒素(液化ガス)として市販されて
いる。これらの亜酸化窒素中には不純物として特に酸素
および水分などが含有されており、このうち水分は合成
ゼオライトなどの脱湿剤により除去することが可能であ
る。市販の亜酸化窒素中の酸素濃度は通常は20ppm
以下であるが、ボンベ入りの5ナイン程度の高純度亜酸
化窒素ではその酸素濃度が0.1〜1ppmと比較的低
いものも市販されている。
2. Description of the Related Art Nitrous oxide used in semiconductor manufacturing is generally marketed as pure nitrous oxide (liquefied gas). In particular, oxygen and water are contained as impurities in these nitrous oxides, of which water can be removed by a dehumidifying agent such as synthetic zeolite. Oxygen concentration in commercially available nitrous oxide is usually 20 ppm
As shown below, high-purity nitrous oxide containing about 5 nines in a cylinder, which has a relatively low oxygen concentration of 0.1 to 1 ppm, is commercially available.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸素含
有量が1ppmを切る程度では最近の半導体製造プロセ
スにおける要求に充分に対応することはできず、0.1
ppm以下、さらには0.01ppm以下とすることが
強く望まれている。また、最近、半導体製造時に亜酸化
窒素と同時に使用されるシランなどのガスは高純度に精
製することが可能となり、例えば不純物として含有され
る酸素が0.01ppm以下のものが得られるようにな
った(特開平3−12303号公報など)。このため亜
酸化窒素も酸素含有量の極めて低いものの需要が増大し
つつある。また、これら亜酸化窒素はボンベの接続時や
配管の切替時など半導体装置への供給過程において空気
など不純物の混入による汚染もあるため、装置の直前で
不純物を最終的に除去することが望ましい。このように
高純度亜酸化窒素に対する需要は年々増加しているが、
亜酸化窒素中に含有される酸素を除去する方法として
は、アルカリ性ジチオン酸塩水溶液に通気する方法が知
られているが、湿式法であるため装置の構成は複雑とな
り、簡便さの点で不利であるばかりでなく、改めて水分
の除去が必要となる。このため、窒素や不活性ガスなど
の精製のように精製筒に脱酸素触媒を充填して使用する
方法が望ましいが、還元ニッケルなどの脱酸素触媒では
室温でも亜酸化窒素はほとんど分解してしまうという問
題点がある。
However, if the oxygen content is less than 1 ppm, it is not possible to sufficiently meet the demands in the recent semiconductor manufacturing process.
It is strongly desired that the content be less than or equal to ppm, more preferably less than or equal to 0.01 ppm. Further, recently, it has become possible to purify a gas such as silane used together with nitrous oxide at the time of semiconductor manufacturing to high purity, and for example, it becomes possible to obtain oxygen containing 0.01 ppm or less as impurities. (Japanese Patent Laid-Open No. 3-12303, etc.). Therefore, the demand for nitrous oxide, which has an extremely low oxygen content, is increasing. Further, these nitrous oxides may be contaminated by impurities such as air in the process of supplying them to the semiconductor device during the connection of the cylinder or switching of the pipes, so it is desirable to finally remove the impurities immediately before the device. Thus, the demand for high-purity nitrous oxide is increasing year by year,
As a method of removing oxygen contained in nitrous oxide, a method of ventilating an alkaline dithionate aqueous solution is known, but since it is a wet method, the configuration of the apparatus is complicated and disadvantageous in terms of simplicity. Not only is it necessary to remove water again. For this reason, it is desirable to use a deoxygenation catalyst packed in a purification column for purification such as nitrogen and inert gas, but deoxidation catalyst such as reduced nickel almost decomposes nitrous oxide even at room temperature. There is a problem.

【0004】[0004]

【課題を解決するための手段】本発明者らは、亜酸化窒
素が分解することなく亜酸化窒素中に含有される酸素を
極低濃度まで効率よく除去しうる精製方法について鋭意
研究を重ねた結果、亜酸化窒素を酸化マンガンを主成分
とする触媒と接触させることにより、酸素を0.1pp
m以下、さらには0.01ppm以下まで除去でき、か
つ、亜酸化窒素の分解が少ないことを見いだし、本発明
を完成した。すなわち本発明は、粗亜酸化窒素を酸化マ
ンガンを主成分とする触媒と接触させて、該粗亜酸化窒
素中に含有される酸素を除去することを特徴とする亜酸
化窒素の精製方法である。本発明は化学式N2 Oで表さ
れる亜酸化窒素単独、および窒素、アルゴンなどの不活
性ガス(不活性ガスベース)で希釈された亜酸化窒素
(以下総称して粗亜酸化窒素と記す)中に含有される酸
素の除去に適用される。
[Means for Solving the Problems] The present inventors have earnestly studied a purification method capable of efficiently removing oxygen contained in nitrous oxide to an extremely low concentration without decomposing nitrous oxide. As a result, by contacting nitrous oxide with a catalyst containing manganese oxide as a main component, oxygen was added at 0.1 pp.
The present invention has been completed by finding that it can be removed to m or less, and further to 0.01 ppm or less, and that decomposition of nitrous oxide is small. That is, the present invention is a method for purifying nitrous oxide, which comprises contacting crude nitrous oxide with a catalyst containing manganese oxide as a main component to remove oxygen contained in the crude nitrous oxide. . The present invention includes nitrous oxide alone represented by the chemical formula N 2 O, and nitrous oxide diluted with an inert gas (inert gas base) such as nitrogen and argon (hereinafter collectively referred to as crude nitrous oxide). It is applied to remove oxygen contained in the material.

【0005】本発明において酸化マンガンとしては種々
のものを用いることができるが、中でもマンガンの低級
酸化物が一般的に好ましい。低級酸化物は化学式MnO
で表される一酸化マンガン、Mn2 3 で表される三酸
化二マンガン、Mn3 4 で表される四酸化三マンガン
およびこれらの混合物である。これらの低級酸化物を得
るには種々の方法があるが、二酸化マンガンなどの高級
酸化物を水素あるいは一酸化炭素で還元する方法などが
代表的な製法であり、還元条件によってそれぞれの酸化
物単独、あるいは、2種以上の酸化物の混合物など種々
の組成の低級酸化物を得ることができる。また、これら
の酸化物を対応する酸化数のマンガン塩から調製するこ
とも可能であり、例えば、一酸化マンガンを得るには、
炭酸マンガン(II)、水酸化マンガン(II)、しゅ
う酸マンガン(II)、酢酸マンガン(II)などを空
気を遮断した状態で加熱する方法がある。これら酸化マ
ンガンは成型したものをそのまま、あるいはこれを適当
な大きさに破砕して用いてもよく、また、触媒担体に担
持させた形態で用いてもよい。酸化マンガンを担体に担
持させる方法としては、例えばマンガン塩の水溶液中に
珪藻土、アルミナ、シリカアルミナ、アルミノシリケー
トおよびカルシウムシリケートなどの担体粉末を分散さ
せ、さらにアルカリを添加して担体の粉末上にマンガン
成分を沈着させ、次いで濾過し、必要に応じて水洗して
得たケーキを120〜150℃で乾燥後、窒素中で30
0℃以上で焼成し、この焼成物を粉砕するか、あるいは
MnCO3 、Mn(OH)2 などの無機塩、MnC2
4 、Mn(CH3 COO)2 などの有機塩を窒素中で焼
成し、粉砕した後、これに耐熱性セメントを混合し、窒
素中で再び焼成するなどの方法がある。これらの酸化マ
ンガンは、通常は、押出し成型、打錠成型などで成型体
とされ、そのまま、あるいは必要に応じて適当な大きさ
に破砕して使用する。成型方法としては乾式法あるいは
湿式法を用いることができ、その際、少量の水、滑材な
どを使用してもよい。低級酸化マンガンを用いる場合の
取扱作業に際してはグローブボックス中窒素ガス雰囲気
でおこなうなど酸素に触れない状態で扱わなければなら
ない。酸化マンガンの含有量としてはマンガンの低級酸
化物を主体として通常は10wt%以上、好ましくは2
0wt%以上である。酸化マンガンの含有量が10wt
%よりも少なくなると脱酸素能力が低下し、酸素を充分
に除去できなくなる恐れがある。
In the present invention, various manganese oxides can be used, but among them, lower oxides of manganese are generally preferred. The lower oxide has the chemical formula MnO
And manganese monoxide represented by Mn 2 O 3 , trimanganese tetraoxide represented by Mn 3 O 4 , and mixtures thereof. There are various methods for obtaining these lower oxides, but a typical method is to reduce higher oxides such as manganese dioxide with hydrogen or carbon monoxide. Alternatively, lower oxides having various compositions such as a mixture of two or more kinds of oxides can be obtained. It is also possible to prepare these oxides from manganese salts of corresponding oxidation numbers, for example to obtain manganese monoxide,
There is a method of heating manganese (II) carbonate, manganese (II) hydroxide, manganese (II) oxalate, manganese (II) acetate, etc. in a state where air is cut off. These manganese oxides may be used as they are after molding, or may be crushed to an appropriate size, or may be used in the form of being supported on a catalyst carrier. As a method of supporting manganese oxide on a carrier, for example, a carrier powder such as diatomaceous earth, alumina, silica-alumina, aluminosilicate and calcium silicate is dispersed in an aqueous solution of manganese salt, and alkali is added to the carrier powder to add manganese to the carrier powder. After the components are deposited and then filtered and optionally washed with water, the cake obtained is dried at 120 to 150 ° C. and then 30 times in nitrogen.
The product is calcined at 0 ° C. or higher and the calcined product is crushed, or an inorganic salt such as MnCO 3 or Mn (OH) 2 or MnC 2 O is used.
4 , there is a method in which an organic salt such as Mn (CH 3 COO) 2 is calcined in nitrogen, crushed, mixed with heat resistant cement, and calcined again in nitrogen. These manganese oxides are usually formed into a molded product by extrusion molding, tablet molding, etc., and are used as they are, or if necessary, crushed to an appropriate size. As a molding method, a dry method or a wet method can be used, in which case a small amount of water, a lubricant or the like may be used. When using lower manganese oxide, the handling work must be done in a nitrogen gas atmosphere in a glove box without touching oxygen. Regarding the content of manganese oxide, the lower oxide of manganese is mainly contained, and usually 10 wt% or more, preferably 2
It is 0 wt% or more. Manganese oxide content is 10wt
If it is less than%, the deoxidizing ability is lowered and there is a possibility that oxygen cannot be sufficiently removed.

【0006】本発明において、酸化マンガン、特に低級
酸化物を有効成分とする成型体を精製筒に充填し、その
まま粗亜酸化窒素を流して精製をおこなってもよいが、
亜酸化窒素の分解を防止するために、精製に先立って亜
酸化窒素による前処理を施すことが好ましい。前処理は
亜酸化窒素単独またはアルゴンなどの不活性ガスとの混
合ガスを通常は空筒線速度(LV)1〜10cm/se
cで30分〜2時間流通させることによっておこなわれ
る。前処理の条件としては粗亜酸化窒素の精製時におけ
る温度よりも高温でおこなわれ、通常は50℃以上であ
るが、あまり高温になると亜酸化窒素との反応により触
媒としての脱酸素活性が却って損なわれる恐れもあるの
で、精製時の温度に対し10〜100℃高い温度範囲で
おこなうことが好ましい。前処理を施さない場合には精
製時の条件によっては亜酸化窒素の分解により発生する
窒素の濃度が3vol%近くになることがあるが、前処
理を施すことにより、この分解による窒素の混入はほぼ
確実に防止される。前処理は精製筒への充填前に施して
もよく、また、充填後に施してもよいが、酸化マンガン
をあらかじめ精製筒に充填してから前処理を施せば、そ
のまま引き続いて粗亜酸化窒素の精製をおこなうことが
できるので好都合である。
In the present invention, a molded product containing manganese oxide, particularly a lower oxide, as an active ingredient may be filled in a purifying cylinder, and crude nitrous oxide may be flowed as it is for purification.
In order to prevent the decomposition of nitrous oxide, it is preferable to perform a pretreatment with nitrous oxide prior to the purification. For the pretreatment, nitrous oxide alone or a mixed gas with an inert gas such as argon is usually used to obtain an empty cylinder linear velocity (LV) of 1 to 10 cm / se.
It is carried out by circulating it for 30 minutes to 2 hours. The pretreatment condition is that the temperature is higher than the temperature during the purification of crude nitrous oxide, usually 50 ° C or higher, but if it becomes too high, the reaction with nitrous oxide causes deoxidizing activity as a catalyst. Since it may be impaired, it is preferably carried out in a temperature range higher by 10 to 100 ° C. than the temperature at the time of purification. If pretreatment is not applied, the concentration of nitrogen generated by the decomposition of nitrous oxide may be close to 3 vol% depending on the purification conditions. It is almost certainly prevented. The pretreatment may be performed before the filling into the purification column or after the filling.If the pretreatment is performed after the manganese oxide is filled in the purification column in advance, the crude nitrous oxide of This is convenient because purification can be performed.

【0007】粗亜酸化窒素の精製は酸化マンガンを主成
分とする上記の触媒が充填された精製筒に粗亜酸化窒素
を通すことによっておこなわれ、粗亜酸化窒素が酸化マ
ンガン触媒と接触することにより、亜酸化窒素の分解を
生ずることなく不純物として含有される酸素が除去され
る。本発明に適用される粗亜酸化窒素中の酸素濃度は通
常は100ppm以下である。酸素濃度がこれよりも高
くなると発熱量が増加するため条件によっては除熱手段
が必要となる。
Purification of crude nitrous oxide is carried out by passing the crude nitrous oxide through a purification column filled with the above-mentioned catalyst containing manganese oxide as a main component, and the crude nitrous oxide comes into contact with the manganese oxide catalyst. As a result, oxygen contained as impurities is removed without decomposing nitrous oxide. The oxygen concentration in the crude nitrous oxide applied to the present invention is usually 100 ppm or less. When the oxygen concentration is higher than this, the amount of heat generated increases, so heat removal means is required depending on the conditions.

【0008】精製筒に充填される酸化マンガン触媒の充
填長は、供給される粗亜酸化窒素の量、酸素濃度、使用
触媒の特性および酸素除去条件などによって定められる
が、通常は50〜1500mmである。充填長が50m
mよりも短くなると酸素除去率が低下する恐れがあり、
また1500mmよりも長くなると圧力損失が大きくな
る恐れがある。また、精製時の粗亜酸化窒素の空筒線速
度(LV)は供給される亜酸化窒素中の酸素濃度および
操作条件などによって異なり一概に特定はできないが、
通常は100cm/sec以下、好ましくは30cm/
sec以下である。亜酸化窒素と酸化マンガン触媒との
接触温度は精製筒の入口に供給されるガスの温度で、通
常は50℃以下、好ましくは0〜40℃である。接触温
度が高過ぎると亜酸化窒素が分解し、脱酸素能力が低下
するとともに不純物として窒素が発生する恐れがある。
接触時のガスの圧力は常圧、減圧、加圧のいずれでも処
理が可能であるが、通常は10Kg/cm2 abs以
下、好ましくは0.1Kg〜5Kg/cm2 absであ
る。圧力が高過ぎても亜酸化窒素が分解する恐れがあ
る。
The filling length of the manganese oxide catalyst packed in the purifying cylinder is determined by the amount of crude nitrous oxide supplied, the oxygen concentration, the characteristics of the catalyst used, the oxygen removal conditions, etc., but it is usually 50-1500 mm. is there. Filling length is 50m
If it is shorter than m, the oxygen removal rate may decrease,
If it is longer than 1500 mm, the pressure loss may increase. In addition, the void linear velocity (LV) of crude nitrous oxide during purification varies depending on the oxygen concentration in the nitrous oxide supplied and operating conditions, and cannot be specified unconditionally,
Usually 100 cm / sec or less, preferably 30 cm /
It is less than or equal to sec. The contact temperature between the nitrous oxide and the manganese oxide catalyst is the temperature of the gas supplied to the inlet of the purification column and is usually 50 ° C or lower, preferably 0 to 40 ° C. If the contact temperature is too high, nitrous oxide is decomposed, the deoxidizing ability is reduced, and nitrogen may be generated as an impurity.
The pressure upon contact of the gas normal pressure, reduced pressure, but it is possible either process the pressure is usually 10 Kg / cm 2 abs or less, preferably 0.1Kg~5Kg / cm 2 abs. If the pressure is too high, nitrous oxide may decompose.

【0009】本発明において、亜酸化窒素中に少量の水
分が含有されていても脱酸素能力には特に悪影響を及ぼ
すことはなく、さらに担体などを用いている場合には、
その種類によっては水分も同時に除去される。また、酸
化マンガンによる酸素除去工程に、必要に応じて合成ゼ
オライトなどの脱湿剤による水分除去工程を適宜組み合
わせることも可能であり、これによって水分も完全に除
去され、極めて高純度の精製亜酸化窒素を得ることがで
きる。
In the present invention, even if a small amount of water is contained in nitrous oxide, there is no particular adverse effect on the deoxidizing ability, and when a carrier is used,
Depending on its type, water is also removed at the same time. Further, if necessary, the oxygen removal step using manganese oxide can be combined with the water removal step using a dehumidifying agent such as synthetic zeolite, which completely removes the water, resulting in an extremely high-purity purified suboxide. Nitrogen can be obtained.

【0010】[0010]

【実施例】【Example】

実施例1 (精製筒の調製)市販の酸化マンガン触媒を使用した。
このものはMnO2 の押出し品であり、黒色のものであ
る。これを破砕し8〜12meshにふるったもの63
mlを内径16.4mm、長さ400mmのステンレス
製の精製筒に充填長300mm(充填密度1.6g/m
l)に充填した。これに窒素を温度300℃、流量25
0ml/minで1時間流して予熱しながら系内をパー
ジした後、一酸化炭素を常圧で流量127ml/min
(LV=1cm/sec)で3時間流して還元処理をお
こなった。その後窒素に切り替えて室温まで冷却した。
また、石英管中で同条件で還元をおこなった結果、触媒
の色が緑色に変化したことからMnO2 が還元され、マ
ンガンの低級酸化物が生成していることを確認した。 (粗亜酸化窒素の精製)引き続いて前記のステンレス製
の精製筒を用いて精製をおこなった。精製筒に不純物と
して酸素を0.8ppm含有する50%亜酸化窒素(ヘ
リウムベース)を1266ml/min(LV=10c
m/sec)で流して黄燐発光式酸素分析計(測定下限
濃度0.01ppm)を用いて出口ガス中の酸素濃度を
測定したところ、酸素は検出されず0.01ppm以下
であった。また、ガスクロマトグラフ法(検出器TC
D)で出口ガス中の窒素濃度を測定したところ1.3%
であった。精製を始めてから100min後では出口ガ
ス中の酸素濃度は0.01ppm以下であり、窒素濃度
は0.55%となった。
Example 1 (Preparation of Purification Cylinder) A commercially available manganese oxide catalyst was used.
This is an extruded product of MnO 2 , which is black. This is crushed and sifted on 8-12 mesh 63
300 ml of inner diameter of 16.4 mm and length of 400 mm in a stainless steel purifying cylinder with a packing length of 300 mm (packing density 1.6 g / m
l). Nitrogen is added to this at a temperature of 300 ° C. and a flow rate of 25.
After purging the system while preheating by flowing at 0 ml / min for 1 hour, carbon monoxide at a normal pressure and a flow rate of 127 ml / min.
(LV = 1 cm / sec) for 3 hours for reduction treatment. Then, it switched to nitrogen and cooled to room temperature.
In addition, as a result of reduction under the same conditions in a quartz tube, the color of the catalyst changed to green, confirming that MnO 2 was reduced and a lower oxide of manganese was produced. (Purification of Crude Nitrous Oxide) Subsequently, purification was carried out using the above-mentioned stainless steel purification cylinder. 50% nitrous oxide (helium base) containing 0.8 ppm of oxygen as an impurity in the purification column was 1266 ml / min (LV = 10 c
When the oxygen concentration in the outlet gas was measured using a yellow phosphorus luminescence type oxygen analyzer (lower limit concentration of 0.01 ppm), oxygen was not detected and was 0.01 ppm or less. In addition, gas chromatography (detector TC
When the nitrogen concentration in the outlet gas was measured in D), it was 1.3%
Met. 100 minutes after the purification was started, the oxygen concentration in the outlet gas was 0.01 ppm or less, and the nitrogen concentration was 0.55%.

【0011】実施例2 (精製筒の調製)実施例1と同条件で精製筒を準備し
た。亜酸化窒素の精製に先立ち、精製筒を100℃に加
熱して、50%亜酸化窒素(ヘリウムベース)を常圧で
127ml/min(LV=1cm/sec)、30m
in流して前処理をおこなった。 (亜酸化窒素の精製)この精製筒に実施例1と同様に不
純物として酸素を0.8ppm含有する50%亜酸化窒
素(ヘリウムベース)を1266ml/min(LV=
10cm/sec)で流し、出口ガスを分析したとこ
ろ、酸素濃度は0.01ppm以下、窒素濃度は230
ppmであった。精製を始めてから100min後では
出口ガス中の酸素濃度は0.01ppm以下、窒素濃度
は170ppmであった。
Example 2 (Preparation of Purification Cylinder) A purification cylinder was prepared under the same conditions as in Example 1. Prior to the purification of nitrous oxide, the purification column is heated to 100 ° C., and 50% nitrous oxide (helium base) is heated at normal pressure to 127 ml / min (LV = 1 cm / sec), 30 m.
A pretreatment was performed by flowing in. (Purification of nitrous oxide) In the same manner as in Example 1, 50% nitrous oxide (helium base) containing 0.8 ppm of oxygen as an impurity was added to this purification column at 1266 ml / min (LV =
Flow rate at 10 cm / sec) and the outlet gas was analyzed to find that the oxygen concentration was 0.01 ppm or less and the nitrogen concentration was 230.
It was ppm. 100 minutes after starting the purification, the oxygen concentration in the outlet gas was 0.01 ppm or less and the nitrogen concentration was 170 ppm.

【0012】実施例3 (精製筒の調製)実施例1と同様の市販のマンガン触媒
をステンレス製の精製筒に充填した後、水素を常圧、2
00℃で流量127ml/min(LV=1cm/se
c)で4時間流して還元処理をおこなった。これとは別
に、石英管中で同条件で還元をおこなった結果、触媒の
色は灰茶色に変化していることを確認した。また、この
石英管中の触媒を大気中に取り出し、すばやく粉末X線
回折装置により同定をおこない、一酸化マンガンと三酸
化二マンガンを主体とする酸化マンガンの混合物である
ことを確認した。 (亜酸化窒素の精製)この精製筒に実施例1と同様に酸
素を0.8ppm含有する50%亜酸化窒素(ヘリウム
ベース)を流し、出口ガスを分析したところ、酸素濃度
は0.01ppm以下、窒素濃度は360ppmであっ
た。精製を始めてから100min後では出口ガス中の
酸素濃度は0.01ppm以下、窒素濃度は180pp
mであった。
Example 3 (Preparation of Purification Cylinder) A commercially available manganese catalyst similar to that used in Example 1 was charged into a stainless steel purification cylinder, and then hydrogen was added at atmospheric pressure to 2
Flow rate 127 ml / min (LV = 1 cm / se at 00 ° C.)
The reduction treatment was carried out by flowing in c) for 4 hours. Separately from this, it was confirmed that the color of the catalyst changed to grayish brown as a result of reduction under the same conditions in a quartz tube. In addition, the catalyst in the quartz tube was taken out into the air and identified by a powder X-ray diffractometer to confirm that it was a mixture of manganese oxide mainly containing manganese monoxide and dimanganese trioxide. (Purification of nitrous oxide) In the same manner as in Example 1, 50% nitrous oxide (helium base) containing 0.8 ppm of oxygen was passed through this purification column, and the outlet gas was analyzed. As a result, the oxygen concentration was 0.01 ppm or less. The nitrogen concentration was 360 ppm. 100 minutes after the purification was started, the oxygen concentration in the outlet gas was 0.01 ppm or less and the nitrogen concentration was 180 pp.
It was m.

【0013】比較例1 (精製筒の調製)市販のニッケル触媒(日揮(株)製、
N−111)を用いた。このものの組成はNi+NiO
の形であり、Niとして45〜47wt%、Cr2〜3
wt%、Cu2〜3wt%、珪藻土27〜29wt%お
よび黒鉛4〜5wt%であり、直径5mm、高さ4.5
mmの成型体である。このニッケル触媒を8〜10me
shに破砕したもの63mlを実施例で使用したと同様
の精製筒に充填した(充填密度1.0g/ml)。これ
に水素を常圧で温度150℃、流量595ml/min
(LV=3.6cm/sec)で3時間還元処理をおこ
なった後、常温に冷却した。 (亜酸化窒素の精製)この精製筒に実施例1と同様に粗
亜酸化窒素を流通したところ精製筒は著しく発熱した。
ここで出口ガスを分析したところ、酸素濃度は0.01
ppm以下であったが、亜酸化窒素は検出されず、窒素
のみが検出され、亜酸化窒素のほとんどが分解している
ことが分かった。
Comparative Example 1 (Preparation of Purification Cylinder) Commercially available nickel catalyst (manufactured by JGC Corporation,
N-111) was used. The composition of this is Ni + NiO
Of Ni, 45 to 47 wt% as Ni, Cr2 to 3
wt%, Cu 2-3 wt%, diatomaceous earth 27-29 wt% and graphite 4-5 wt%, diameter 5 mm, height 4.5.
It is a molded body of mm. This nickel catalyst is 8-10 me
63 ml crushed into sh was packed in the same purification cylinder as used in the example (packing density 1.0 g / ml). Hydrogen is added to this at atmospheric pressure at a temperature of 150 ° C and a flow rate of 595 ml / min.
After performing a reduction treatment at (LV = 3.6 cm / sec) for 3 hours, it was cooled to room temperature. (Purification of Nitrous Oxide) When crude nitrous oxide was circulated in this purification column in the same manner as in Example 1, the purification column generated remarkably heat.
When the outlet gas was analyzed here, the oxygen concentration was 0.01.
Although it was below ppm, nitrous oxide was not detected, only nitrogen was detected, and it was found that most of nitrous oxide was decomposed.

【0014】[0014]

【発明の効果】本発明によって、従来除去が困難であっ
た亜酸化窒素中の酸素を0.1ppm以下、さらには
0.01ppm以下のような極低濃度まで除去すること
ができ、しかも、精製時に亜酸化窒素の分解による不純
物窒素の混入を防止することができ、高純度の亜酸化窒
素を得ることが可能となった。
Industrial Applicability According to the present invention, it is possible to remove oxygen in nitrous oxide, which has been difficult to remove in the past, to an extremely low concentration of 0.1 ppm or less, further 0.01 ppm or less. At times, it was possible to prevent the inclusion of impurity nitrogen due to the decomposition of nitrous oxide, and it was possible to obtain high-purity nitrous oxide.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】粗亜酸化窒素を酸化マンガンを主成分とす
る触媒と接触させて、該粗亜酸化窒素に含有される酸素
を除去することを特徴とする亜酸化窒素の精製方法。
1. A method for purifying nitrous oxide, which comprises contacting crude nitrous oxide with a catalyst containing manganese oxide as a main component to remove oxygen contained in the crude nitrous oxide.
【請求項2】酸化マンガンが一酸化マンガン(Mn
O)、三酸化二マンガン(Mn2 3 )、四酸化三マン
ガン(Mn3 4 )から選ばれる1種または2種以上で
ある請求項1に記載の精製方法。
2. Manganese oxide is manganese monoxide (Mn
O), dimanganese trioxide (Mn 2 O 3 ), trimanganese tetraoxide (Mn 3 O 4 ), or a mixture thereof.
【請求項3】精製に先立ち、触媒を精製時の温度よりも
高い温度で亜酸化窒素と接触させて触媒の前処理を施す
請求項1に記載の亜酸化窒素の精製方法。
3. The method for purifying nitrous oxide according to claim 1, wherein prior to the purification, the catalyst is pretreated by contacting the catalyst with nitrous oxide at a temperature higher than the temperature during purification.
【請求項4】亜酸化窒素による前処理温度と精製時の温
度との差が10〜100℃である請求項3に記載の精製
方法
4. The purification method according to claim 3, wherein the difference between the pretreatment temperature with nitrous oxide and the temperature during purification is 10 to 100 ° C.
JP16911092A 1992-06-26 1992-06-26 Purification method of nitrous oxide Expired - Fee Related JP3260826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16911092A JP3260826B2 (en) 1992-06-26 1992-06-26 Purification method of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16911092A JP3260826B2 (en) 1992-06-26 1992-06-26 Purification method of nitrous oxide

Publications (2)

Publication Number Publication Date
JPH0616402A true JPH0616402A (en) 1994-01-25
JP3260826B2 JP3260826B2 (en) 2002-02-25

Family

ID=15880490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16911092A Expired - Fee Related JP3260826B2 (en) 1992-06-26 1992-06-26 Purification method of nitrous oxide

Country Status (1)

Country Link
JP (1) JP3260826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070746B1 (en) 1999-05-26 2006-07-04 Solutia Inc. Process for nitrous oxide purification
JP2015519192A (en) * 2012-04-24 2015-07-09 サエス・ゲッターズ・エッセ・ピ・ア Renewable room temperature purification apparatus and method for nitrous oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070746B1 (en) 1999-05-26 2006-07-04 Solutia Inc. Process for nitrous oxide purification
JP2015519192A (en) * 2012-04-24 2015-07-09 サエス・ゲッターズ・エッセ・ピ・ア Renewable room temperature purification apparatus and method for nitrous oxide

Also Published As

Publication number Publication date
JP3260826B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US4433981A (en) CO2 Removal from gaseous streams
JPH0687766A (en) Purification of unsaturated hydrocarbon
KR20090031900A (en) Absorption composition and process for removing mercury
JP3340510B2 (en) Hazardous gas purification method
JP2004142987A (en) Method for purifying ammonia
JPH0616402A (en) Method for refining nitrous oxide
JP2732262B2 (en) How to purify arsine
JP3410121B2 (en) Ammonia purification method
JP2651611B2 (en) Hydride gas purification method
JP3522785B2 (en) Purification method of carbon dioxide
JP3359928B2 (en) Ammonia purification method
JP2700412B2 (en) Hydride gas purification method
JP3292311B2 (en) Purification method of methanol
JP3154340B2 (en) Method for purifying germanium hydride
JP2640521B2 (en) Hydrogen sulfide purification method
JPH0340901A (en) Method for refining gaseous hydride
JP3260786B2 (en) Steam purification method
JPH0673613B2 (en) Exhaust gas purification method
JP3292251B2 (en) Steam purification method
JP2700413B2 (en) Hydride gas purification method
JP3279608B2 (en) Steam purification method
KR0148367B1 (en) Method for purifying gaseous hydrides
JP2002037623A (en) Method for purifying ammonia
JP3154339B2 (en) Method for purifying germanium hydride
JPS6148506A (en) Refining method of fine particle by gaseous phase process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees