JPH0340901A - Method for refining gaseous hydride - Google Patents

Method for refining gaseous hydride

Info

Publication number
JPH0340901A
JPH0340901A JP1177385A JP17738589A JPH0340901A JP H0340901 A JPH0340901 A JP H0340901A JP 1177385 A JP1177385 A JP 1177385A JP 17738589 A JP17738589 A JP 17738589A JP H0340901 A JPH0340901 A JP H0340901A
Authority
JP
Japan
Prior art keywords
gas
hydride
adsorbent
gaseous hydride
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1177385A
Other languages
Japanese (ja)
Other versions
JP2741541B2 (en
Inventor
Koichi Kitahara
北原 宏一
Takashi Shimada
孝 島田
Keiichi Iwata
恵一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP1177385A priority Critical patent/JP2741541B2/en
Publication of JPH0340901A publication Critical patent/JPH0340901A/en
Application granted granted Critical
Publication of JP2741541B2 publication Critical patent/JP2741541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To remove the moisture contained in a gaseous hydride to an extremely low concn. and to appropriately use the hydride as the semiconductor producing raw material by bringing the crude gaseous hydride into contact with an adsorbent consisting of the formed body of a mixture of zinc oxide, aluminum oxide and an alkali compd. CONSTITUTION:Zinc oxide, aluminum oxide, an alkali compd. (e.g. sodium hydroxide) and water are mixed, and the mixture is formed into pellets by extrusion molding, etc., to form the adsorbent. A crude gaseous hydride (e.g. arsine and phosphine) to be used as the raw material for producing the compd. semiconductors of GaAs, GaP,etc., or as the ion implantation gas is brought into contact with the adsorbent to remove the moisture contained in the gas. Consequently, since the adsorbent selectively adsorbs moisture and not a gaseous hydride unlike the ordinary synthetic zeolite, etc., a refined gaseous hydride is efficiently produced in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素化物ガスの精製方法に関し、さらに詳細に
は水素化物ガス中に不純物として含有される水分を極低
濃度まで除去しうる水素化物ガスの精製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying hydride gas, and more specifically, to a method for purifying hydride gas, and more specifically, to a method for purifying hydride gas, and more specifically, to purifying a hydride gas that can remove moisture contained as an impurity in hydride gas to an extremely low concentration. Relating to a gas purification method.

アルシン、ホスフィン、シランおよびジボランなどの水
素化物ガスはガリウム−砒素(GaAs )、ガリウム
−りん(GaP)などの化合物半導体などを製造するだ
めの席料およびイオン注入用ガスなどとして重要なもの
であり、その使用量が年々増加しつつあると同時に半導
体の高度集積化に伴い、不純物の含有量の極めて低いも
のが要求されている。
Hydride gases such as arsine, phosphine, silane and diborane are important as base materials and ion implantation gases for manufacturing compound semiconductors such as gallium-arsenic (GaAs) and gallium-phosphorus (GaP). As its usage increases year by year and at the same time as semiconductors become more highly integrated, there is a demand for materials with extremely low impurity content.

〔従来の技術〕[Conventional technology]

半導体製造時に使用される水素化物ガスは一般的には純
水素化物ガスの他、水素ガスまたは不活性ガスで稀釈さ
れた形態で市販されている。
Hydride gases used in semiconductor manufacturing are generally commercially available in diluted form with hydrogen gas or inert gas, in addition to pure hydride gas.

これらの水素化物ガス中には不純物として酸素および水
分などが含有されている。
These hydride gases contain impurities such as oxygen and moisture.

水分を除去するには、通常は取扱の容易な合成ゼオライ
ト、例えばモレキュラーシーブ4A、5A(米、ユニオ
ンカーバイド社ンなど、あるいはハイシリカゼオライト
T S Z −600HOE (東ソー■製〉などの脱
湿剤により露点−80’C1さらにはそれ以下の露点ま
で吸着除去することが可能である。
To remove moisture, we usually use dehumidifiers such as synthetic zeolites that are easy to handle, such as Molecular Sieve 4A and 5A (Union Carbide, USA, etc.), or high-silica zeolite T S Z -600HOE (manufactured by Tosoh Corporation). Therefore, it is possible to adsorb and remove dew points up to -80'C1 or even lower.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、これらの水分の吸着剤は一般にアルシン
、ホスフィンなどの水素(ヒ物ガスも同時に吸着するた
め、精製の開始時、水素化物ガスが吸着剤に吸着されて
飽和状態に達し、精製筒から出る精製ガス中の水素化物
ガスが本来の濃度となるまでには可なりの時間を要する
という問題点があり、原料ガス中の水素化物ガス濃度が
低い程、長時間を要する。
However, these water adsorbents generally adsorb hydrogen gases such as arsine and phosphine (and arsenic gases) at the same time. There is a problem in that it takes a considerable amount of time for the hydride gas in the purified gas discharged from to reach its original concentration, and the lower the hydride gas concentration in the raw material gas, the longer it takes.

また、多量の水素化物ガスを吸着した吸着剤は、交換時
など取扱いに対して安全上の問題もある。
Furthermore, adsorbents that have adsorbed a large amount of hydride gas pose safety problems when handling them when they are replaced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、水素化物ガス中に含有される水分を極低
濃度まで効率よく除去するとともに、精製を始めてから
短時間で所定濃度に到達させるべく鋭意研究を重ねた結
果、酸化亜鉛、酸化アルミニウムおよびアルカリ化合物
を含有する吸着剤を用いることにより、水分は吸着する
が水素化物ガスは吸着されないことを見い出し本発明を
完成した。
The inventors of the present invention have conducted intensive research to efficiently remove water contained in hydride gas to an extremely low concentration and to reach a specified concentration in a short time after starting refining. The present invention was completed based on the discovery that by using an adsorbent containing aluminum and an alkali compound, water is adsorbed but hydride gas is not adsorbed.

すなわち本発明は、粗水素化物ガスを酸化亜鉛、酸化ア
ルミニウムおよびアルカリ化合物を混合してなる組成物
の成形体と接触させて、該粗水素化物ガス中に含有され
る水分を除去することを特徴とする水素化物ガスの精製
方法である。
That is, the present invention is characterized in that the moisture contained in the crude hydride gas is removed by bringing the crude hydride gas into contact with a molded body of a composition formed by mixing zinc oxide, aluminum oxide, and an alkali compound. This is a method for purifying hydride gas.

本発明は水素化物ガス単独、水素(水素ガスペース)お
よび窒素、アルゴンなどの不活性ガス(不活性ガスペー
ス)で稀釈された水素化物ガス(以下総称して粗水素化
物ガスと記す)中に含有される水分の除去に適用される
The present invention is applied to hydride gas alone, hydrogen (hydrogen gas space), and hydride gas diluted with an inert gas (inert gas space) such as nitrogen or argon (hereinafter collectively referred to as crude hydride gas). Applicable for removing contained moisture.

水素化物ガスはアルシン、ホスフィン、シランおよびジ
ボランなどであり、主に半導体製造プロセスなどで使用
される水素化物ガスである。
The hydride gas includes arsine, phosphine, silane, diborane, etc., and is a hydride gas mainly used in semiconductor manufacturing processes.

本発明において使用される吸着剤は酸化亜鉛1.酸化ア
ルミニウムおよびアルカリ化合物を主成分とするもので
ある。
The adsorbent used in the present invention is zinc oxide 1. Its main components are aluminum oxide and an alkali compound.

酸化亜鉛としては市販品の中から適当なものを選択して
もよく、また、焼成などによって酸化亜鉛に変化しうる
炭酸亜鉛、塩基性炭酸亜鉛、水酸化亜鉛および有機酸亜
鉛などの前駆物質を用いてもよい。
As zinc oxide, an appropriate one may be selected from commercially available products, and precursors such as zinc carbonate, basic zinc carbonate, zinc hydroxide, and organic acid zinc that can be converted to zinc oxide by calcination etc. May be used.

また、酸化アルミニウムは、通常はアルミナ水和物が使
用され、例えば市販のアルミナゾルあるいはこれを粉末
にした高濃度アルミナなどが好適である。
Further, as aluminum oxide, alumina hydrate is usually used, and for example, commercially available alumina sol or highly concentrated alumina made from powdered alumina sol is suitable.

さらに、アルカリ化合物としてはリチウム、ナトリウム
、カリウムなどのアルカリ金属、マグネシウム、カルシ
ウムなどのアルカリ土類金属およびアンモニウムの水酸
化物、炭酸塩、重炭酸塩および酢酸塩などである。これ
らのうちでも炭酸カリウム、重炭酸カリウム、水酸化カ
リウム、炭酸ナトリウム、重炭酸ナトリウム、水酸化ナ
トリウム、水酸化アンモニウムおよびこれらの混合物な
どが好ましい。
Furthermore, the alkaline compounds include hydroxides, carbonates, bicarbonates, and acetates of alkali metals such as lithium, sodium, and potassium, alkaline earth metals such as magnesium and calcium, and ammonium. Among these, potassium carbonate, potassium bicarbonate, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium hydroxide, ammonium hydroxide, and mixtures thereof are preferred.

酸化亜鉛に対する酸化アルミニウムおよびアルカリ化合
物の量は、亜鉛1原子数に対し、通常はアルミニウム0
.02〜0.60原子、好ましくは0.05〜0,40
原子であり、また、アルカリ化合物の量は、通常はアル
カリ金属またはアンモニウム基で0.02〜0.70原
子、好ましくは0105〜0,50原子である。
The amount of aluminum oxide and alkali compounds relative to zinc oxide is usually 0% aluminum per 1 atom of zinc.
.. 02-0.60 atoms, preferably 0.05-0.40
and the amount of alkali compound is usually from 0.02 to 0.70 atoms, preferably from 0.105 to 0.50 atoms, in terms of alkali metal or ammonium groups.

アルミニウムの原子比が0.02よりも小さいと成型体
の強度が低下する虞れがあり、一方、0.60よりも大
きくなると水素化物ガスの吸着量が増加し、精製初期に
おいて水素化物ガスが所定の濃度に達するまでの時間が
長くなる虞れがある。また、アルカリ金属またはアンモ
ニウム基の原子比が0.02よりも小さくなると成型体
の強度および吸着能力が低下し、一方、0.70よりも
大きくなると成型が難しくなる。
If the atomic ratio of aluminum is smaller than 0.02, there is a risk that the strength of the molded product will decrease. On the other hand, if it is larger than 0.60, the amount of hydride gas adsorbed will increase, and hydride gas will be There is a possibility that it takes a long time to reach a predetermined concentration. Furthermore, if the atomic ratio of the alkali metal or ammonium group is smaller than 0.02, the strength and adsorption capacity of the molded product will decrease, while if it is larger than 0.70, molding will become difficult.

吸着剤の調製方法としては、例えば亜鉛の酸化物または
酸化物の前駆物質とアルミナゾルおよびアルカリ化合物
の混合物に水を加えて混練するか、あるいは酸化亜鉛ま
たはその前駆物質とアルミナゾルに水を加えて練った後
、さらにアルカリ化合物を加えて得たケーキを成型する
The adsorbent can be prepared by, for example, adding water to a mixture of zinc oxide or oxide precursor, alumina sol, and an alkali compound and kneading it, or adding water to zinc oxide or its precursor and alumina sol and kneading it. After that, an alkali compound is further added and the resulting cake is formed.

成型方法には種々の方法があり、例えば■上記で得た混
合物のケーキを押し出し成型し、得られたベレットを乾
燥する方法、■ケーキを乾燥した後粉砕し、これにグラ
ファイトなどの滑剤を添加、混合したものを打錠成型す
る方法、 ■ケーキを造粒機などを用いて、顆粒状とする方法など
がある。
There are various molding methods, such as: ■ extrusion molding the cake of the mixture obtained above and drying the resulting pellet; ■ drying the cake, then crushing it, and adding a lubricant such as graphite to it. There are two methods: 1) forming a mixture into tablets; 2) forming a cake into granules using a granulator.

これらのうちでは加工性および形状、大きさの選択の容
易さなどから押し出し成型により、ベレット状とするの
が一般的に便利であり、また、ベレットはマルメライザ
ーなどを用いてその端部をまるめた形とすることが好ま
しい。
Among these, it is generally convenient to make a pellet shape by extrusion molding for ease of processing and selection of shape and size. It is preferable to take the form

成型体は精製ガスを流しながら180〜600°C1好
ましくは210〜450℃で焼成することにより吸着剤
となる。
The molded body becomes an adsorbent by firing at 180 to 600° C., preferably 210 to 450° C., while flowing purified gas.

成型体の大きさおよび形状には特に制限はないが、球形
、円柱形、および円筒形などが代表例として挙げられる
。その大きさは球形であれば直径0.5〜10mm、円
柱形であれば直径0.5〜10mm、高さ2〜20mm
程度とされ、粒状など不定形のものであれば、ふるいの
目の開きで0.84〜5.66mm程度の範囲のものが
使用される。
There are no particular restrictions on the size and shape of the molded body, but representative examples include spherical, cylindrical, and cylindrical shapes. The size is 0.5 to 10 mm in diameter if spherical, 0.5 to 10 mm in diameter and 2 to 20 mm in height if cylindrical.
If the material has an irregular shape such as granules, a sieve with an opening of about 0.84 to 5.66 mm is used.

本発明で用いる成型体の密度は通常は0.5〜3.0g
/mり、好ましくは0.7〜2.5g/mの範囲である
。本発明において密度とは成型体(粒)の重さを成型体
の幾何学的体積で割ったものをいう。
The density of the molded product used in the present invention is usually 0.5 to 3.0 g.
/m, preferably in the range of 0.7 to 2.5 g/m. In the present invention, density refers to the weight of a molded body (grains) divided by the geometric volume of the molded body.

また、成型体を精製筒に充填した場合の充填密度は通常
は0.4〜2.0g/−好ましくは0.5〜1.5g/
m12とされる。
In addition, the packing density when the molded body is packed in a refining cylinder is usually 0.4 to 2.0 g/- preferably 0.5 to 1.5 g/
It is assumed to be m12.

本発明において吸着剤は通常は精製筒に充填され、これ
に水分を含有する粗水素化物ガスを通し両者を接触させ
ることによってガス中の水分が吸着除去されて露点の低
い精製ガスが得られる。
In the present invention, the adsorbent is usually packed in a purification cylinder, and by passing crude hydride gas containing moisture through the adsorbent and bringing them into contact, the moisture in the gas is adsorbed and removed, resulting in a purified gas with a low dew point.

吸着温度は一般的には低いほうが好ましいが、80℃程
度以下であればよく、通常は60℃以下の常温で充分な
吸着性能を有し、特に冷却を必要としない。
Although the lower the adsorption temperature, the lower the adsorption temperature is generally preferred, it is sufficient as long as it is about 80°C or less, and usually has sufficient adsorption performance at room temperature of 60°C or less, and does not particularly require cooling.

精製筒に充填される吸着剤の充填長は、実用上通常は5
0〜1500+nmである。充填長が50clI11よ
りも短くなると水分の除去率が低下し、1500nmよ
りも長くなると圧力損失が大きくなる虞れがある。
In practice, the packing length of the adsorbent packed into the refining cylinder is usually 5
It is 0-1500+nm. When the filling length is shorter than 50 clI11, the water removal rate decreases, and when it is longer than 1500 nm, pressure loss may increase.

接触時の粗水素化物ガスの速度は合成ゼオライトを用い
る場合と同じ程度でよく通常は空筒線速度で150cm
/sec以下、好ましくはI〜70cm/secとされ
る。また、接触時の圧には特に制限はないが実用上は1
〜10Kg/cm2Gの範囲で行われることが多い。
The velocity of the crude hydride gas during contact is about the same as when using synthetic zeolite, and the cylinder linear velocity is usually 150 cm.
/sec or less, preferably I to 70 cm/sec. In addition, there is no particular limit to the pressure at the time of contact, but in practice 1
It is often carried out in the range of ~10Kg/cm2G.

本発明において、上記の吸着剤による水分除去工程に、
所望により金属系脱酸素触媒などによる脱酸素工程を組
合わせることも可能であり、これによって水分と同時に
酸素も除去され、極めて高純度の精製水素化物ガスを得
ることができる。
In the present invention, in the water removal step using the above-mentioned adsorbent,
If desired, it is also possible to combine a deoxidizing step using a metal-based deoxidizing catalyst or the like, whereby oxygen is removed at the same time as moisture, and a purified hydride gas of extremely high purity can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は、吸着剤として酸化亜鉛、酸化アルミニウムお
よびアルカリ化合物を混合してなる組成物の成型体を使
用するため、通常の合成ゼオライトのように水素化物ガ
スが吸着されることがなく、精製水素化物ガスは短時間
で所定の濃度に到達し、かつ、水分を効率良く除去する
ことができる。
Since the present invention uses a molded composition made of a mixture of zinc oxide, aluminum oxide, and an alkali compound as an adsorbent, hydride gas is not adsorbed unlike ordinary synthetic zeolite, and purified hydrogen The compound gas can reach a predetermined concentration in a short time and can efficiently remove water.

〔実施例〕〔Example〕

実施例1〜4 塩基性炭酸亜鉛500g、カタロイドAP(触媒化成■
製、高濃度アルミナ) 52.4g  (Zn 1原子
に対しAI 0.16原子)、無水炭酸カリウム30.
2g(Znl原子に対しK O,10原子)を小型ニー
ダ−に入れて3分間混合した後、水280gを加えて1
時間混練した。このケーキを小型押出機によって 1.
9φのノズル板より押出して得たベレットをマルメライ
ザーによって丸め、110’Cにて2時間乾燥した。こ
のものをマツフル炉に入れて350℃で1時間焼成する
ことにより密度1.14g/nrl、充填密度0.74
g/−の吸着剤を得た。
Examples 1 to 4 Basic zinc carbonate 500g, Cataloid AP (Catalyst Chemical ■
52.4 g (0.16 atom of AI per 1 atom of Zn), 30.0 g of anhydrous potassium carbonate.
2g (KO, 10 atoms per Znl atom) was placed in a small kneader and mixed for 3 minutes, then 280g of water was added and 1
Kneaded for hours. This cake is processed using a small extruder.1.
The pellets obtained by extrusion through a 9φ nozzle plate were rolled into balls using a marmerizer and dried at 110'C for 2 hours. By putting this material in a Matsufuru furnace and firing it at 350℃ for 1 hour, the density was 1.14g/nrl, and the packing density was 0.74.
g/- of adsorbent was obtained.

成型体を破砕して20〜32meshとしたちの324
−を内径37.1間、長さ400間の5US316製の
精製筒に(充填密度0.87g / rnQ )充填し
た。
Crush the molded body to 20-32 mesh and make 324
- was packed into a purification cylinder made of 5US316 with an inner diameter of 37.1 mm and a length of 400 mm (packing density 0.87 g/rnQ).

精製筒に乾燥窒素ガスを常圧で350°C1流量L94
0mQ/ mm 8 L V = 3 cm / se
e )で3時間流して活性化処理をおこなった後、常温
まで冷却した。
Dry nitrogen gas in the purification cylinder at normal pressure at 350°C1 flow rate L94
0mQ/mm 8 L V = 3cm/se
After the activation treatment was carried out by flowing for 3 hours in e), the mixture was cooled to room temperature.

このM製筒に、不純物として水分を含有する10vo1
%濃度の粗水素化物ガス(水素ベース)を970m/ 
min (L V = 1.5c+n/ sec )で
流して出口精製ガス中の水素化物ガスの濃度を測定した
ところ、ガスを流し始めてがら数分間で水素化物ガスが
本来の濃度(10vo1%)に達した。
This M-made cylinder contains 10vol. water as an impurity.
% concentration of crude hydride gas (hydrogen base) at 970m/
When the concentration of hydride gas in the purified gas at the outlet was measured by flowing at did.

同時に出口ガスの露点を静電容量式露点計を用いて測定
したところ、〜90℃以下であり、この状態で100分
間精製を続けたが一90°C以下であった。さらに、ガ
スの流速を1940mR/ min (LV = 3 
cm )に増加させたが露点に変化は見られなかった。
At the same time, the dew point of the outlet gas was measured using a capacitance dew point meter and found to be ~90°C or lower, and even though purification was continued in this state for 100 minutes, the dew point remained at 90°C or lower. Furthermore, the gas flow rate was set to 1940 mR/min (LV = 3
cm), but no change was observed in the dew point.

それぞれの結果を第1表に示す。The results are shown in Table 1.

実施例5.6 実施例1〜4におけると同様に準備した精製筒2本にそ
れぞれ不純物として水分を含有する濃度1100ppの
粗シランガス(水素ベース)を970 mQ/ min
 (L V = 1.5 cm/ sec )および6
480m1/min (LV=10cm/sec )で
流して出口精製ガス中のシランが本来の濃度になるまで
の時間を測定したところ、それぞれ11山(実施例5)
および2論であった。
Example 5.6 Crude silane gas (hydrogen base) containing water as an impurity at a concentration of 1100 pp was added to two purification cylinders prepared in the same manner as in Examples 1 to 4 at a rate of 970 mQ/min.
(L V = 1.5 cm/sec) and 6
When flowing at 480 m1/min (LV=10 cm/sec) and measuring the time it took for the silane in the outlet purified gas to reach its original concentration, 11 peaks were found in each case (Example 5).
And there were two theories.

また、出口精製ガス中の露点は一90℃であり、そのま
ま精製を続けたが100分後においても一90°Cであ
った。結果を第1表に示す。
Further, the dew point of the purified gas at the outlet was -90°C, and although the purification was continued, it remained at -90°C even after 100 minutes. The results are shown in Table 1.

第1表 比較例1〜4 モレキュラーシーブ5A(ユニオン昭和■製1/16ペ
レツト品)  324mQを実施例におけると同じ精製
筒に300曲(充填密度0.75g/d )充填し、乾
燥窒素ガスを350℃で3時間流して活性化処理をおこ
なった後、常温に冷却した。
Table 1 Comparative Examples 1 to 4 324 mQ of Molecular Sieve 5A (Union Showa ■ 1/16 pellet product) was packed into the same purification cylinder as in the example for 300 turns (packing density 0.75 g/d), and dry nitrogen gas was added. After performing activation treatment by flowing at 350°C for 3 hours, it was cooled to room temperature.

この精製筒に実施例1〜4で用いたと同じ水素ベースの
種々の粗水素化物ガス(10vo1%)を970all
/ min (L V = 1.5 cm / sec
 )で流して出口ガス中の水素化物ガスが本来の10v
o1%になるまでの時間を測定したところ1〜3時間を
要した。結果を第2表に示す。
970all of the same hydrogen-based various crude hydride gases (10vol 1%) used in Examples 1 to 4 were added to this purification column.
/ min (LV = 1.5 cm / sec
) and the hydride gas in the outlet gas is the original 10V.
When the time taken to reach o1% was measured, it took 1 to 3 hours. The results are shown in Table 2.

比較例5〜6 比較例1〜4で準備した精製筒2木に実施例5.6でも
用いたと同じ濃度1100ppの粗シランをそれぞれ9
70m/ min (L V = 1.5 cm / 
sec )および6480mQ / min (L V
 = 10cm / sec )で流して出口精製ガス
中のシラン濃度が本来の1100PPに達するまでの時
間を測定したところ、600 min以上(比較例5)
および180 min (比較例6)であった。結果を
第2表に示す。
Comparative Examples 5 to 6 9 pieces of crude silane at the same concentration of 1100 pp as used in Example 5.6 were added to the purified pipes prepared in Comparative Examples 1 to 4, respectively.
70m/min (LV=1.5cm/
sec) and 6480mQ/min (L V
= 10cm/sec) and measured the time it took for the silane concentration in the outlet purified gas to reach the original 1100PP, which was 600 min or more (Comparative Example 5)
and 180 min (Comparative Example 6). The results are shown in Table 2.

比較例7〜9 ハイシリカゼオライト(東ソー株製TZS−600HO
E 1.8ベレット品)  324mQを実施例におけ
ると同様の精製筒に307nΩ(充填密度0.73g/
mQ)充填し、乾燥窒素ガスを350℃で3時間流して
活性化させた後、室温に冷却した。
Comparative Examples 7 to 9 High silica zeolite (TZS-600HO manufactured by Tosoh Corporation)
E 1.8 pellet product) 324 mQ was placed in the same refining tube as in the example with 307 nΩ (packing density 0.73 g/
mQ) was filled, activated by flowing dry nitrogen gas at 350° C. for 3 hours, and then cooled to room temperature.

この精製筒に不純物として水分を含有する10vo1%
の粗ホスフィン、粗シランおよび100 p pmの租
シラン(いずれも水素ベース〉をそれぞれ970d /
篩(L V−1,5cm/ sec )流して出口精製
ガス中のホスフィンおよびシランが本来の濃度になるま
での時間と露点を測定した。結果を第2表に示す。
This purification cylinder contains 10vol 1% water as an impurity.
of crude phosphine, crude silane and 100 ppm raw silane (all hydrogen based) at 970 d/min each.
The purified gas was passed through a sieve (LV-1, 5 cm/sec), and the time and dew point until the phosphine and silane in the outlet purified gas reached their original concentrations were measured. The results are shown in Table 2.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] 粗水素化物ガスを酸化亜鉛、酸化アルミニウムおよびア
ルカリ化合物を混合してなる組成物の成形体と接触させ
て、該粗水素化物ガス中に含有される水分を除去するこ
とを特徴とする水素化物ガスの精製方法。
A hydride gas characterized in that moisture contained in the crude hydride gas is removed by bringing the crude hydride gas into contact with a molded body of a composition formed by mixing zinc oxide, aluminum oxide, and an alkali compound. Purification method.
JP1177385A 1989-07-10 1989-07-10 Hydride gas purification method Expired - Fee Related JP2741541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1177385A JP2741541B2 (en) 1989-07-10 1989-07-10 Hydride gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177385A JP2741541B2 (en) 1989-07-10 1989-07-10 Hydride gas purification method

Publications (2)

Publication Number Publication Date
JPH0340901A true JPH0340901A (en) 1991-02-21
JP2741541B2 JP2741541B2 (en) 1998-04-22

Family

ID=16030016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177385A Expired - Fee Related JP2741541B2 (en) 1989-07-10 1989-07-10 Hydride gas purification method

Country Status (1)

Country Link
JP (1) JP2741541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378444A (en) * 1991-12-11 1995-01-03 Japan Pionics Co., Ltd. Process for cleaning harmful gas
WO1999052817A1 (en) * 1998-04-09 1999-10-21 Uhp Materials, Inc. Preparation and purification of diborane
WO2000020330A1 (en) * 1998-10-02 2000-04-13 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
JP2005169392A (en) * 2003-12-08 2005-06-30 Air Products & Chemicals Inc Method for removing water from ammonia

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461411B1 (en) * 2000-12-04 2002-10-08 Matheson Tri-Gas Method and materials for purifying hydride gases, inert gases, and non-reactive gases

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378444A (en) * 1991-12-11 1995-01-03 Japan Pionics Co., Ltd. Process for cleaning harmful gas
WO1999052817A1 (en) * 1998-04-09 1999-10-21 Uhp Materials, Inc. Preparation and purification of diborane
US6165434A (en) * 1998-04-09 2000-12-26 Uhp Materials, Inc Purification of diborane
US6517796B1 (en) 1998-04-09 2003-02-11 Honeywell Intellectual Properties Inc. Preparation and purification of diborane
US6660238B2 (en) 1998-04-09 2003-12-09 Honeywell Intellectual Properties, Inc. Preparation and purification of diborane
WO2000020330A1 (en) * 1998-10-02 2000-04-13 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
US6241955B1 (en) 1998-10-02 2001-06-05 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
JP2005169392A (en) * 2003-12-08 2005-06-30 Air Products & Chemicals Inc Method for removing water from ammonia
JP4662758B2 (en) * 2003-12-08 2011-03-30 エア プロダクツ アンド ケミカルズ インコーポレイテッド How to remove water from ammonia

Also Published As

Publication number Publication date
JP2741541B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
KR100966064B1 (en) Syngas purification process
EP1148025B1 (en) Method for purifying hydrogen-based gas mixture
AU742832B2 (en) Decarbonating gas streams using zeolite adsorbents
JP2002519188A (en) Molecular sieve adsorbent for gas purification and method for producing the same
US10450244B2 (en) Method for oxygen removal from hydrogen using adsorbent
JP3121137B2 (en) Purification method of unsaturated hydrocarbon
JPH0340901A (en) Method for refining gaseous hydride
CN111905803B (en) Inert gas purification catalyst, raw material composition and preparation method
JPH0275318A (en) Removal of carbon dioxide
JP2651603B2 (en) How to remove carbon dioxide
JPH0340902A (en) Method for refining gaseous hydride
JPH0375202A (en) Purification of gas of hydrogenated substance
JPH01164418A (en) Method for removing carbon dioxide
JP2651611B2 (en) Hydride gas purification method
JP2700412B2 (en) Hydride gas purification method
JPH0673613B2 (en) Exhaust gas purification method
JPH0687943B2 (en) Exhaust gas purification method
JP3334664B2 (en) Adsorbent for gas separation
JPH08206445A (en) Purification of exhaust gas
JP3522785B2 (en) Purification method of carbon dioxide
JP7493718B2 (en) Hydrogen cyanide gas absorbent and gas mask
JP3260826B2 (en) Purification method of nitrous oxide
JPH0999216A (en) Harmful gas purifying agent
JP2000140549A (en) Removal of carbon dioxide
JPH02139033A (en) Poisonous gas adsorbent, its manufacture and purification of exhaust gas using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees