JPH0375202A - Purification of gas of hydrogenated substance - Google Patents

Purification of gas of hydrogenated substance

Info

Publication number
JPH0375202A
JPH0375202A JP21199889A JP21199889A JPH0375202A JP H0375202 A JPH0375202 A JP H0375202A JP 21199889 A JP21199889 A JP 21199889A JP 21199889 A JP21199889 A JP 21199889A JP H0375202 A JPH0375202 A JP H0375202A
Authority
JP
Japan
Prior art keywords
hydride gas
zinc oxide
gas
adsorbent
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21199889A
Other languages
Japanese (ja)
Inventor
Koichi Kitahara
北原 宏一
Takashi Shimada
孝 島田
Keiichi Iwata
恵一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP21199889A priority Critical patent/JPH0375202A/en
Publication of JPH0375202A publication Critical patent/JPH0375202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To efficiently adsorb or remove moisture content without generating adsorption of a hydride gas and efficiently obtain a purified hydride gas of desired concentration by bringing a crude hydride gas into contact with an adsorbing agent comprising a molded article containing zinc oxide as a principal ingredient. CONSTITUTION:An aqueous solution of soda ash is added to an aqueous solution of zinc nitrate or zinc chloride, etc., and basic zinc carbonate is precipitated, then the precipitate is filtered, washed with water and zinc oxide is produced by means of drying and burning, etc. Next, an adsorbent composed of a molded article containing zinc oxide as a principal ingredient is produced by means of mixing a lubricant into the powder of zinc oxide and molding, etc. Then, said adsorbent is brought into contact with a crude hydride gas and moisture contained in the crude hydride gas is removed to afford a purified hydride gas. Besides, an adsorbent containing zinc oxide as a principal ingredient does not adsorb a hydride gas differing from a normal synthetic zeolite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素化物ガスの精製方法に関し、さらに詳細に
は水素化物ガス中に不純物として含有される水分を極低
濃度まで除去しうる水素化物ガスの精製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying hydride gas, and more specifically, to a method for purifying hydride gas, and more specifically, to a method for purifying hydride gas, and more specifically, to purifying a hydride gas that can remove moisture contained as an impurity in hydride gas to an extremely low concentration. Relating to a gas purification method.

アルシン、ホスフィン、シランおよびジボランなどの水
素化物ガスはガリウム−砒素(GaAs )、ガリウム
−りん(GaP>などの化合物半導体などを製造するた
めの原、料およびイオン注入用ガスなどとして重要なも
のであり、その使用量が年々増加しつつあると同時に半
導体の高度集積化に伴い、不純物の含有量の極めて低い
ものが要求されている。
Hydride gases such as arsine, phosphine, silane, and diborane are important raw materials and ion implantation gases for manufacturing compound semiconductors such as gallium-arsenic (GaAs) and gallium-phosphorus (GaP). The amount used is increasing year by year, and at the same time, as semiconductors become more highly integrated, there is a demand for materials with extremely low impurity content.

〔従来の技術〕[Conventional technology]

半導体製造時に使用される水素化物ガスは一般的には純
水素化物ガスの他、水素ガスまたは不活性ガスで稀釈さ
れた形態で市販されている。
Hydride gases used in semiconductor manufacturing are generally commercially available in diluted form with hydrogen gas or inert gas, in addition to pure hydride gas.

これらの水素化物ガス中には不純物として酸素および水
分などが含有されている。
These hydride gases contain impurities such as oxygen and moisture.

水分を除去するには、通常は取扱の容易な合成ゼオライ
ト、例えばモレキュラーシーブ4A、5A(米、ユニオ
ンカーバイド社)など、あるいはハイシリカゼオライト
T S Z −600)10E(東ソー■製〉などの脱
湿剤により露点−80’C1さらにはそれ以下の露点ま
で吸着除去することが可能である。
To remove water, we usually use synthetic zeolites that are easy to handle, such as Molecular Sieve 4A and 5A (Union Carbide, USA), or high-silica zeolite T S Z -600) 10E (manufactured by Tosoh). It is possible to adsorb and remove the dew point down to -80'C1 or even lower by using a wetting agent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの水分の吸着剤は一般にアルシン
、ホスフナ゛ンなどの水素化物ガスも同時に吸着するた
め、精製の開始時に精製筒がら出る精製ガス中の水素化
物ガスが本来の濃度となるまでには可なりの時間を要す
るという問題点があり、原料ガス中の水素化物ガス濃度
が低い程、長時間を要する。
However, these moisture adsorbents generally also adsorb hydride gases such as arsine and phosphinone at the same time. There is a problem that it takes a considerable amount of time, and the lower the hydride gas concentration in the raw material gas, the longer it takes.

また、多量の水素化物ガスを吸着した吸着剤は、交換時
など取扱いに対して安全上の問題もある。
Furthermore, adsorbents that have adsorbed a large amount of hydride gas pose safety problems when handling them when they are replaced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、水素化物ガス中に含有される水分を極低
濃度まで効率よく除去するとともに、精製を始めてから
短時間で所定濃度に到達させるべく鋭意研究を重ねた結
果、酸化亜鉛を主成分とする成型体を用いることにより
、水分は吸着するが水素化物ガスは吸着されないことを
見い出し本発明を完成した。
The inventors of the present invention have conducted intensive research to efficiently remove water contained in hydride gas to an extremely low concentration and to reach a specified concentration in a short time after starting refining. The present invention was completed by discovering that by using a molded body as a component, water is adsorbed but hydride gas is not adsorbed.

すなわち本発明は、粗水素化物ガスを酸化亜鉛を主成分
とする成形体からなる吸着剤と接触させて、該粗水素化
物ガス中に含有される水分を除去することを特徴とする
水素化物ガスの精製方法である。
That is, the present invention provides a hydride gas characterized in that water contained in the crude hydride gas is removed by bringing the crude hydride gas into contact with an adsorbent made of a molded body containing zinc oxide as a main component. This is a purification method.

本発明は水素化物ガス単独、水素(水素ガスペース〉お
よび窒素、アルゴンなどの不活性ガス(不活性ガスペー
ス)で稀釈された水素化物ガス(以下総称して粗水素化
物ガスと記す)中に含有される水分の除去に適用される
The present invention can be applied to hydride gas alone, hydride gas diluted with hydrogen (hydrogen gas space) and inert gas (inert gas space) such as nitrogen or argon (hereinafter collectively referred to as crude hydride gas). Applicable for removing contained moisture.

水素化物ガスはアルシン、ホスフィン、シランおよびジ
ボランなどであり、主に半導体製造プロセスなどで使用
される水素化物ガスである。
The hydride gas includes arsine, phosphine, silane, diborane, etc., and is a hydride gas mainly used in semiconductor manufacturing processes.

本発明に使用される吸着剤は酸化亜鉛を主成分とする成
型体である。
The adsorbent used in the present invention is a molded body containing zinc oxide as a main component.

酸化亜鉛としては亜鉛塩の水溶液を原料とする湿式法、
金属亜鉛を原料とするフランス法、亜鉛鉱石を原料とす
るアメリカ法など種々な方法で製造されたものが使用で
きるが、粒度が小さく、比表面積が大きいものが得られ
る点で湿式法によるものが一般的に好ましい。湿式法と
しては例えば硝酸亜鉛、塩化亜鉛などの水溶液にソーダ
灰水溶液を加えて塩基性炭酸亜鉛を沈殿させ、これを濾
過、−水洗した後乾燥し、さらに200〜700 ’C
で焼成することにより、酸化亜鉛とするものである。ま
た、市販されている酸化亜鉛の中から適当なものを選択
使用してもよい 本発明で使用される吸着剤は酸化亜鉛をペレットなどに
成型したもの、あるいは成型物を適当な大きさに破砕し
て用いられる。成型方法としては乾式法あるいは湿式法
を用いることができる。例えば前者としては酸化亜鉛の
粉末に少量のグラファイト、タルクなどの滑剤を混合し
て打錠成型する方法があり、また、後者としては、酸化
亜鉛に、アルミナセメントなどのバインダーおよび水を
加えて混練し押出成型する方法がある。これらは必要に
応じて再焼成する。
For zinc oxide, there is a wet method using an aqueous solution of zinc salt as a raw material,
Products manufactured by various methods such as the French method using metallic zinc as the raw material and the American method using zinc ore as the raw material can be used, but the wet method is preferable because it produces particles with small particle size and a large specific surface area. Generally preferred. As a wet method, for example, a soda ash aqueous solution is added to an aqueous solution of zinc nitrate, zinc chloride, etc. to precipitate basic zinc carbonate, which is filtered, washed with water, dried, and further heated at 200 to 700'C.
Zinc oxide is produced by firing the zinc oxide. In addition, an appropriate adsorbent may be selected from commercially available zinc oxide.The adsorbent used in the present invention may be formed by molding zinc oxide into pellets or the like, or by crushing the molded material into appropriate sizes. It is used as As a molding method, a dry method or a wet method can be used. For example, the former method involves mixing zinc oxide powder with a small amount of lubricant such as graphite or talc and molding it into tablets, while the latter method involves adding a binder such as alumina cement and water to zinc oxide and kneading it. There is a method of extrusion molding. These are refired if necessary.

酸化亜鉛に対するアルミナセメントの混合割合は通常は
酸化亜鉛100gに対して50g以下、好ましくは10
〜30gとされる。また、例えば前記の塩基性炭酸亜鉛
の段階で滑剤、バインダーなどを加えて成型したものを
300〜700℃で焼成することによって酸化亜鉛の成
型体としてもよい。
The mixing ratio of alumina cement to zinc oxide is usually 50 g or less per 100 g of zinc oxide, preferably 10 g.
~30g. Alternatively, a molded body of zinc oxide may be obtained, for example, by adding a lubricant, a binder, etc. to the basic zinc carbonate stage and then molding the product and firing it at 300 to 700°C.

−殻内には加工のし易さなどから湿式法が好ましい。- For the inside of the shell, a wet method is preferable due to ease of processing.

成型体の大きさおよび形状には特に制限はないが、球形
、円柱形および円筒形などが代表例として挙げられ、場
合によってはこれらは適当な大きさに破砕して用いられ
る。成型体の大きさは球形であれば直径1〜10mm、
円柱形であれば直径1〜10mm、高さ2〜20mm程
度とされ、不定形でのものであれば、ふるいの目の開き
で0.84〜5.66mmの範囲のものが使用される。
There are no particular restrictions on the size and shape of the molded body, but representative examples include spherical, cylindrical, and cylindrical shapes, and in some cases, these are crushed into appropriate sizes before use. The size of the molded body is 1 to 10 mm in diameter if it is spherical;
If it is cylindrical, it has a diameter of 1 to 10 mm and a height of about 2 to 20 mm, and if it is an irregular shape, it has a sieve opening of 0.84 to 5.66 mm.

本発明で用いる成型体の密度は通常は0.6〜3.5g
/d、好ましくは0.8〜2.5g/−の範囲である。
The density of the molded product used in the present invention is usually 0.6 to 3.5 g.
/d, preferably in the range of 0.8 to 2.5 g/-.

本発明において密度とは成型体(粒〉の重さを成型体の
幾何学的体積で割ったものをいう。
In the present invention, density refers to the weight of a molded body (grain) divided by the geometric volume of the molded body.

また、成型体を吸着筒に充填した場合の充填密度は通常
は0.5〜2.0g/ml!好ましくは0.6〜1.5
g/−とされる。
In addition, the packing density when the molded body is packed into an adsorption tube is usually 0.5 to 2.0 g/ml! Preferably 0.6 to 1.5
g/-.

本発明において吸着剤は通常は精製筒に充填され、これ
に水分を含有する粗水素化物ガスをし両者を接触させる
ことによってガス中の水分が吸着除去されて露点の低い
精製ガスが得られる。
In the present invention, the adsorbent is usually packed in a purification column, and by introducing a crude hydride gas containing moisture into the adsorbent and bringing them into contact, the moisture in the gas is adsorbed and removed, resulting in a purified gas with a low dew point.

吸着温度は一般的には低いほうが好ましいが、80℃程
度以下であればよく、通常は60℃以下の常温で充分な
吸着性能を有し、特に冷却を必要としない。
Although the lower the adsorption temperature, the lower the adsorption temperature is generally preferred, it is sufficient as long as it is about 80°C or less, and usually has sufficient adsorption performance at room temperature of 60°C or less, and does not particularly require cooling.

精製筒に充填される吸着剤の充填長は、実用上通常は5
0〜1500mmである。充填長が50mmよりも短く
なると水分の除去率が低下し、1500amよりも長く
なると圧力損失が大きくなる虞れがある。
In practice, the packing length of the adsorbent packed into the refining column is usually 5
It is 0 to 1500 mm. If the filling length is shorter than 50 mm, the water removal rate may decrease, and if it is longer than 1500 am, pressure loss may increase.

接触時の粗水素化物ガスの速度は合成ゼオライトを用い
る場合と同じ程度でよく通常は空筒線速度で150cm
/sec以下、好ましくは1〜70Cm/secとされ
る。また、接触時の圧には特に制限はないが実用上は1
〜10Kg/cm2Gの範囲で行われることが多い。
The velocity of the crude hydride gas during contact is about the same as when using synthetic zeolite, and the cylinder linear velocity is usually 150 cm.
/sec or less, preferably 1 to 70 Cm/sec. In addition, there is no particular limit to the pressure at the time of contact, but in practice 1
It is often carried out in the range of ~10Kg/cm2G.

本発明において、上記の吸着剤による水分除去工程に、
所望により金属系脱酸素触媒などによる脱酸素工程を組
合わせることも可能であり、これによって水分と同時に
酸素も除去され、極めて高純度の精製水素化物ガスを得
ることができる。
In the present invention, in the water removal step using the above-mentioned adsorbent,
If desired, it is also possible to combine a deoxidizing step using a metal-based deoxidizing catalyst or the like, whereby oxygen is removed at the same time as moisture, and a purified hydride gas of extremely high purity can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は、吸着剤として酸化亜鉛を主成分とする成型体
を使用するため、通常の合成ゼオライトのように水素化
物ガスが吸着されることがなく、精製水素化物ガスは短
時間で所定の濃度に到達し、かつ、水分を効率良く除去
することができる。
Since the present invention uses a molded body mainly composed of zinc oxide as an adsorbent, hydride gas is not adsorbed unlike ordinary synthetic zeolite, and purified hydride gas can reach a predetermined concentration in a short time. can be reached and moisture can be removed efficiently.

〔実施例〕〔Example〕

実施例1〜4 硝酸亜鉛の20wt%水溶液を攪はん槽中で攪はんしな
がらこれに炭酸ナトリウムの20wtX水溶液を滴下し
て塩基性炭酸亜鉛の沈殿物を生成させた。この沈澱物を
濾過、洗浄した後120℃で10時間乾燥し、続いて3
00℃で5時間焼成して酸化亜鉛を得た。このようにし
て得られた酸化亜鉛41gにアルミナ°セメント9gを
混合したものに少量の水を添加してニーダ−で混練し、
押出成型したものを120℃で2時間乾燥した。このも
のの密度はL9g/mI2であった。
Examples 1 to 4 While stirring a 20 wt % aqueous solution of zinc nitrate in a stirring tank, a 20 wt. This precipitate was filtered, washed, dried at 120°C for 10 hours, and then
Zinc oxide was obtained by firing at 00°C for 5 hours. A small amount of water was added to a mixture of 41 g of zinc oxide obtained in this way and 9 g of alumina cement, and the mixture was kneaded in a kneader.
The extrusion molded product was dried at 120° C. for 2 hours. The density of this material was L9g/mI2.

この成型物を破砕した20〜35meshとしたもの3
24−を内径37.1mm、長さ400 mmのS U
 S 316製の精製筒内に充填(充填密度1.3g/
 d’) した。
This molded product was crushed into 20-35 mesh 3
24- with an inner diameter of 37.1 mm and a length of 400 mm
Packed into a refining cylinder made of S 316 (packing density 1.3g/
d') I did.

精製筒に乾燥窒素ガスを常圧で350℃、流量1940
−/ min (L V = 3cm / sec )
で3時間流して活性化処理を行った後、常圧まで冷却し
た。
Dry nitrogen gas is supplied to the purification cylinder at normal pressure at 350℃ and flow rate 1940℃.
-/min (LV = 3cm/sec)
After the activation treatment was carried out by flowing the mixture for 3 hours, the mixture was cooled to normal pressure.

この精製筒に、不純物として水分を含有する10vo1
%濃度の粗水素化物ガス(水素ベース)を9707/ 
mm (L V = 1.5cm/ see )で流し
て出口精製ガス中の水素化物ガスの濃度を測定したとこ
ろ、ガスを流し始めてから数分間で水素化物ガスが本来
の濃度(10vo1%)に達した。
This purification cylinder contains 10vol containing water as an impurity.
% concentration of crude hydride gas (hydrogen base)
When the concentration of hydride gas in the purified gas at the outlet was measured by flowing at did.

同時に出口ガスの露点を静電容量式露点計を用いて測定
したところ、−90℃以下であり、この状態で100分
間精製を続けたが一90℃以下であった。さらに、ガス
の流速を194(hyd!/ mix < LV = 
3 cm )に増加させたが露点に変化は見られなかっ
た。それぞれの結果を第1表に示す。
At the same time, the dew point of the outlet gas was measured using a capacitance dew point meter and was found to be -90°C or lower, and although purification was continued in this state for 100 minutes, the dew point remained at 90°C or lower. Furthermore, the gas flow rate is set to 194 (hyd!/ mix < LV =
3 cm), but no change was observed in the dew point. The results are shown in Table 1.

実施例5.6 実施例1〜4におけると同様に準備した精製筒2本にそ
れぞれ不純物として水分を含有する濃度1100ppの
粗シランガス(水素ベース)を970ytl/mm (
LV:=1.5 cm/sec )および6480d 
/min (LV=10cm/sec )で流して出口
精製ガス中のシランが本来の濃度になるまでの時間を測
定したところ、それぞれ28m1n (実施例5)およ
び4癲であった。
Example 5.6 Crude silane gas (hydrogen base) containing water as an impurity at a concentration of 1100 pp was added at 970 ytl/mm (
LV:=1.5 cm/sec) and 6480d
/min (LV=10 cm/sec) and the time required for the silane in the outlet purified gas to reach its original concentration was measured, and the time was 28 m1n (Example 5) and 4 m1n, respectively.

また、出口精製ガス中の露点は一90℃以下であり、そ
のまま精製を続けたが100分後においても一90℃以
下であった。結果を第1表に示す。
Further, the dew point of the purified gas at the outlet was below -90°C, and even after 100 minutes, it remained below -90°C even though the purification was continued. The results are shown in Table 1.

第1表 比較例1〜4 モレキュラーシーブ5A(ユニオン昭和■製1/16ペ
レツト品)  324m12を実施例におけると同じ精
製筒に300開(充填密度0.75g/m)充填し、乾
燥窒素ガスを350℃で3時間流して活性化処理をおこ
なった後、常温に冷却した。
Table 1 Comparative Examples 1 to 4 Molecular sieve 5A (Union Showa ■ 1/16 pellet product) 324 m12 was filled in the same purification column as in the example at 300 mm (filling density 0.75 g/m), and dry nitrogen gas was added. After performing activation treatment by flowing at 350°C for 3 hours, it was cooled to room temperature.

この精製筒に実施例1〜4で用いたと同じ水素ベースの
種々の粗水素化物ガス(lQvo1%)を970mQ/
 min (L V = 1.5 cm / see 
)で流して出口ガス中の水素化物ガスが本来の10vo
 1%になるまでの時間を測定したと、ころ1〜3時間
を要した。結果を第2表に示す。
970 mQ//
min (LV = 1.5 cm/see
) so that the hydride gas in the outlet gas becomes the original 10vo
When the time taken to reach 1% was measured, it took 1 to 3 hours. The results are shown in Table 2.

比較例5〜6 比較例1〜4で準備した精製筒2本に実施例5.6でも
用いたと同じ濃度1100ppの粗シランをそれぞれ9
70m12 / min (L V = 1.5 ct
x/ sec )および6480m / min (L
 V = 10cm / sec )で流して出口精製
ガス中のシラン濃度が本来の1100ppに達するまで
の時間を測定したところ、600 mi+以上(比較例
5〉および180m1n (比較例6)であった。結果
を第2表に示す。
Comparative Examples 5 to 6 Nine volumes of crude silane at the same concentration of 1100 pp as used in Example 5.6 were added to the two refining cylinders prepared in Comparative Examples 1 to 4, respectively.
70m12/min (L V = 1.5 ct
x/sec) and 6480m/min (L
The time taken for the silane concentration in the outlet purified gas to reach the original 1100 pp by flowing at V = 10 cm/sec) was 600 mi+ (Comparative Example 5) and 180 m1n (Comparative Example 6).Results are shown in Table 2.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] 粗水素化物ガスを酸化亜鉛を主成分とする成形体からな
る吸着剤と接触させて、該粗水素化物ガス中に含有され
る水分を除去することを特徴とする水素化物ガスの精製
方法。
A method for purifying hydride gas, which comprises bringing crude hydride gas into contact with an adsorbent made of a molded body containing zinc oxide as a main component to remove moisture contained in the crude hydride gas.
JP21199889A 1989-08-17 1989-08-17 Purification of gas of hydrogenated substance Pending JPH0375202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21199889A JPH0375202A (en) 1989-08-17 1989-08-17 Purification of gas of hydrogenated substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21199889A JPH0375202A (en) 1989-08-17 1989-08-17 Purification of gas of hydrogenated substance

Publications (1)

Publication Number Publication Date
JPH0375202A true JPH0375202A (en) 1991-03-29

Family

ID=16615201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21199889A Pending JPH0375202A (en) 1989-08-17 1989-08-17 Purification of gas of hydrogenated substance

Country Status (1)

Country Link
JP (1) JPH0375202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059859A (en) * 1997-09-19 2000-05-09 Aeronex, Inc. Method, composition and apparatus for water removal from non-corrosive gas streams
WO2008001732A1 (en) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Dehumidification/deoxidization method, and deoxidizing package, film having deoxidizing function and deoxidizing resin composition each having dehumidifying function
JP2008093049A (en) * 2006-10-06 2008-04-24 Higo-Griller Co Ltd Automatic grill machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059859A (en) * 1997-09-19 2000-05-09 Aeronex, Inc. Method, composition and apparatus for water removal from non-corrosive gas streams
WO2008001732A1 (en) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Dehumidification/deoxidization method, and deoxidizing package, film having deoxidizing function and deoxidizing resin composition each having dehumidifying function
JP2008238170A (en) * 2006-06-29 2008-10-09 Mitsui Mining & Smelting Co Ltd Method of dehumidifying and deoxidizing, deoxidizing package and deoxidizing function film or deoxidizing resin composition having dehumidifying function
JP2008093049A (en) * 2006-10-06 2008-04-24 Higo-Griller Co Ltd Automatic grill machine

Similar Documents

Publication Publication Date Title
US3361531A (en) Removal of oxygen from gas mixtures
US10450244B2 (en) Method for oxygen removal from hydrogen using adsorbent
JP3121137B2 (en) Purification method of unsaturated hydrocarbon
CN111905803B (en) Inert gas purification catalyst, raw material composition and preparation method
EP0361386B1 (en) Method for purifying gaseous hydrides
JPH0375202A (en) Purification of gas of hydrogenated substance
JP2741541B2 (en) Hydride gas purification method
JP2732262B2 (en) How to purify arsine
JP2700412B2 (en) Hydride gas purification method
JP2651611B2 (en) Hydride gas purification method
JPH01164418A (en) Method for removing carbon dioxide
JPH0340902A (en) Method for refining gaseous hydride
JP2700413B2 (en) Hydride gas purification method
JP7493718B2 (en) Hydrogen cyanide gas absorbent and gas mask
JP3154340B2 (en) Method for purifying germanium hydride
JP3522785B2 (en) Purification method of carbon dioxide
JP2640521B2 (en) Hydrogen sulfide purification method
JP2700400B2 (en) Hydride gas purification method
JP2700399B2 (en) Hydride gas purification method
JP2700396B2 (en) Purification method of diborane
JP2700401B2 (en) Hydride gas purification method
KR0148367B1 (en) Method for purifying gaseous hydrides
JP2700398B2 (en) Hydride gas purification method
JP3154339B2 (en) Method for purifying germanium hydride
JP2592312B2 (en) Phosphine purification method