JPH06163997A - Dehumidifier using thermoelectric effect, and method of controlling dehumidifier - Google Patents

Dehumidifier using thermoelectric effect, and method of controlling dehumidifier

Info

Publication number
JPH06163997A
JPH06163997A JP43A JP31152692A JPH06163997A JP H06163997 A JPH06163997 A JP H06163997A JP 43 A JP43 A JP 43A JP 31152692 A JP31152692 A JP 31152692A JP H06163997 A JPH06163997 A JP H06163997A
Authority
JP
Japan
Prior art keywords
conductor
heat
thermoelectric
heat exchange
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Yasushi Nakagiri
康司 中桐
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP43A priority Critical patent/JPH06163997A/en
Publication of JPH06163997A publication Critical patent/JPH06163997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To provide a low-cost dehumidifier of high performance and high efficiency using a thermoelectric device. CONSTITUTION:A thermoelectric device 21 is composed of a thermoelectric circuit 22 and two fins 23. The thermoelectric circuit includes a heat-conducting plate 28 and a fin 23 or each of the upper or heat-generation side and the lower on heat-absorption side. The fins 23 are arranged to pass damp air in horizontal directions in the figure. Damp air conducted in the direction of the arrow through a path 30 by a cross flow fan 29. The path 30 includes an opening 31, through which external damp air is introduced by the cross flow fan 29. The damp air is mixed with the cool dry air coming past the heat absorption side, and the mixed air flows to the heat generation side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペルチェ効果を利用し電
気的に除湿を行う除湿装置およびその制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehumidifying device for electrically dehumidifying utilizing a Peltier effect and a control method thereof.

【0002】[0002]

【従来の技術】従来のペルチェ効果を利用した除湿装置
について、図8および図9を用いて説明する。図8は除
湿装置の全体を、図9は除湿装置内に設置されている熱
電装置の構成を示す。
2. Description of the Related Art A conventional dehumidifying device utilizing the Peltier effect will be described with reference to FIGS. FIG. 8 shows the entire dehumidifying device, and FIG. 9 shows the configuration of the thermoelectric device installed in the dehumidifying device.

【0003】最初に、図9を用いて熱電装置の構成を説
明する。熱電装置1はN型半導体2、導電体3、P型半
導体4、導電体5を順に並べてなる熱電回路を有し、前
記導電体3は熱電回路上部に、導電体5は熱電回路下部
に位置させている。また、導電体3の上部には導電体3
と接した熱伝導体6が、導電体5の下部には導電体5と
接した熱伝導体7が配置され、さらにその上下に2つの
フィン8、9を配置している。
First, the structure of the thermoelectric device will be described with reference to FIG. The thermoelectric device 1 has a thermoelectric circuit in which an N-type semiconductor 2, a conductor 3, a P-type semiconductor 4, and a conductor 5 are arranged in this order. The conductor 3 is located above the thermoelectric circuit and the conductor 5 is located below the thermoelectric circuit. I am letting you. In addition, the conductor 3 is provided above the conductor 3.
The heat conductor 6 in contact with the conductor 5, the heat conductor 7 in contact with the conductor 5 is arranged below the conductor 5, and two fins 8 and 9 are arranged above and below the conductor.

【0004】上記構成において、熱電回路に流れ込んだ
電流は、半導体2、4と導電体3、5の界面でペルチェ
効果により発熱もしくは吸熱する。このとき、N型半導
体2とP型半導体4は交互に並んでいることから、導電
体3、5は一方が発熱部または他方が吸熱部となり、前
述のように熱伝導板6、7は導電体3、5の一方と接し
ていることから、一方が発熱、他方が吸熱となり、さら
に、フィン8、9も同様に一方が発熱フィン、他方が吸
熱フィンとなる。したがって、フィン8を流れる被熱交
換流体から熱を吸収(もしくは被熱交換流体への熱の発
散)、フィン9を流れる被熱交換流体への熱の発散(も
しくは被熱交換流体からの熱の吸収)を行うヒートポン
プを形成する。
In the above structure, the current flowing into the thermoelectric circuit heats or absorbs heat at the interface between the semiconductors 2 and 4 and the conductors 3 and 5 due to the Peltier effect. At this time, since the N-type semiconductors 2 and the P-type semiconductors 4 are alternately arranged, one of the conductors 3 and 5 serves as a heat generating portion or the other serves as a heat absorbing portion, and the heat conducting plates 6 and 7 are electrically conductive as described above. Since they are in contact with one of the bodies 3 and 5, one of them serves as heat generation and the other serves as heat absorption. Further, the fins 8 and 9 similarly serve as heat generation fins and the other heat absorption fins. Therefore, heat is absorbed from the heat exchanged fluid flowing through the fins 8 (or heat is dissipated into the heat exchanged fluid), and heat is dissipated into the heat exchanged fluid flowing through the fins 9 (or heat is exchanged from the heat exchanged fluid). Form a heat pump that performs absorption.

【0005】次に除湿装置の説明を図8を用いて行う。
図9の熱電装置1は図8の中央部に設置される。湿り空
気は、クロスフローファン10および流路11により矢
印の方向に誘導される。このとき、熱電装置は下部が冷
却側、上部が放熱側となる。したがって、クロスフロー
ファン10により流動する湿り空気は最初に冷却され、
露点に達した後、水蒸気が凝縮し、絶対湿度を下げる。
その後、流路11により、放熱側に流入され、熱電回路
からの放熱を受け昇温し、乾燥した温風として外部に放
出される。
Next, the dehumidifying device will be described with reference to FIG.
The thermoelectric device 1 of FIG. 9 is installed in the central portion of FIG. The moist air is guided in the direction of the arrow by the cross flow fan 10 and the flow passage 11. At this time, the lower part of the thermoelectric device is the cooling side and the upper part is the heat radiating side. Therefore, the moist air flowing by the cross flow fan 10 is first cooled,
After reaching the dew point, water vapor condenses and lowers the absolute humidity.
After that, it is flowed into the heat radiation side by the flow path 11, receives the heat radiation from the thermoelectric circuit, rises in temperature, and is discharged to the outside as dry warm air.

【0006】また、このような除湿装置の運転は、湿り
空気入り口部に設置された湿度センサー(図示せず)に
より湿度を検知し、制御されている。
The operation of such a dehumidifier is controlled by detecting the humidity by a humidity sensor (not shown) installed at the moist air inlet.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の除湿装置では、以下の課題があった。 (1)一般的に熱電装置の効率が悪く、消費電力が大き
くなる。 (2)熱電装置の能力が小さいことから大量の熱電装置
が必要となり、コスト高となる。 (3)運転制御のための湿度センサーのコストが高い。
However, such a conventional dehumidifying device has the following problems. (1) Generally, the efficiency of the thermoelectric device is low and the power consumption is large. (2) Since the capacity of the thermoelectric device is small, a large amount of thermoelectric device is required, resulting in high cost. (3) The cost of the humidity sensor for operation control is high.

【0008】本発明は、上記課題に留意し、能力および
効率を向上させるとともにコストの低い除湿装置および
その制御方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a dehumidifying apparatus and a control method for the dehumidifying apparatus which have improved performance and efficiency and are low in cost.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に本発明の除湿装置は、N型半導体、第1の導電体、P
型半導体および第2の導電体の順に、各半導体・導電体
の端部が電気的に接触するように設置してなる熱電回路
と、前記熱電回路の一側に位置し前記第1の導電体と熱
的に接触する熱交換手段と、前記熱交換手段と反対方向
に位置し前記第2の導電体と熱的に接触する熱交換手段
と、湿り空気を前記熱電回路への通電時に冷却側となる
前記熱交換手段、放熱側となる熱交換手段の順に流入さ
せる送風機および送風流路を備えた除湿装置において、 (1)放熱側の熱交換手段に冷却側を流出した空気を流
入する際に前記湿り空気を付加する機構を設ける。 (2)通電時に冷却側となる熱交換手段の下流側に位置
する前記N型半導体およびP型半導体の電流方向の長さ
を上流側に比較して短くする。 (3)通電時に冷却側となる熱交換手段の下流側に位置
する前記N型半導体およびP型半導体の断面積を上流側
に比較して大きくする。 (4)前記湿り空気の冷却側入口と放熱側出口の温度差
を測定し、前記温度差により前記熱電回路への供給電圧
または供給電流を制御する。 (5)前記熱電回路に供給する電圧と電流値を測定し、
その比により前記熱電回路への供給電圧または供給電流
を制御する。 構成および制御方法とするものである。
In order to achieve the above object, the dehumidifying device of the present invention comprises an N-type semiconductor, a first conductor and a P-type semiconductor.
Type semiconductor and second conductor in this order so that the end portions of each semiconductor / conductor are in electrical contact with each other, and the first conductor located on one side of the thermoelectric circuit A heat exchanging means that makes thermal contact with the heat exchanging means, a heat exchanging means that is located in a direction opposite to the heat exchanging means and is in thermal contact with the second conductor, and a cooling side when energizing humid air to the thermoelectric circuit. In the dehumidifying device provided with a blower and a blower flow path, in which the heat exchanging means that becomes the heat exchanging means and the heat exchanging means that becomes the heat radiating side flow in order, (1) When the air flowing out from the cooling side flows into the heat exchanging side Is provided with a mechanism for adding the moist air. (2) The lengths of the N-type semiconductor and the P-type semiconductor, which are located on the downstream side of the heat exchange means on the cooling side when energized, in the current direction are shorter than those on the upstream side. (3) The cross-sectional area of the N-type semiconductor and the P-type semiconductor located on the downstream side of the heat exchange means, which is the cooling side when energized, is made larger than that on the upstream side. (4) The temperature difference between the cooling-side inlet and the heat-radiating-side outlet of the moist air is measured, and the supply voltage or the supply current to the thermoelectric circuit is controlled by the temperature difference. (5) Measure the voltage and current value supplied to the thermoelectric circuit,
The ratio controls the supply voltage or supply current to the thermoelectric circuit. The configuration and the control method are used.

【0010】[0010]

【作用】上記のような構成もしくは方法によって、得ら
れる作用は次の通りである。まず、第1の発明の作用に
ついて、図10を用いて説明する。図10は、除湿装置
内の湿り空気の温度変化の様相を示すものである。図中
の太線は放熱側および冷却側を流れる湿り空気の温度変
化を示すもので、湿り空気は、図示A点の状態で流入
し、図中一点鎖線で示す半導体冷却側に熱を与え、温度
が低下し、B点で露点に達し、その後湿り空気中の水蒸
気を凝縮しながら温度を下げ、C点の状態で冷却側フィ
ンにより流出する。その後、放熱側フィンに流入し、一
点鎖線で示す半導体放熱側より熱を受けて温度が上昇
し、D点の状態で流出する。熱電装置の効率は比較的低
いことから吸熱量に比較して放熱量が大きくなり、放熱
側の温度上昇は冷却側に比較して大きくなる。
The operation obtained by the above-mentioned configuration or method is as follows. First, the operation of the first invention will be described with reference to FIG. FIG. 10 shows how the temperature of the moist air in the dehumidifier changes. The thick line in the figure shows the temperature change of the moist air flowing on the heat radiating side and the cooling side.The moist air flows in at the state of point A in the figure and gives heat to the semiconductor cooling side shown by the dashed line in the figure, Is decreased and reaches the dew point at the point B, and then the temperature is lowered while condensing the water vapor in the moist air, and at the point C, the cooling side fins flow out. After that, it flows into the heat radiation side fin, receives heat from the semiconductor heat radiation side indicated by the one-dot chain line, the temperature rises, and flows out at the point D. Since the efficiency of the thermoelectric device is relatively low, the amount of heat radiation is larger than the amount of heat absorption, and the temperature rise on the heat radiation side is larger than on the cooling side.

【0011】一方、熱電装置の特性として半導体両端の
温度差が大きくなると、熱電装置の能力および効率は大
きく低下する。半導体材料として現在最も使用されてい
るビスマスーテルル系材料を用いた場合には、温度差2
0degで効率は1.2程度であるが、温度差が30d
egになると効率は0.7まで低下する。このとき、冷
却能力は80%程度に低下するが、逆に放熱側の熱量は
30%も増加する。
On the other hand, as a characteristic of the thermoelectric device, if the temperature difference between both ends of the semiconductor becomes large, the capacity and efficiency of the thermoelectric device will be greatly reduced. When using the bismuth-tellurium-based material that is currently most used as a semiconductor material, the temperature difference is 2
The efficiency is about 1.2 at 0 deg, but the temperature difference is 30 d.
The efficiency drops to 0.7 at eg. At this time, the cooling capacity decreases to about 80%, but conversely, the amount of heat on the heat radiation side increases by 30%.

【0012】そこで、本発明では、放熱側の空気量を冷
却側からの空気だけでなく、さらに、外部から空気を取
り入れ風量を上げて、放熱側の温度を下げている。図1
0に示す太い波線および2点鎖線は、冷却側から流入す
る空気が一部の放熱を受けて昇温し、湿り空気の入口温
度に達した部分で周囲の湿り空気を流入させた場合の放
熱側の空気温度と半導体高温側の温度変化を示したもの
である。放熱側を流れる空気の熱容量が増加し昇温幅が
小さくなり、出口温度は、DからD′まで低下する。こ
れにともない、半導体高温側温度も低下し、半導体両端
の温度差はTbからTcに小さくなる。したがって、こ
の部分における能力および効率を上げることが可能とな
り、除湿装置全体の能力および効率を改善することが可
能となる。
Therefore, in the present invention, not only the air from the cooling side but also the air from the outside is taken in to increase the amount of air on the heat radiating side, and the amount of air is increased to lower the temperature on the heat radiating side. Figure 1
The thick wavy line and two-dot chain line shown in 0 indicate the heat radiation when the air flowing in from the cooling side receives part of the heat radiation and rises in temperature, and when the surrounding moist air flows in at the part where the inlet temperature of the moist air has been reached. 2 shows changes in the air temperature on the high temperature side and the temperature on the high temperature side of the semiconductor. The heat capacity of the air flowing on the heat radiating side increases, the temperature rise width decreases, and the outlet temperature decreases from D to D '. Along with this, the temperature on the high temperature side of the semiconductor also decreases, and the temperature difference between both ends of the semiconductor decreases from Tb to Tc. Therefore, the capacity and efficiency in this part can be increased, and the capacity and efficiency of the entire dehumidifying device can be improved.

【0013】次に、第2および第3の発明の作用につい
て説明する。図10において、図の右部の温度差Taに
比較して、図の左部の温度差TbおよびTcは大きく、
両者にはかなり大きな相違が生じる。一方、図11は、
熱電装置に流す電流値に対する熱電装置の効率を示した
もので、半導体両端の温度差をパラメータとして示して
ある。ここで、実線で示した温度差20degにおける
最大効率を得る電流値を細い一点鎖線で示している。太
い一点鎖線は、熱電装置の形状が同一で、温度差が10
degになった場合の効率の様相である。これらの比較
から、熱電装置内部で半導体両端部の温度差が大きく変
化する除湿装置においては、熱電装置の全体に最適な電
流を流すことができない。したがって、本発明のよう
に、温度差が小さくなる部分の半導体の形状を変更する
ことにより、2点鎖線で示す特性のように、最大効率の
電流をほぼ一致させることができる。具体的には、半導
体の電流方向の長さを短くするか、半導体の断面積を大
きくすることにより、この効果を得ることができる。こ
れにより、除湿装置の効率が改善され、かつ能力も向上
することになる。
Next, the operation of the second and third inventions will be described. In FIG. 10, the temperature differences Tb and Tc on the left side of the figure are larger than the temperature difference Ta on the right side of the figure,
There is a big difference between the two. On the other hand, in FIG.
It shows the efficiency of the thermoelectric device with respect to the value of the current flowing through the thermoelectric device, and shows the temperature difference between both ends of the semiconductor as a parameter. Here, the current value for obtaining the maximum efficiency at the temperature difference of 20 deg shown by the solid line is shown by a thin dashed line. The thick dash-dotted line indicates that the thermoelectric device has the same shape and the temperature difference is 10
This is the aspect of efficiency when the degree becomes deg. From these comparisons, in the dehumidifier in which the temperature difference between both ends of the semiconductor changes greatly inside the thermoelectric device, it is not possible to flow an optimal current through the entire thermoelectric device. Therefore, as in the present invention, by changing the shape of the semiconductor in the portion where the temperature difference is small, it is possible to make the maximum efficiency currents substantially coincide with each other as indicated by the characteristic indicated by the chain double-dashed line. Specifically, this effect can be obtained by shortening the length of the semiconductor in the current direction or increasing the cross-sectional area of the semiconductor. As a result, the efficiency of the dehumidifier is improved and the capacity is also improved.

【0014】次に、第4および5の発明の作用について
図12を用いて説明する。図12は、図10と同様に、
除湿装置内の湿り空気の温度変化の様相を示すものであ
る。図中の太線は放熱側および吸熱側を流れる湿り空気
の温度変化を示すものである。湿り空気の入口側温度と
出口側温度の温度差は、Teとなっている。破線は、湿
り空気の湿度が低下した場合の温度変化である。露点が
低下するため、除湿開始部分が、冷却側の下流部分に移
行し、その結果、冷却側の出口温度が低下する。この出
口温度で放熱側に流入することから、放熱側出口温度も
低下する。このときの湿り空気の入口側温度と出口側温
度の温度差は、Te′となる。つまり、湿り空気の湿度
変化を、湿り空気の入口側温度と出口側温度の温度差で
検知することが可能となる。したがって、サーミスタな
どの比較的低コストセンサを用いるだけで、除湿装置の
運転制御が可能となる。また、熱電装置に供給する電圧
は、熱電装置の抵抗に電流を乗じた電圧と、半導体両端
の温度差に比例する電圧との和で表される。したがっ
て、図12に示したように、湿り空気の湿度が低下した
場合には、半導体両端温度差が熱電装置のほとんどの部
分で低下し、供給電圧は低下する。したがって、供給電
圧と供給電流を検知し、その比により、除湿装置の運転
制御が可能となる。
Next, the operation of the fourth and fifth inventions will be described with reference to FIG. FIG. 12 is similar to FIG.
It shows the aspect of the temperature change of the moist air in the dehumidifier. The thick line in the figure shows the temperature change of the moist air flowing on the heat radiation side and the heat absorption side. The temperature difference between the inlet temperature and the outlet temperature of the moist air is Te. The broken line shows the temperature change when the humidity of the moist air decreases. Since the dew point lowers, the dehumidification start portion moves to the downstream portion on the cooling side, and as a result, the outlet temperature on the cooling side decreases. Since it flows into the heat radiation side at this outlet temperature, the heat radiation side outlet temperature also decreases. At this time, the temperature difference between the inlet temperature and the outlet temperature of the moist air is Te '. That is, it is possible to detect the humidity change of the humid air by the temperature difference between the inlet side temperature and the outlet side temperature of the humid air. Therefore, the operation control of the dehumidifier can be performed only by using a relatively low-cost sensor such as a thermistor. The voltage supplied to the thermoelectric device is represented by the sum of the voltage obtained by multiplying the resistance of the thermoelectric device by the current and the voltage proportional to the temperature difference across the semiconductor. Therefore, as shown in FIG. 12, when the humidity of the humid air decreases, the temperature difference across the semiconductor decreases in most parts of the thermoelectric device, and the supply voltage decreases. Therefore, it is possible to control the operation of the dehumidifier by detecting the supply voltage and the supply current and using the ratio of the detected values.

【0015】以上のように、本発明により除湿装置の能
力および効率を向上させ、低コスト化できることとな
る。
As described above, according to the present invention, the capacity and efficiency of the dehumidifier can be improved and the cost can be reduced.

【0016】[0016]

【実施例】【Example】

(実施例1)以下に本発明による具体例について詳細に
述べる。図1は第1の発明の一実施例であり、除湿装置
の構成を示すものである。図示のように熱電装置21は
熱電回路22とその両側の2つのフィン23から構成さ
れている。熱電回路22は、N型半導体24、導電体2
5、P型半導体26、導電体27を順に並べて形成し、
導電体25が熱電回路上部に、導電体27が熱電回路下
部に位置する形状になっている。また、導電体25、2
7のそれぞれに接する2つの熱伝導体28が設置され、
さらにその両側に2つのフィン23が位置している。
(Embodiment 1) Specific examples according to the present invention will be described in detail below. FIG. 1 shows an embodiment of the first invention, showing a structure of a dehumidifying device. As shown in the figure, the thermoelectric device 21 includes a thermoelectric circuit 22 and two fins 23 on both sides of the thermoelectric circuit 22. The thermoelectric circuit 22 includes an N-type semiconductor 24 and a conductor 2.
5, a P-type semiconductor 26 and a conductor 27 are formed in this order,
The conductor 25 is located above the thermoelectric circuit, and the conductor 27 is located below the thermoelectric circuit. In addition, the conductors 25, 2
Two heat conductors 28 contacting each of 7 are installed,
Further, two fins 23 are located on both sides thereof.

【0017】上記構成において、熱電回路に流れ込んだ
電流は、半導体24、26と導電体25、27の界面で
ペルチェ効果により発熱もしくは吸熱する。このとき、
N型半導体24とP型半導体26は交互に並んでいるこ
とから、導電体25、27は一方が発熱部または他方が
吸熱部となる。図1では、電流方向(図示せず)により
導電体25が発熱部、導電体27が吸熱部となってい
る。したがって、熱電回路22の上方に位置する熱伝導
板28およびフィン23は発熱側に、下方に位置する熱
伝導板28およびフィン23は吸熱側となる。
In the above structure, the current flowing into the thermoelectric circuit generates or absorbs heat by the Peltier effect at the interfaces between the semiconductors 24 and 26 and the conductors 25 and 27. At this time,
Since the N-type semiconductors 24 and the P-type semiconductors 26 are alternately arranged, one of the conductors 25 and 27 serves as a heat generating portion and the other serves as a heat absorbing portion. In FIG. 1, the conductor 25 serves as a heat generating portion and the conductor 27 serves as a heat absorbing portion depending on the current direction (not shown). Therefore, the heat conducting plate 28 and the fin 23 located above the thermoelectric circuit 22 are on the heat generating side, and the heat conducting plate 28 and the fin 23 located below are on the heat absorbing side.

【0018】フィン23は、図の左右方向に湿り空気を
流すよう設置されている。湿り空気は、クロスフローフ
ァン29および流路30により矢印の方向に誘導され
る。湿り空気は最初に冷却され、露点に達した後、水蒸
気が凝縮し、絶対湿度を下げる。その後、流路30によ
り、放熱側に流入され、熱電回路からの放熱を受け昇温
し、乾燥した温風として外部に放出される。このとき、
流路30には開口部31が形成されていることから、ク
ロスフローファン29により開口部31から外部の湿り
空気が流入し、吸熱側から来る低温低湿度となった空気
と混合して、放熱側に流入する。したがって、放熱側を
流れる空気の熱容量が増加し昇温幅が小さくなり、出口
温度が低下する。これにともない、半導体高温側温度も
低下し、半導体両側の温度差が小さくなることから、除
湿装置の能力および効率を改善することが可能となる。
The fins 23 are installed so that moist air flows in the left-right direction in the drawing. The moist air is guided in the direction of the arrow by the cross flow fan 29 and the flow passage 30. Moist air is first cooled and, after reaching the dew point, water vapor condenses, reducing the absolute humidity. After that, it is flown into the heat radiation side by the flow path 30, receives heat radiation from the thermoelectric circuit, rises in temperature, and is discharged to the outside as dry warm air. At this time,
Since the flow path 30 has the opening 31 formed therein, the cross flow fan 29 allows the outside moist air to flow in through the opening 31 and mixes with the low-temperature low-humidity air coming from the heat absorption side to radiate heat. Flows into the side. Therefore, the heat capacity of the air flowing on the heat radiation side increases, the temperature rise width decreases, and the outlet temperature decreases. Along with this, the temperature on the high temperature side of the semiconductor is also lowered, and the temperature difference between both sides of the semiconductor is reduced, so that it is possible to improve the capacity and efficiency of the dehumidifier.

【0019】なお、本実施例の効果は熱電回路の形状に
左右されるものではなく、一面が放熱、他面が吸熱とな
る熱電回路であれば他の形状であっても適応できる。ま
た、ファン29により吸引する例で説明しているが、開
口部31から外部の空気が流入する機構を備えた構造で
あれば、前述の効果が得られることは言うまでもない。
The effect of this embodiment does not depend on the shape of the thermoelectric circuit, and other shapes can be applied as long as the thermoelectric circuit has one surface that radiates heat and the other surface that absorbs heat. In addition, although the example in which the air is sucked by the fan 29 is described, it goes without saying that the above-described effect can be obtained if the structure is provided with a mechanism in which external air flows in from the opening 31.

【0020】以上のように本発明によって、半導体両端
部の温度差が小さくなり、能力および効率のよい熱電装
置が提供される。 (実施例2)図2は第1の発明の他の実施例であり、除
湿装置の構成を示すものである。
As described above, according to the present invention, a temperature difference between both ends of a semiconductor is reduced, and a thermoelectric device having high performance and efficiency is provided. (Embodiment 2) FIG. 2 shows another embodiment of the first invention, showing the construction of a dehumidifying device.

【0021】図示のように熱電装置21は熱電回路22
と2つのフィン23から構成されている。熱電装置21
の構成は、図1に示すものと同様である。湿り空気は、
クロスフローファン29および流路32により矢印の方
向に誘導される。湿り空気は最初に冷却され、露点に達
した後、水蒸気が凝縮し、絶対湿度を下げる。その後、
流路32により、放熱側に流入され、熱電回路からの放
熱を受け昇温し、乾燥した温風として外部に放出され
る。このとき、放熱側のフィン23部には開口部33が
形成されていることから、クロスフローファン29によ
り開口部33から外部の湿り空気が流入する。流路32
からフィン23に流入する空気は吸熱側で低温低湿度と
なっており、その後放熱部からの熱を受け昇温する。開
口部33付近では外部の湿り空気と同程度の温度まで昇
温し、開口部33から流入する空気と混合する。したが
って、開口部33より上流の部分では、低温度の空気へ
の放熱となり、半導体高温側の温度も低く、半導体両側
の温度差が小さいことから、熱電回路の効率は大きい。
一方、開口部33の下流部では、流れる空気の熱容量が
増加し昇温幅が小さくなり、出口温度が低下する。これ
にともない、下流部において半導体高温側温度が低下
し、半導体両端の温度差が小さくなることから、除湿装
置の能力および効率を改善することが可能となる。
As shown, the thermoelectric device 21 includes a thermoelectric circuit 22.
And two fins 23. Thermoelectric device 21
Is similar to that shown in FIG. The moist air is
It is guided in the direction of the arrow by the cross flow fan 29 and the flow path 32. Moist air is first cooled and, after reaching the dew point, water vapor condenses, reducing the absolute humidity. afterwards,
The flow path 32 causes the heat to flow into the heat radiation side, receives heat radiation from the thermoelectric circuit, rises in temperature, and is discharged to the outside as dry warm air. At this time, since the fins 23 on the radiating side have the openings 33 formed therein, the cross flow fan 29 allows the outside humid air to flow in through the openings 33. Channel 32
The air flowing from the fins 23 to the fins 23 has a low temperature and low humidity on the heat absorbing side, and then receives heat from the heat radiating portion and rises in temperature. In the vicinity of the opening 33, the temperature rises to the same level as the temperature of the outside moist air and mixes with the air flowing in from the opening 33. Therefore, in the portion upstream of the opening 33, heat is radiated to low temperature air, the temperature on the high temperature side of the semiconductor is low, and the temperature difference between both sides of the semiconductor is small, so the efficiency of the thermoelectric circuit is high.
On the other hand, in the downstream part of the opening 33, the heat capacity of the flowing air increases, the temperature rise width decreases, and the outlet temperature decreases. Along with this, the temperature on the high temperature side of the semiconductor is reduced in the downstream portion, and the temperature difference between both ends of the semiconductor is reduced, so that the capacity and efficiency of the dehumidifier can be improved.

【0022】なお、本実施例の効果は熱電回路の形状に
左右されるものではなく、一面が放熱、他面が吸熱とな
る熱電回路であれば他の形状であっても適応できる。ま
た、ファン29により吸引する例で説明しているが、開
口部33から外部の空気が流入する機構を備えた構造で
あれば、本発明の効果が得られることは言うまでもな
い。
The effect of the present embodiment is not influenced by the shape of the thermoelectric circuit, and other shapes can be applied as long as the thermoelectric circuit has one surface for heat dissipation and the other surface for heat absorption. In addition, although the example in which the air is sucked by the fan 29 is described, it goes without saying that the effect of the present invention can be obtained as long as the structure has a mechanism in which the outside air flows in from the opening 33.

【0023】以上のように本発明によって、半導体両端
部の温度差が小さくなり、能力および効率のよい除湿装
置が提供される。 (実施例3)図3は第2の発明の一実施例であり、除湿
装置に設置する熱電装置の構成を示すものである。
As described above, according to the present invention, a dehumidifying device which has a small temperature difference between both ends of a semiconductor and which has high performance and efficiency is provided. (Embodiment 3) FIG. 3 shows one embodiment of the second invention, showing the construction of a thermoelectric device installed in a dehumidifier.

【0024】図示のように熱電装置41は熱電回路42
と2つのフィン43から構成されている。熱電回路42
は、N型半導体44、導電体45、P型半導体46、導
電体47を順に並べて形成し、導電体45が熱電回路上
部に、導電体47が熱電回路下部に位置する形状になっ
ている。また、導電体45、47のそれぞれに接する2
つの熱伝導体48が設置され、さらにその両側に2つの
フィン43が位置している。
As shown, the thermoelectric device 41 includes a thermoelectric circuit 42.
And two fins 43. Thermoelectric circuit 42
Is formed by sequentially arranging an N-type semiconductor 44, a conductor 45, a P-type semiconductor 46, and a conductor 47, and the conductor 45 is located above the thermoelectric circuit and the conductor 47 is located below the thermoelectric circuit. In addition, 2 which is in contact with each of the conductors 45 and 47
Two heat conductors 48 are installed, and two fins 43 are located on both sides of the heat conductor 48.

【0025】熱電回路に流れ込んだ電流は、半導体4
4、46と導電体45、47の界面でペルチェ効果によ
り発熱もしくは吸熱する。このとき、N型半導体44と
P型半導体46は交互に並んでいることから、導電体4
5、47は一方が発熱部または他方が吸熱部となる。図
3では、電流方向(図示せず)により導電体45が発熱
部、導電体47が吸熱部となっている。したがって、熱
電回路42の上方に位置する熱伝導板48およびフィン
43は発熱側に、下方に位置する熱伝導板48およびフ
ィン43は吸熱側となる。熱電回路42の右部分は、半
導体および導電体の寸法を他の部分と変えた変形部49
より構成されている。他の部分の半導体よりも高さを低
くし、導電体の厚さを大きくしたものが設置されてい
る。湿り空気は、吸熱側のフィン43の左側より流入
し、冷却除湿された後、右側より流出、上部に位置する
フィン43の右側より再度流入し、昇温された後、左側
より流出する。このような除湿装置においては、熱電回
路42の両端の温度差は、左部が大きく右部が小さくな
る。熱電回路42を構成する各半導体を流れる電流は変
化しないが、前述のように変形部49を設けているため
に、半導体両端の温度差が小さい変形部49においても
能力および効率を高くすることができる。
The current flowing into the thermoelectric circuit is the semiconductor 4
At the interfaces between the conductors 4, 46 and the conductors 45, 47, heat is generated or heat is absorbed by the Peltier effect. At this time, since the N-type semiconductors 44 and the P-type semiconductors 46 are alternately arranged, the conductor 4
One of the heating elements 5 and 47 serves as a heat generating portion and the other serves as a heat absorbing portion. In FIG. 3, the conductor 45 serves as a heat generating portion and the conductor 47 serves as a heat absorbing portion depending on the current direction (not shown). Therefore, the heat conducting plate 48 and the fin 43 located above the thermoelectric circuit 42 are on the heat generating side, and the heat conducting plate 48 and the fin 43 located below are on the heat absorbing side. The right portion of the thermoelectric circuit 42 is a deformed portion 49 in which the dimensions of the semiconductor and the conductor are changed from those of the other portions.
It is composed of The height of the conductor is made lower than that of the semiconductor of other portions, and the thickness of the conductor is made larger. The moist air flows in from the left side of the fins 43 on the heat absorption side, is cooled and dehumidified, flows out from the right side, flows in again from the right side of the fins 43 located above, is heated, and then flows out from the left side. In such a dehumidifier, the temperature difference between both ends of the thermoelectric circuit 42 is large in the left part and small in the right part. Although the current flowing through each semiconductor forming the thermoelectric circuit 42 does not change, since the deforming portion 49 is provided as described above, the ability and efficiency can be increased even in the deforming portion 49 having a small temperature difference between both ends of the semiconductor. it can.

【0026】以上のように本発明によって、能力および
効率のよい除湿装置が提供される。 (実施例4)図4は第2の発明の他の実施例であり、除
湿装置に設置する熱電装置の構成を示すものである。
As described above, according to the present invention, a dehumidifying device with high capacity and efficiency is provided. (Embodiment 4) FIG. 4 shows another embodiment of the second invention, showing the structure of a thermoelectric device installed in a dehumidifier.

【0027】図示のように熱電装置51は熱電回路52
と2つのコルゲートフィン53から構成されている。絶
縁性フィルム基板54の片面にN型半導体55、導電体
56、P型半導体57、導電体58が順に成膜されてい
る。絶縁性フィルム基板54は導電体56が凸に導電体
58が凹に位置する波形形状になっている。また、導電
体56、58のそれぞれに接する2つの熱伝導体59が
設置され、さらにその両側に2つのコルゲートフィン5
3が位置している。
As shown, the thermoelectric device 51 includes a thermoelectric circuit 52.
And two corrugated fins 53. An N-type semiconductor 55, a conductor 56, a P-type semiconductor 57, and a conductor 58 are sequentially formed on one surface of the insulating film substrate 54. The insulating film substrate 54 has a corrugated shape in which the conductor 56 is located in the convex and the conductor 58 is located in the concave. In addition, two heat conductors 59 that are in contact with the conductors 56 and 58 are installed, and further two corrugated fins 5 are provided on both sides thereof.
3 is located.

【0028】熱電回路に流れ込んだ電流は、半導体5
5、57と導電体56、58の界面でペルチェ効果によ
り発熱もしくは吸熱する。このとき、N型半導体55と
P型半導体57は交互に並んでいることから、導電体5
6、58は一方が発熱部または他方が吸熱部となる。図
4では、電流方向(図示せず)により導電体56が発熱
部、導電体58が吸熱部となっている。したがって、熱
電回路52の上方に位置する熱伝導板59およびフィン
53は発熱側に、下方に位置する熱伝導板59およびフ
ィン53は吸熱側となる。熱電回路52の後方部分は、
半導体および導電体の寸法を他の部分と変えた変形部6
0より構成されている。すなわち他の部分の半導体より
も幅を小さく、導電体の長さを大きくしている。
The current flowing into the thermoelectric circuit is the semiconductor 5
Heat or heat is absorbed at the interface between the conductors 5, 57 and the conductors 56, 58 by the Peltier effect. At this time, since the N-type semiconductors 55 and the P-type semiconductors 57 are alternately arranged, the conductor 5
One of the heat generating parts 6 and 58 is a heat generating part and the other is a heat absorbing part. In FIG. 4, the conductor 56 serves as a heat generating portion and the conductor 58 serves as a heat absorbing portion depending on the current direction (not shown). Therefore, the heat conducting plate 59 and the fin 53 located above the thermoelectric circuit 52 are on the heat generating side, and the heat conducting plate 59 and the fin 53 located below are on the heat absorbing side. The rear part of the thermoelectric circuit 52 is
Deformation part 6 in which the dimensions of the semiconductor and the conductor are different from those of other parts
It consists of zero. That is, the width is smaller than that of the semiconductor in other portions, and the length of the conductor is increased.

【0029】湿り空気は、下部に位置する吸熱側のコル
ゲートフィン53の前方より流入し、冷却除湿された
後、後方より流出、上部に位置するコルゲートフィン5
3の後方より再度流入し、昇温された後、前方より流出
する。このような除湿装置においては、熱電回路52の
両端の温度差は、前方部が大きく後方部が小さくなる。
熱電回路52を構成する各半導体を流れる電流は変化し
ないが、前述のように変形部60は半導体の長さが短い
ことから電気抵抗が小さくなり、電流密度が大きくなる
ことから、半導体両端の温度差が小さい変形部60にお
いても能力および効率を高くすることができる。
The moist air flows in from the front of the heat absorbing side corrugated fins 53 located at the lower part, is cooled and dehumidified, and then flows out from the rear, and the corrugated fins 5 located at the upper part.
3 again flows in from the rear, is heated, and then flows out from the front. In such a dehumidifier, the temperature difference between both ends of the thermoelectric circuit 52 is large in the front part and small in the rear part.
Although the current flowing through each of the semiconductors forming the thermoelectric circuit 52 does not change, as described above, the deformation portion 60 has a short semiconductor length, which reduces the electric resistance and increases the current density. Even in the deforming section 60 having a small difference, the capacity and efficiency can be increased.

【0030】なお、本実施例では、熱交換手段としてコ
ルゲートフィンを用いて説明したが、他の熱交換手段を
用いても同様な効果を得ることができ、コルゲートフィ
ンに被熱交換手段との伝熱特性のための波型加工やルー
バー、スリット加工をほどこしたものの適用も可能であ
る。 (実施例5)図5は第3の発明の一実施例であり、除湿
装置に設置する熱電装置の構成を示すものである。
In the present embodiment, the corrugated fins are used as the heat exchange means, but the same effect can be obtained by using other heat exchange means, and the corrugated fins can be exchanged with the heat exchange means. It is also possible to apply corrugated processing for heat transfer characteristics, louvers, and slit processing. (Embodiment 5) FIG. 5 shows one embodiment of the third invention and shows the construction of a thermoelectric device installed in a dehumidifying device.

【0031】熱電装置61は熱電回路62と2つのフィ
ン63から構成されている。熱電回路62は、N型半導
体64、導電体65、N型半導体66、導電体67を順
に並べて形成し、導電体65が熱電回路上部に、導電体
67が熱電回路下部に位置する形状になっている。ま
た、導電体65、67のそれぞれに接する2つの熱伝導
体68が設置され、さらにその両側に2つのフィン63
が位置している。
The thermoelectric device 61 comprises a thermoelectric circuit 62 and two fins 63. The thermoelectric circuit 62 is formed by arranging an N-type semiconductor 64, a conductor 65, an N-type semiconductor 66, and a conductor 67 in order, and the conductor 65 has a shape in which it is located above the thermoelectric circuit and the conductor 67 is located below the thermoelectric circuit. ing. In addition, two heat conductors 68 that are in contact with the conductors 65 and 67 are installed, and two fins 63 are provided on both sides thereof.
Is located.

【0032】熱電回路に流れ込んだ電流は、半導体6
4、66と導電体65、67の界面でペルチェ効果によ
り発熱もしくは吸熱する。このとき、N型半導体64と
P型半導体66は交互に並んでいることから、導電体6
5、67は一方が発熱部または他方が吸熱部となる。図
5では、電流方向(図示せず)により導電体65が発熱
部、導電体67が吸熱部となっている。したがって、熱
電回路62の上方に位置する熱伝導板68およびフィン
63は発熱側に、下方に位置する熱伝導板68およびフ
ィン63は吸熱側となる。熱電回路62の右部分は、半
導体の寸法を他の部分と変えた変形部69より構成され
ている。すなわち他の部分の半導体よりも断面積を大き
くしたものが設置されている。
The current flowing into the thermoelectric circuit is the semiconductor 6
Heat is generated or absorbed by the Peltier effect at the interface between the conductors 4, 66 and the conductors 65, 67. At this time, since the N-type semiconductors 64 and the P-type semiconductors 66 are alternately arranged, the conductor 6
One of 5 and 67 serves as a heat generating portion and the other serves as a heat absorbing portion. In FIG. 5, the conductor 65 serves as a heat generating portion and the conductor 67 serves as a heat absorbing portion depending on the current direction (not shown). Therefore, the heat conducting plate 68 and the fin 63 located above the thermoelectric circuit 62 are on the heat generating side, and the heat conducting plate 68 and the fin 63 located below are on the heat absorbing side. The right portion of the thermoelectric circuit 62 is composed of a deformed portion 69 in which the size of the semiconductor is changed from that of the other portions. That is, a semiconductor having a larger cross-sectional area than the semiconductor of the other part is installed.

【0033】湿り空気は、吸熱側のフィン63の左側よ
り流入し、冷却除湿された後、右側より流出、上部に位
置するフィン63の右側より再度流入し、昇温された
後、左側より流出する。このような除湿温度において
は、熱電回路62の両端の温度差は、左部が大きく右部
が小さくなる。熱電回路62を構成する各半導体を流れ
る電流は変化しないが、前述のように変形部69を設け
ているために、半導体両端の温度差が小さい変形部69
においても能力および効率を高くすることができる。
The moist air flows in from the left side of the fin 63 on the heat absorption side, is cooled and dehumidified, flows out from the right side, flows in again from the right side of the fin 63 located above, is heated, and then flows out from the left side. To do. At such a dehumidifying temperature, the temperature difference between both ends of the thermoelectric circuit 62 is large in the left part and small in the right part. The current flowing through each semiconductor forming the thermoelectric circuit 62 does not change, but since the deforming portion 69 is provided as described above, the deforming portion 69 having a small temperature difference between both ends of the semiconductor.
Also in, the capacity and efficiency can be increased.

【0034】以上のように本発明によって、能力および
効率のよい除湿装置が提供される。 (実施例6)図6は第4の発明による一実施例であり、
除湿装置の構成を示すものである。図示のように熱電装
置71は熱電回路72と2つのフィン73から構成され
ている。熱電回路72は、N型およびP型半導体や導電
体より構成され、上面が放熱面、下面が吸熱面となって
いる。熱電回路72の両側に2つのフィン73が位置し
ていることから、上部のフィン73は発熱側に、下方に
位置するフィン73は吸熱側となる。フィン73は、図
の左右方向に湿り空気を流すよう設置されている。
As described above, the present invention provides a dehumidifying device with high capacity and efficiency. (Embodiment 6) FIG. 6 shows an embodiment according to the fourth invention.
The structure of a dehumidifier is shown. As shown, the thermoelectric device 71 includes a thermoelectric circuit 72 and two fins 73. The thermoelectric circuit 72 is composed of N-type and P-type semiconductors and conductors, and has an upper surface serving as a heat radiation surface and a lower surface serving as a heat absorption surface. Since the two fins 73 are located on both sides of the thermoelectric circuit 72, the upper fin 73 is on the heat generating side and the lower fin 73 is on the heat absorbing side. The fins 73 are installed so that moist air flows in the left-right direction in the drawing.

【0035】湿り空気は、クロスフローファン74およ
び流路75により矢印の方向に誘導される。湿り空気は
最初に冷却され、露点に達した後、水蒸気が凝縮し、絶
対湿度を下げる。その後、流路75により、放熱側に流
入され、熱電回路からの放熱を受け昇温し、乾燥した温
風として外部に放出される。湿り空気の入口部および出
口部には、2つのサーミスタ76が設置され、制御器7
8に各温度が入力される。制御器78ではサーミスタ7
6により、湿り空気の出入口温度差を算出し、温度差に
応じて熱電回路72に供給する電流線79への出力値を
制御する。具体的には、温度差が一定以上で電流を供給
し、一定以下で停止する。
The moist air is guided in the direction of the arrow by the cross flow fan 74 and the flow path 75. Moist air is first cooled and, after reaching the dew point, water vapor condenses, reducing the absolute humidity. After that, it is flowed into the heat radiation side by the flow path 75, receives heat radiation from the thermoelectric circuit, rises in temperature, and is discharged to the outside as dry hot air. Two thermistors 76 are installed at the inlet and the outlet of the moist air, and the controller 7
Each temperature is input to 8. In the controller 78, the thermistor 7
6, the inlet / outlet temperature difference of the moist air is calculated, and the output value to the current line 79 supplied to the thermoelectric circuit 72 is controlled according to the temperature difference. Specifically, the current is supplied when the temperature difference is above a certain level, and the current is stopped when the temperature difference is below a certain level.

【0036】なお、本実施例の効果は熱電回路の形状に
左右されるものではなく、一面が放熱、他面が吸熱とな
る熱電回路であれば他の形状であっても適応できる。ま
た、温度差の検知手段をサーミスタとしたが、温度検知
機構を備えたものであれば、本発明の効果が得られるこ
とは言うまでもない。
The effect of this embodiment does not depend on the shape of the thermoelectric circuit, and other shapes can be applied as long as the thermoelectric circuit has one surface that radiates heat and the other surface that absorbs heat. Although the thermistor is used as the temperature difference detecting means, it goes without saying that the effect of the present invention can be obtained as long as it has a temperature detecting mechanism.

【0037】以上のように本発明によって、湿度検知器
などの高価な検知手段を使用することなく、除湿装置を
制御することが可能となる。 (実施例7)図7は第5の発明による一実施例であり、
除湿装置の構成を示すものである。図示のように熱電装
置81は熱電回路82と2つのフィン83から構成され
ている。熱電回路82は、N型およびP型半導体や導電
体より構成され、上面が放熱面、下面が吸熱面となって
いる。熱電装置81の両側に2つのフィン83が位置し
ていることから、上部のフィン83は発熱側に、下方に
位置するフィン83は吸熱側となる。フィン83は、図
の左右方向に湿り空気を流すように設置されている。
As described above, according to the present invention, it is possible to control the dehumidifying device without using expensive detecting means such as a humidity detector. (Embodiment 7) FIG. 7 shows an embodiment according to the fifth invention.
The structure of a dehumidifier is shown. As shown, the thermoelectric device 81 includes a thermoelectric circuit 82 and two fins 83. The thermoelectric circuit 82 is composed of N-type and P-type semiconductors and conductors, and has an upper surface serving as a heat radiation surface and a lower surface serving as a heat absorption surface. Since the two fins 83 are located on both sides of the thermoelectric device 81, the upper fin 83 is on the heat generating side and the lower fin 83 is on the heat absorbing side. The fins 83 are installed so that moist air flows in the left-right direction in the drawing.

【0038】湿り空気は、クロスフローファン84およ
び流路85により矢印の方向に誘導される。湿り空気は
最初に冷却され、露点に達した後、水蒸気が凝縮し、絶
対湿度を下げる。その後、流路85により、放熱側に流
入され、熱電回路からの放熱を受け昇温し、乾燥した温
風として外部に放出される。熱電装置82に電流を供給
する制御器86は、供給する電圧値および電流値により
電流線87への出力値を制御する。具体的には、電圧値
と電流値の比が一定以上で電流を供給し、一定以下で停
止する。
The moist air is guided in the direction of the arrow by the cross flow fan 84 and the flow path 85. Moist air is first cooled and, after reaching the dew point, water vapor condenses, reducing the absolute humidity. After that, it is flowed into the heat radiation side by the flow path 85, receives heat radiation from the thermoelectric circuit, rises in temperature, and is discharged to the outside as dry warm air. The controller 86 that supplies a current to the thermoelectric device 82 controls the output value to the current line 87 according to the supplied voltage value and current value. Specifically, the current is supplied when the ratio between the voltage value and the current value is above a certain level, and the current is stopped below a certain level.

【0039】なお、本実施例の効果は熱電回路の形状に
左右されるものではなく、一面が放熱、他面が吸熱とな
る熱電回路であれば他の形状であっても適応できる。以
上のように本発明によって、湿度検知器などの高価な検
知手段を使用することなく、除湿装置を制御することが
可能となる。
The effect of this embodiment does not depend on the shape of the thermoelectric circuit, and other shapes can be applied as long as the thermoelectric circuit has one surface that radiates heat and the other surface that absorbs heat. As described above, according to the present invention, it is possible to control the dehumidifying device without using expensive detecting means such as a humidity detector.

【0040】[0040]

【発明の効果】以上の実施例の説明より明らかなよう
に、本発明による熱電装置は、N型半導体、第1の導電
体、P型半導体および第2の導電体の順に、各半導体・
導電体の端部が電気的に接触するように設置してなる熱
電回路と、前記熱電回路の一側に位置し前記第1の導電
体と熱的に接触する熱交換手段と、前記熱交換手段と反
対方向に位置し前記第2の導電体と熱的に接触する熱交
換手段と、湿り空気を、前記熱電回路への通電時に冷却
側となる前記熱交換手段、放熱側となる熱交換手段の順
に流入させる送風機および送風流路を備えた除湿装置に
おいて、 (1)放熱側の熱交換手段に冷却側を流出した空気を流
入する際に前記湿り空気を付加する機構を設ける。 (2)通電時に冷却側となる熱交換手段の下流側に位置
する前記N型半導体およびP型半導体の電流方向の長さ
を上流側に比較して短くする。 (3)通電時に冷却時となる熱交換手段の下流側に位置
する前記N型半導体およびP型半導体の断面積を上流側
に比較して大きくする。 (4)前記湿り空気の冷却側入口と放熱側出口の温度差
を測定し、前記温度差により前記熱電回路への供給電圧
または供給電流を制御する。 (5)前記熱電回路に供給する電圧と電流値を測定し、
その比により前記熱電回路への供給電圧または供給電流
を制御する。 ことにより、本発明により能力および効率を向上させる
とともにコストの低い除湿装置が可能となる。
As is apparent from the above description of the embodiments, the thermoelectric device according to the present invention has a semiconductor, an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor in this order.
A thermoelectric circuit installed so that the ends of the electric conductors are in electrical contact with each other; heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first electric conductor; and the heat exchange. A heat exchange means located in a direction opposite to the means and in thermal contact with the second conductor; a moist air, the heat exchange means serving as a cooling side when energizing the thermoelectric circuit, and the heat exchange serving as a heat radiating side. In a dehumidifying device having a blower and a blower flow path for making the means flow in order, (1) a mechanism for adding the moist air when the air flowing out from the cooling side flows into the heat exchange means on the heat radiation side. (2) The lengths of the N-type semiconductor and the P-type semiconductor, which are located on the downstream side of the heat exchange means on the cooling side when energized, in the current direction are shorter than those on the upstream side. (3) The cross-sectional areas of the N-type semiconductor and the P-type semiconductor located on the downstream side of the heat exchanging means during cooling when energized are made larger than those on the upstream side. (4) The temperature difference between the cooling-side inlet and the heat-radiating-side outlet of the moist air is measured, and the supply voltage or the supply current to the thermoelectric circuit is controlled by the temperature difference. (5) Measure the voltage and current value supplied to the thermoelectric circuit,
The ratio controls the supply voltage or supply current to the thermoelectric circuit. As a result, the present invention enables a dehumidifier with improved capacity and efficiency and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の一実施例の除湿装置の概略図FIG. 1 is a schematic view of a dehumidifying device according to an embodiment of the first invention.

【図2】第1の発明の他の実施例の除湿装置の概略図FIG. 2 is a schematic view of a dehumidifying device according to another embodiment of the first invention.

【図3】第2の発明の一実施例の除湿装置に用いた熱電
装置の概略図
FIG. 3 is a schematic view of a thermoelectric device used in the dehumidifier of one embodiment of the second invention.

【図4】第2の発明の他の実施例の除湿装置に用いた熱
電装置の概略図
FIG. 4 is a schematic view of a thermoelectric device used in the dehumidifying device of another embodiment of the second invention.

【図5】第3の発明の一実施例の除湿装置に用いた熱電
装置の概略図
FIG. 5 is a schematic view of a thermoelectric device used in the dehumidifier of one embodiment of the third invention.

【図6】第4の発明の一実施例の除湿装置の概略図FIG. 6 is a schematic view of a dehumidifying device according to an embodiment of the fourth invention.

【図7】第5の発明の一実施例の除湿装置の概略図FIG. 7 is a schematic view of a dehumidifying device according to an embodiment of the fifth invention.

【図8】従来の除湿装置の概略図FIG. 8 is a schematic view of a conventional dehumidifier.

【図9】除湿装置に用いられる熱電装置の概略図FIG. 9 is a schematic view of a thermoelectric device used in a dehumidifier.

【図10】除湿装置内部の温度変化の説明図FIG. 10 is an explanatory diagram of a temperature change inside the dehumidifier.

【図11】熱電装置の効率の説明図FIG. 11 is an explanatory diagram of the efficiency of the thermoelectric device.

【図12】除湿装置内の空気の温度変化の説明図FIG. 12 is an explanatory diagram of a temperature change of air in the dehumidifier.

【符号の説明】[Explanation of symbols]

1 熱電装置 22 熱電回路 31 開口部 49 変形部 1 Thermoelectric Device 22 Thermoelectric Circuit 31 Opening 49 Deformation Part

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 N型半導体、第1の導電体、P型半導体
および第2の導電体の順に、各半導体・導電体の端部が
電気的に接触するように設置してなる熱電回路と、前記
熱電回路の一側に位置し前記第1の導電体と熱的に接触
する熱交換手段と、前記熱交換手段と反対方側に位置し
前記第2の導電体と熱的に接触する熱交換手段と、湿り
空気を、前記熱電回路への通電時に冷却側となる前記熱
交換手段、放熱側となる熱交換手段の順に流入させる送
風機および送風流路を備え、放熱側の熱交換手段に冷却
側を流出した空気を流入する際に前記湿り空気を付加す
る機構を設けた熱電効果を用いた除湿装置。
1. A thermoelectric circuit in which an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor are installed in this order so that the ends of each semiconductor / conductor are in electrical contact with each other. A heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first conductor; and a heat exchange means located on the opposite side of the heat exchange means and in thermal contact with the second conductor. A heat exchanging means on the heat radiating side, comprising a heat exchanging means, a blower and a blower flow path for letting the moist air flow into the heat exchanging means on the cooling side and the heat exchanging means on the heat radiating side in this order when electricity is applied to the thermoelectric circuit. A dehumidifier using a thermoelectric effect, which is provided with a mechanism for adding the moist air when the air flowing out from the cooling side flows into the device.
【請求項2】 湿り空気の付加機構を放熱側の熱交換手
段の途中に設けた請求項1記載の熱電効果を用いた除湿
装置。
2. The dehumidifier using the thermoelectric effect according to claim 1, wherein a mechanism for adding moist air is provided in the middle of the heat exchange means on the heat radiation side.
【請求項3】 湿り空気の付加機構は、放熱側の熱交換
手段に連らなる送風流路に開口部を形成して構成してな
る請求項1または2記載の熱電効果を用いた除湿装置。
3. The dehumidifying device using the thermoelectric effect according to claim 1, wherein the moist air adding mechanism is configured by forming an opening in an air flow passage connected to the heat exchanging means on the heat radiating side. .
【請求項4】 N型半導体、第1の導電体、P型半導体
および第2導電体の順に、各半導体・導電体の端部が電
気的に接触するように設置してなる熱電回路と、前記熱
電回路の一側に位置し前記第1の導電体と熱的に接触す
る熱交換手段と、前記熱交換手段と反対側に位置し前記
第2の導電体と熱的に接触する熱交換手段と、空気を前
記2つの熱交換手段に対向方向に流す送風機および送風
流路を備え、通電時に冷却側となる熱交換手段の下流側
に位置する前記N型半導体およびP型半導体の電流方向
の長さを上流側に比較して短くした熱電効果を用いた除
湿装置。
4. A thermoelectric circuit comprising an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor, which are installed in this order so that the ends of each semiconductor / conductor are in electrical contact with each other. Heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first conductor, and heat exchange means located on the opposite side of the heat exchange means and in thermal contact with the second conductor. Means and a blower and a blower flow path for allowing air to flow in the opposite direction to the two heat exchange means, and the current directions of the N-type semiconductor and the P-type semiconductor located on the downstream side of the heat exchange means, which is the cooling side when energized. The dehumidifier using the thermoelectric effect that shortens the length of the upstream side compared to the upstream side.
【請求項5】 N型半導体、第1の導電体、P型半導体
および第2の導電体の順に、各半導体・導電体の端部が
電気的に接触するように設置してなる熱電回路と、前記
熱電回路の一側に位置し前記第1の導電体と熱的に接触
する熱交換手段と、前記熱交換手段と反対側に位置し前
記第2の導電体と熱的に接触する熱交換手段と、空気を
前記2つの熱交換手段に対向方向に流す送風機および送
風流路を備え、通電時に冷却側となる熱交換手段の下流
側に位置する前記N型半導体およびP型半導体の断面積
を上流側に比較して大きくした熱電効果を用いた除湿装
置。
5. A thermoelectric circuit comprising an N-type semiconductor, a first conductor, a P-type semiconductor and a second conductor, which are installed in this order so that the ends of each semiconductor / conductor are in electrical contact with each other. A heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first conductor, and heat located opposite to the heat exchange means and in thermal contact with the second conductor. An exchanging means, a blower and a blower flow passage for flowing air to the two heat exchanging means in opposite directions, and disconnection of the N-type semiconductor and the P-type semiconductor located on the downstream side of the heat exchanging means, which is the cooling side when energized. A dehumidifier that uses the thermoelectric effect to make the area larger than the upstream side.
【請求項6】 N型半導体、第1の導電体、P型半導体
および第2の導電体の順に、各半導体・導電体の端部が
電気的に接触するように設置してなる熱電回路と、前記
熱電回路の一側に位置し前記第1の導電体と熱的に接触
する熱交換手段と、前記熱交換手段と反対側に位置し前
記第2の導電体と熱的に接触する熱交換手段と、湿り空
気を、前記熱電回路への通電時に冷却側となる前記熱交
換手段、放熱側となる熱交換手段の順に流入させる送風
機および送風流路を備え、前記湿り空気の冷却側入口と
放熱側出口の温度差を測定し、前記温度差により前記熱
電回路への供給電圧または供給電流を制御する熱電効果
を用いた除湿装置の制御方法。
6. A thermoelectric circuit comprising an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor, which are installed in this order so that the ends of each semiconductor / conductor are in electrical contact with each other. A heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first conductor, and heat located opposite to the heat exchange means and in thermal contact with the second conductor. A cooling side inlet of the moist air is provided with an exchange means, a blower and a blower flow path for causing the moist air to flow in order of the heat exchange means on the cooling side and the heat exchange means on the heat radiation side when the thermoelectric circuit is energized. And a method for controlling a dehumidifier using a thermoelectric effect, in which the temperature difference between the heat radiation side outlet is measured and the supply voltage or the supply current to the thermoelectric circuit is controlled by the temperature difference.
【請求項7】 N型半導体、第1の導電体、P型半導体
および第2の導電体の順に、各半導体・導電体の端部が
電気的に接触するように設置してなる熱電回路と、前記
熱電回路の一側に位置し前記第1の導電体と熱的に接触
する熱交換手段と、前記熱交換手段と反対側に位置し前
記第2の導電体と熱的に接触する熱交換手段と、湿り空
気を、前記熱電回路への通電時に冷却側となる前記熱交
換手段、放熱側となる熱交換手段の順に流入させる送風
機および送風流路を備え、前記熱電回路に供給する電圧
と電流値を測定し、その比により前記熱電回路への供給
電圧または供給電流を制御する熱電効果を用いた除湿装
置の制御方法。
7. A thermoelectric circuit comprising an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor, which are installed in this order so that the end portions of each semiconductor / conductor are in electrical contact with each other. A heat exchange means located on one side of the thermoelectric circuit and in thermal contact with the first conductor, and heat located opposite to the heat exchange means and in thermal contact with the second conductor. A voltage supplied to the thermoelectric circuit, which is provided with an exchanging means, a blower and a blower flow path for causing humid air to flow in order of the heat exchanging means on the cooling side and the heat exchanging means on the heat radiating side when electricity is applied to the thermoelectric circuit. And a current value are measured, and a dehumidifying device control method using a thermoelectric effect in which a supply voltage or a supply current to the thermoelectric circuit is controlled by a ratio thereof.
JP43A 1992-11-20 1992-11-20 Dehumidifier using thermoelectric effect, and method of controlling dehumidifier Pending JPH06163997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163997A (en) 1992-11-20 1992-11-20 Dehumidifier using thermoelectric effect, and method of controlling dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163997A (en) 1992-11-20 1992-11-20 Dehumidifier using thermoelectric effect, and method of controlling dehumidifier

Publications (1)

Publication Number Publication Date
JPH06163997A true JPH06163997A (en) 1994-06-10

Family

ID=18018302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06163997A (en) 1992-11-20 1992-11-20 Dehumidifier using thermoelectric effect, and method of controlling dehumidifier

Country Status (1)

Country Link
JP (1) JPH06163997A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872686A (en) * 2011-07-14 2013-01-16 温岭安能节能科技有限公司 Boundary layer control and mainstream perturbation coordinated integrated enhanced heat transfer method and system
JP2015154082A (en) * 2014-02-14 2015-08-24 エルジー イノテック カンパニー リミテッド heat conversion device
JP2017188574A (en) * 2016-04-06 2017-10-12 積水化学工業株式会社 Thermoelectric conversion device
CN110959095A (en) * 2017-07-28 2020-04-03 Lg伊诺特有限公司 Cooling/heating device
CN111306654A (en) * 2018-12-12 2020-06-19 新典自动化股份有限公司 Thermoelectric dehumidifying device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872686A (en) * 2011-07-14 2013-01-16 温岭安能节能科技有限公司 Boundary layer control and mainstream perturbation coordinated integrated enhanced heat transfer method and system
WO2013007111A1 (en) * 2011-07-14 2013-01-17 温岭安能节能科技有限公司 Single unit type dehumidification and drying method and system having boundary layer control cooperating with enhanced heat-exchange by main stream disturbance
CN102872686B (en) * 2011-07-14 2015-01-14 温岭安能节能科技有限公司 Boundary layer control and mainstream perturbation coordinated integrated enhanced heat transfer method and system
JP2015154082A (en) * 2014-02-14 2015-08-24 エルジー イノテック カンパニー リミテッド heat conversion device
EP2908356A3 (en) * 2014-02-14 2015-08-26 LG Innotek Co., Ltd. Heat conversion device
JP2017188574A (en) * 2016-04-06 2017-10-12 積水化学工業株式会社 Thermoelectric conversion device
CN110959095A (en) * 2017-07-28 2020-04-03 Lg伊诺特有限公司 Cooling/heating device
CN110959095B (en) * 2017-07-28 2021-11-30 Lg伊诺特有限公司 Cooling/heating device
CN111306654A (en) * 2018-12-12 2020-06-19 新典自动化股份有限公司 Thermoelectric dehumidifying device
CN111306654B (en) * 2018-12-12 2021-11-30 新典自动化股份有限公司 Thermoelectric dehumidifying device

Similar Documents

Publication Publication Date Title
KR970011187B1 (en) Ptc thermistor device having heat radiation fins with adjustable temperature regulating guide plates
JPH08148189A (en) Battery temperature adjustment device for electric vehicle
US5226298A (en) Thermoelectric air conditioner with absorbent heat exchanger surfaces
JP4200563B2 (en) Cooling system
JPH06163997A (en) Dehumidifier using thermoelectric effect, and method of controlling dehumidifier
JPH06151979A (en) Thermoelectric device
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
KR101887779B1 (en) Ventilation module of ventilation seat
JPH0539966A (en) Heat pump device
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
KR100683216B1 (en) Heater core unit for vehicles
JPH0430586A (en) Thermoelectric device
JPH05172426A (en) Air conditioner assembled with built-in heat transfer unit
KR20100029572A (en) A heat exchanger using thermoelectric element modules
JPS5840A (en) Heat exchanger
JPH0677665B2 (en) Electronic dehumidifier
KR100451130B1 (en) cold and warm brast generator using metal foam and thermoelectric elemant
JP6108583B1 (en) Aquarium fish tank and breeding water temperature control method using multiple Peltier elements
KR101451160B1 (en) Water cooling type and air cooling type thermoelement system
CN215871891U (en) Tubular heating device and heating equipment
KR200368907Y1 (en) Heat-Exchanger Using The Thermoelectric Elements And Heating-Cooling Sheet Having Said Heat-Exchanger
JP7195807B2 (en) air conditioner
CN215991249U (en) Tubular heating device and heating equipment
KR100451129B1 (en) cold brast generating device using thermoelectric element
JP2959203B2 (en) Toner fixing device using positive temperature coefficient thermistor