JPH06163295A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH06163295A
JPH06163295A JP4318870A JP31887092A JPH06163295A JP H06163295 A JPH06163295 A JP H06163295A JP 4318870 A JP4318870 A JP 4318870A JP 31887092 A JP31887092 A JP 31887092A JP H06163295 A JPH06163295 A JP H06163295A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
rolling
manufacturing
roll diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318870A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Seiji Ihara
清二 伊原
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4318870A priority Critical patent/JPH06163295A/en
Publication of JPH06163295A publication Critical patent/JPH06163295A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make an R-Fe-B based magnet of high performance, by casting and hot rolling. CONSTITUTION:In a process wherein R-Fe-B based casting alloy is put in a capsule and rolled, the capsule form and the total draft are so optimized that T/D becomes 0.05 to 0.1 for the final plate thickness T and the roll diameter D. Thereby magnetic characteristics are improved and irregularity is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類永久磁石の製造
方法、特に鋳造合金を熱間で塑性加工を施して磁気的に
異方性化するR−Fe−B系希土類永久磁石の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth permanent magnet, and more particularly to a method for manufacturing an R-Fe-B type rare earth permanent magnet in which a cast alloy is subjected to hot plastic working to make it magnetically anisotropic. It is about.

【0002】[0002]

【従来の技術】現在使用されている永久磁石のうち代表
的なものはアルニコ系鋳造磁石、フェライト磁石及び希
土類−遷移金属系磁石である。特に、希土類−遷移金属
系磁石であるR−Co系永久磁石やR−Fe−B系永久
磁石は、極めて高い保磁力とエネルギー積を持つ永久磁
石として、高い磁気性能が得られるので、従来から多く
の研究開発がなされている。
2. Description of the Related Art Typical permanent magnets currently in use are alnico type cast magnets, ferrite magnets and rare earth-transition metal type magnets. In particular, R-Co based permanent magnets and R-Fe-B based permanent magnets, which are rare earth-transition metal based magnets, have high magnetic performance as permanent magnets having an extremely high coercive force and energy product. Much research and development has been done.

【0003】従来、これら希土類−鉄(遷移金属)系の
高性能永久磁石の製造方法には、次のようなものがあ
る。
Conventionally, there are the following methods for manufacturing these rare earth-iron (transition metal) high-performance permanent magnets.

【0004】(1)まず、特開昭59−46008号公
報やM.Sagawa,S.Fujimura,N.T
ogawa,H.Yamamoto and Y.Ma
tsuura;J.Appl,Phys,Vol,55
(6)15March 1984,p2083、等に
は、原子百分比で8〜30%のR(但しRはYを包含す
る希土類元素の少なくとも1種)、2〜28%のB及び
残部Feから成る磁気異方性焼結体であることを特徴と
する永久磁石及びそれが粉末冶金法に基づく焼結によっ
て製造されることが開示されている。
(1) First, Japanese Patent Laid-Open No. 59-46008 and M.K. Sagawa, S .; Fujimura, N .; T
Ogawa, H .; Yamamoto and Y. Ma
tsuura; J. Appl, Phys, Vol, 55
(6) 15March 1984, p2083, etc., a magnetic anisotropy consisting of 8 to 30% R (where R is at least one rare earth element including Y), 2 to 28% B and the balance Fe in atomic percentage. It is disclosed that the permanent magnet is a isotropic sintered body, and that the permanent magnet is manufactured by sintering based on a powder metallurgy method.

【0005】(2)また、特開昭59−211549号
公報やR.W.Lee;Appl,Phys,Let
t.Vol,46(8),15 April 198
5,p790には、アモルファス合金を製造するに用い
る急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を
作り、その薄片を樹脂結合法で磁石にするメルトスピニ
ング法による急冷薄片を用いた樹脂結合方法で希土類−
鉄磁石が製造されることが開示されている。
(2) In addition, JP-A-59-211549 and R.I. W. Lee; Appl, Phys, Let
t. Vol, 46 (8), 15 April 198
5, p790 is a resin using melt-spinning quenching flakes produced by a quenching ribbon manufacturing apparatus used for manufacturing an amorphous alloy to form quenching flakes with a thickness of about 30 μm and using the flakes as magnets by a resin bonding method. Rare earth-
It is disclosed that iron magnets are manufactured.

【0006】(3)さらに、特開昭60−100402
号公報や前述のR.W.Leeの論文には、高温処理に
よって異方性の永久磁石を作る方法において、永久磁石
が鉄−希土類金属であり、方法が、鉄,ネオジムおよび
/あるいはプラセオジムおよびホウ素を含む無定形ない
し微細な結晶性の固体材料を高温処理し、微細な粒子の
微細構造を持つ塑性的に変形された物体を作り、その物
体を冷却し、得られる物体が磁性的に異方性であり、永
久磁石特性を示すようにすることからなることを特徴と
する永久磁石の製造方法が開示されている。
(3) Further, JP-A-60-100402
Gazette and the aforementioned R. W. Lee's article describes a method of making anisotropic permanent magnets by high temperature treatment, wherein the permanent magnets are iron-rare earth metals, and the method is amorphous or fine crystalline containing iron, neodymium and / or praseodymium and boron. Solid material with high temperature is treated at high temperature to make a plastically deformed body with a fine structure of fine particles, and the body is cooled, and the obtained body is magnetically anisotropic and exhibits permanent magnet characteristics. Disclosed is a method of manufacturing a permanent magnet, which is characterized by comprising the steps shown below.

【0007】この磁石の製造方法は、前記(2)におけ
るリボン状急冷薄帯あるいは薄帯の片を、真空中あるい
は不活性雰囲気中で約700℃でホットプレスを行なっ
て高密度化し、次いで最初の厚みの1/2になるまで据
え込み加工(ダイアップセット)を行なうことにより、
合金はプレス方向と平行に配向し、異方性化する。
In this magnet manufacturing method, the ribbon-like quenched ribbon or strip of ribbon in (2) above is hot-pressed at about 700 ° C. in a vacuum or in an inert atmosphere to densify it. By performing upsetting (die up set) until it becomes 1/2 of the thickness of
The alloy is oriented parallel to the pressing direction and becomes anisotropic.

【0008】(4)また、特開昭62−276803号
公報には、R(ただしRはYを含む希土類元素のうち少
なくとも1種)8原子%〜30原子%、B 2原子%〜
28原子%、Co 50原子%以下、Al 15原子%
以下、及び残部が鉄及びその他の製造上不可避な不純物
からなる合金を溶解および鋳造後、該鋳造合金を夫々5
00℃以上の温度で、油圧プレスのダイに装入する押出
し加工、またロールにより圧延する圧延加工、さらに基
板の上に載置しスタンプするスタンプ加工等の熱間加工
を行うことにより、結晶粒を微細化しまたその結晶軸を
特定の方向に配向せしめて、該鋳造合金を磁気的に異方
性化することを特徴とする希土類−鉄系永久磁石が開示
されている。
(4) Further, in JP-A-62-276803, R (provided that R is at least one of rare earth elements including Y) is 8 atom% to 30 atom% and B 2 atom% to
28 atomic%, Co 50 atomic% or less, Al 15 atomic%
Below, and after the alloy consisting of iron and other unavoidable impurities in manufacturing is melted and cast, the cast alloy is
At a temperature of 00 ° C or higher, extrusion processing for charging into a die of a hydraulic press, rolling processing for rolling with rolls, and hot processing such as stamping for placing on a substrate and stamping are performed to obtain crystal grains. A rare earth-iron based permanent magnet, characterized in that the cast alloy is magnetically anisotropy by refining the alloy and orienting the crystal axis in a specific direction.

【0009】[0009]

【発明が解決しようとする課題】叙上の(1)〜(4)
の従来のR−Fe−B系永久磁石の製造方法は、次の如
き欠点を有している。
[Problems to be Solved by the Invention] (1) to (4) above
The conventional method for manufacturing an R-Fe-B system permanent magnet has the following drawbacks.

【0010】(1)の永久磁石の製造方法は、合金を粉
末にすることを必須とするものであるが、R−Fe−B
系合金は大変酸素に対して活性を有するので、粉末化す
ると余計酸化が激しくなり、焼結体中の酸素濃度はどう
しても高くなってしまう。
In the method of manufacturing a permanent magnet of (1), it is essential to make the alloy into powder, but R-Fe-B
Since the system alloys are very active with respect to oxygen, if they are pulverized, excessive oxidation will occur, and the oxygen concentration in the sintered body will inevitably increase.

【0011】又粉末を成形するときに、例えばステアリ
ン酸亜鉛のような成形助剤を使用しなければならず、こ
れは焼結工程で前もって取り除かれるのであるが、成形
助剤中の数割は、磁石体の中に炭素の形で残ってしま
い、この炭素は著しくR−Fe−Bの磁気性能を低下さ
せ好ましくない。
When molding the powder, it is necessary to use a molding aid such as zinc stearate, which is removed beforehand in the sintering process, but a few percent of the molding aid is However, it remains in the form of carbon in the magnet body, and this carbon remarkably deteriorates the magnetic performance of R-Fe-B, which is not preferable.

【0012】成形助剤を加えてプレス成形した後の成形
体はグリーン体と言われ、これは大変脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間が掛かることも大きな欠点である。
The green body after press-molding by adding a molding aid is called a green body, which is very fragile and difficult to handle. Therefore, it takes a great deal of time to neatly put them side by side in the sintering furnace, which is a big drawback.

【0013】これらの欠点があるので、一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、その製造方法は生産効率が悪
く、結局磁石の製造コストが高くなってしまう。従っ
て、比較的原料費の安いR−Fe−B系磁石の長所を活
かすことが出来ない。
Due to these drawbacks, generally speaking, not only expensive equipment is required for producing an R--Fe--B system sintered magnet, but also the production method thereof has poor production efficiency, Eventually, the manufacturing cost of the magnet increases. Therefore, it is not possible to take advantage of the advantages of the R-Fe-B magnets, which have relatively low raw material costs.

【0014】次に(2)及び(3)の永久磁石の製造方
法は、真空メルトスピニング装置を使用するが、この装
置は、現在では大変生産性が悪くしかも高価である。
(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性もよくな
いので、温度特性に対しても、使用する面においても不
利である。
Next, in the manufacturing method of the permanent magnets of (2) and (3), a vacuum melt spinning device is used, but this device is currently very poor in productivity and expensive.
Since the permanent magnet of (2) is isotropic in principle and has a low energy product, and the squareness of the hysteresis loop is not good, it is disadvantageous in terms of temperature characteristics and use.

【0015】(3)の永久磁石を製造する方法は、ホッ
トプレスを二段階に使うというユニークな方法である
が、実際に量産を考えると非能率であることは否めない
であろう。更にこの方法では、高温例えば800℃以上
では結晶粒の粗大化が著しく、それによって保磁力iH
cが極端に低下し、実用的な永久磁石にはならない。
The method of manufacturing a permanent magnet of (3) is a unique method of using hot pressing in two steps, but it cannot be denied that it is inefficient in terms of mass production. Further, in this method, the crystal grains are remarkably coarsened at a high temperature, for example, 800 ° C. or higher, which causes the coercive force iH
c is extremely reduced, and it does not become a practical permanent magnet.

【0016】(4)の永久磁石を製造する方法は、磁石
合金をカプセルに密封して熱間加工するので大気中で加
工できるため、加工時の雰囲気制御が不要で高価な設備
を必要としない。製造工程全体が簡略なため、製造コス
トが安い。また、粉末工程を含まないため含有酸素濃度
が低く耐食性がよい。さらに、機械的強度が高く大型の
磁石が製造可能である等、多くの長所を有する。特に熱
間加工の手段として圧延を用いることにより、量産性が
向上する。圧延加工の特性上、問題となるのは材料とロ
ールとの摩擦によって発生するせん断歪の影響である。
これを制御するためには、圧下率、シース厚みを変える
方法がある。圧下率に関して、特願平2−257650
には圧下率が20%を超えるパスを含むこと、さらには
圧下率30%以上のパスを複数回行なうことにより高い
配向度が得られることが示されている。特願平3−09
5698には熱間圧延による加工度が40〜70%の範
囲で、圧下率が20%を超えるパスを1回以上行なうこ
とにより、高い配向度が得られることが示されている。
特願平1−072276には、シース厚みが合金板厚の
20%以上必要であることが示されている。しかしなが
ら、これまで圧下率やシース厚に無関係に、圧延を複数
回重ね、圧延材が薄くなりすぎると磁気特性がかえって
低くなってしまうことがあった。また、ロール径が小さ
い場合、75%以上圧下しても高い磁気特性が得られな
いことがあった。
In the method of manufacturing a permanent magnet of (4), since the magnet alloy is sealed in a capsule and hot-worked, it can be processed in the atmosphere, and therefore atmosphere control during processing is unnecessary and expensive equipment is not required. . Since the entire manufacturing process is simple, the manufacturing cost is low. Further, since the powder process is not included, the oxygen content is low and the corrosion resistance is good. Furthermore, it has many advantages such as high mechanical strength and the ability to manufacture large magnets. Especially by using rolling as a means of hot working, mass productivity is improved. In terms of the characteristics of rolling, the problem is the effect of shear strain generated by the friction between the material and the roll.
In order to control this, there is a method of changing the rolling reduction and the sheath thickness. Regarding the reduction rate, Japanese Patent Application No. 2-257650
Indicates that a pass having a rolling reduction of more than 20% is included, and that a high degree of orientation can be obtained by performing a plurality of passes having a rolling reduction of 30% or more. Japanese Patent Application No. 3-09
It is shown in 5698 that a high degree of orientation can be obtained by performing a pass with a reduction ratio of 20% or more once or more in a workability range of 40 to 70% by hot rolling.
Japanese Patent Application No. 1-072276 discloses that the sheath thickness needs to be 20% or more of the alloy plate thickness. However, until now, regardless of the rolling reduction and the sheath thickness, if the rolling material is repeatedly thinned and the rolled material becomes too thin, the magnetic properties may rather deteriorate. Further, when the roll diameter is small, high magnetic properties may not be obtained even if the roll diameter is reduced by 75% or more.

【0017】[0017]

【課題を解決するための手段】上記課題に対し研究を行
なった結果、板厚とロール径との比を最適化することに
よって、さらに高い磁気特性を安定して得ることができ
るという知見を得た。すなわち、本発明の希土類永久磁
石の製造方法は、R(ただしRはYを含む希土類元素の
うち少なくとも1種)、Fe(鉄)、及びB(ボロン)
を原料基本成分とする合金を溶解・鋳造し、金属製シー
スに入れ熱間圧延を行なった後、熱処理を行なう希土類
永久磁石の製造工程、特にその熱間圧延工程において、
シース込みの最終板厚Tとロール径Dに対し、 0.05<T/D<0.1 の関係が成り立つことを特徴とするものである。
[Means for Solving the Problems] As a result of research on the above problems, it was found that by optimizing the ratio of the plate thickness to the roll diameter, higher magnetic properties can be stably obtained. It was That is, the method for producing a rare earth permanent magnet according to the present invention includes R (where R is at least one of rare earth elements including Y), Fe (iron), and B (boron).
In the manufacturing process of the rare earth permanent magnet, in which the alloy containing the as a raw material basic component is melted and cast, put in a metal sheath and hot-rolled, and then heat-treated, especially in the hot-rolling process,
The relationship is 0.05 <T / D <0.1 with respect to the final plate thickness T including the sheath and the roll diameter D.

【0018】即ち、上記の希土類永久磁石の製造方法
は、R−Fe−B系鋳造合金が、熱間圧延によって配向
度が向上する過程において、板厚とロール径によって配
向度の向上の効率が異なることを考慮したものである。
熱間圧延により高い配向度すなわち高い磁気特性を得る
ためには、各パスの圧下率が十分大きいことが望まし
い。具体的には圧下率30%以上のパスが少なくとも1
回以上必要であろう。総加工度は50〜85%必要であ
る。また、シース厚は磁石合金の厚さの20%以上必要
である。これよりも薄いと磁石の割れが多くなるだけで
なく、配向度が低いものになってしまう。せん断歪を低
く抑えるために、ロール径は大きいことが望ましいが、
大きすぎる場合もしくは板厚を薄くしすぎる場合、磁気
特性はかえって低下する。
That is, in the above-mentioned method for producing a rare earth permanent magnet, in the process in which the orientation degree of the R-Fe-B system cast alloy is improved by hot rolling, the efficiency of the orientation degree improvement by the plate thickness and the roll diameter is improved. The difference is taken into consideration.
In order to obtain a high degree of orientation, that is, high magnetic characteristics, by hot rolling, it is desirable that the rolling reduction of each pass is sufficiently large. Specifically, at least 1 pass has a reduction rate of 30% or more.
It will be necessary more than once. The total workability is required to be 50 to 85%. Further, the sheath thickness needs to be 20% or more of the thickness of the magnet alloy. If it is thinner than this, not only the magnet will crack more, but also the degree of orientation will be low. A large roll diameter is desirable to keep shear strain low, but
If it is too large or the plate thickness is too thin, the magnetic properties will rather deteriorate.

【0019】具体的には、最終板厚T、ロール径Dの比
T/Dが0.05〜0.1の範囲において、最も高い配
向度が得られる。ロール径が小さすぎる場合、すなわち
T/Dが0.1よりかなり大きい場合、十分な配向度は
得られない。さらにT<0.05になるまで、圧延を行
なうとせん断歪が大きくなり、磁気特性は逆に低下す
る。
Specifically, the highest degree of orientation is obtained when the ratio T / D of the final plate thickness T and the roll diameter D is in the range of 0.05 to 0.1. If the roll diameter is too small, that is, if T / D is considerably larger than 0.1, a sufficient degree of orientation cannot be obtained. Further, when rolling is carried out until T <0.05, the shear strain becomes large and the magnetic properties are deteriorated.

【0020】このようにロール径と板厚の比を最適化し
たことにより、使用する圧延ロールに対し、最も配向し
やすい圧延材形状を選ぶことができ、その結果高い磁気
特性を得ることができる。
By optimizing the ratio of the roll diameter to the plate thickness in this way, it is possible to select the shape of the rolled material that is most easily oriented with respect to the rolling roll used, and as a result, it is possible to obtain high magnetic characteristics. .

【0021】[0021]

【実施例】【Example】

(実施例1)先ずアルゴン雰囲気中で誘導加熱炉を用い
て、Pr16.5Fe77.25.1Cu1.2なる組成の合金を溶
解し、次いで鋳造し、柱状晶組織から成る平均粒径15
μmの長さ150mm×高さ140mm×厚さ20mm
の鋳造サンプルを得た。この鋳造サンプルを表1に示す
ような形状に加工した。これを、同表に示す寸法のSS
41製シースにいれ溶接により密封し、950℃の炉で
1時間加熱したものを、ロール径300mmの圧延機を
用い、各パスの圧下率10〜30%で圧延を行なった。
その結果最終加工度75%を圧延材を得た。
Example 1 First, an induction heating furnace was used in an argon atmosphere to melt an alloy having a composition of Pr 16.5 Fe 77.2 B 5.1 Cu 1.2 , and then cast to have an average grain size of columnar crystal structure of 15
μm length 150 mm x height 140 mm x thickness 20 mm
A casting sample of was obtained. This cast sample was processed into the shape shown in Table 1. This is the SS with the dimensions shown in the table.
The sheath made of No. 41 was sealed by welding and heated in a furnace at 950 ° C. for 1 hour, and rolled using a rolling machine with a roll diameter of 300 mm at a rolling reduction of 10 to 30% in each pass.
As a result, a rolled material having a final workability of 75% was obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】冷却後シースをとり除き、1025℃で1
2時間、500℃で6時間熱処理を行なった後、機械加
工により7mm×7mm×高さ8mmのサンプルを作製
し、BHトレーサにて磁気特性を測定した。最終板厚
T、ロール径D(=300mm)に対し、T/Dの値と(BH)ma
x、iHcの関係を表2に示す。
After cooling, the sheath is removed and the temperature is adjusted to 1 at 1025 ° C.
After heat treatment for 2 hours at 500 ° C. for 6 hours, a sample of 7 mm × 7 mm × height 8 mm was prepared by machining, and the magnetic characteristics were measured by a BH tracer. For the final plate thickness T and roll diameter D (= 300mm), the value of T / D and (BH) ma
Table 2 shows the relationship between x and iHc.

【0024】[0024]

【表2】 [Table 2]

【0025】この結果から、T/Dの値が0.05〜0.1の
範囲内にある場合、高い磁気特性が得られている。
From these results, high magnetic properties were obtained when the T / D value was in the range of 0.05 to 0.1.

【0026】(実施例2)実施例1と同様に、先ずアル
ゴン雰囲気中で誘導加熱炉を用いて、Pr16.5Fe77.2
5.1Cu1.2なる組成の合金を溶解し、次いで鋳造し、
柱状晶組織から成る平均粒径15μmの長さ150mm
×高さ140mm×厚さ20mmの鋳造サンプルを得
た。この鋳造サンプルを幅18mm×高さ125mm×
長さ150mmのビレットに加工した。これを7枚並
べ、幅320mm×高さ250mm×長さ400mmの
SS41製シースにいれ、溶接により密封し、950℃
の炉で2時間加熱したものを、ロール径がφ500、φ
900の圧延機を用いて圧延を行なった。1パスの圧下
率は10〜30%で、最終加工度は75%以上となるよ
うにした。冷却後シースをとり除き、1025℃で12
時間、500℃で6時間熱処理を行なった後、機械加工
により7mm×7mm×高さ8mmのサンプルを作製
し、BHトレーサにて磁気特性を測定した。
(Example 2) As in Example 1, first, using an induction heating furnace in an argon atmosphere, Pr 16.5 Fe 77.2
B 5.1 Cu 1.2 alloy is melted, then cast,
150 mm long with an average grain size of 15 μm consisting of a columnar crystal structure
A cast sample having a height of 140 mm and a thickness of 20 mm was obtained. This cast sample is 18 mm wide x 125 mm high x
It was processed into a billet having a length of 150 mm. Arrange 7 of them, put them in SS41 sheath of width 320mm x height 250mm x length 400mm, seal by welding, and 950 ° C.
Heated for 2 hours in a furnace with a roll diameter of φ500, φ
Rolling was performed using a 900 rolling mill. The rolling reduction in one pass was 10 to 30%, and the final workability was 75% or more. Remove the sheath after cooling and remove at 1225 ° C for 12
After heat treatment at 500 ° C. for 6 hours, a sample having a size of 7 mm × 7 mm × height of 8 mm was prepared by machining, and the magnetic characteristics were measured with a BH tracer.

【0027】表3に、各サンプルの最終板厚T、ロール
径D、T/D値、加工度、磁気特性を示す。
Table 3 shows the final plate thickness T, roll diameter D, T / D value, workability and magnetic properties of each sample.

【0028】[0028]

【表3】 [Table 3]

【0029】圧延により板厚が減少するにつれて磁気特
性は向上するが、T/Dが0.05〜0.1の範囲内に
おいて特に高い磁気特性が得られている。また、そのば
らつきも小さくなっている。したがって、高い磁気特性
を得るためには、圧延後の最終板厚TはT/Dが0.0
5〜0.1の範囲に入ることが望ましいことがわかる。
Although the magnetic properties are improved as the plate thickness is reduced by rolling, particularly high magnetic properties are obtained when T / D is in the range of 0.05 to 0.1. The variation is also small. Therefore, in order to obtain high magnetic properties, the final plate thickness T after rolling has T / D of 0.0.
It can be seen that it is desirable to fall within the range of 5 to 0.1.

【0030】[0030]

【発明の効果】叙上の如く本発明の希土類永久磁石粉末
の製造方法は、次の如き効果を奏するものである。
INDUSTRIAL APPLICABILITY As described above, the method for producing rare earth permanent magnet powder of the present invention has the following effects.

【0031】(1)鋳造・熱間圧延・熱処理の工程から
つくられるため、機械的強度が高く大型で低コストの磁
石ができる。
(1) Since it is manufactured by the steps of casting, hot rolling and heat treatment, a large-sized and low-cost magnet having high mechanical strength can be obtained.

【0032】(2)圧延による配向効率が上がるため、
磁気特性が向上し、ばらつきが小さくなる。
(2) Since the orientation efficiency by rolling increases,
Magnetic properties are improved and variations are reduced.

【0033】(3)圧延機やロール径が変わっても、容
易に最適な圧延材形状を設計することができる。
(3) Even if the rolling mill or roll diameter changes, the optimum rolled material shape can be easily designed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/08 A (72)発明者 伊原 清二 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number in the agency FI Technical indication H01F 1/053 1/08 A (72) Inventor Seiji Ihara 3-3-5 Yamato, Suwa City, Nagano Prefecture No. Seiko Epson Corporation (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種)、Fe(鉄)、及びB(ボロン)を
原料基本成分とする合金を溶解・鋳造し、金属製シース
に入れ熱間圧延を行なった後、熱処理を行なう希土類永
久磁石の製造工程、特にその熱間圧延工程において、シ
ースを含めた最終板厚Tとロール径Dに対し、 0.05<T/D<0.1 の関係が成り立つことを特徴とする希土類永久磁石の製
造方法。
1. An alloy containing R (where R is at least one of rare earth elements including Y), Fe (iron), and B (boron) as basic raw materials is melted and cast into a metal sheath. In the manufacturing process of a rare earth permanent magnet in which heat treatment is performed after hot rolling, particularly in the hot rolling process thereof, 0.05 <T / D <0 with respect to the final plate thickness T including the sheath and the roll diameter D. 1. A method for manufacturing a rare earth permanent magnet, characterized in that the relationship 1 is satisfied.
JP4318870A 1992-11-27 1992-11-27 Manufacture of rare earth permanent magnet Pending JPH06163295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318870A JPH06163295A (en) 1992-11-27 1992-11-27 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318870A JPH06163295A (en) 1992-11-27 1992-11-27 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH06163295A true JPH06163295A (en) 1994-06-10

Family

ID=18103890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318870A Pending JPH06163295A (en) 1992-11-27 1992-11-27 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH06163295A (en)

Similar Documents

Publication Publication Date Title
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
EP0348038B1 (en) Manufacturing method of a permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
JPH04134804A (en) Manufacture of rare earth permanent magnet
JPH06163295A (en) Manufacture of rare earth permanent magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JP2893705B2 (en) Manufacturing method of permanent magnet
JPH06260359A (en) Production of rare-earth element permanent magnet
JPH06208930A (en) Production of rare earth permanent magnet
JPH05315171A (en) Manufacture of rare earth permanent magnet
JPH06260311A (en) Manufacture of rare earth element permanent magnet
JPH06244012A (en) Manufacture of permanent magnet
JPH04143221A (en) Production of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH05315112A (en) Manufacture of permanent magnet
JPH06251917A (en) Rare earth element permanent magnet
JPH06151219A (en) Manufacture of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH06224016A (en) Manufacture of rare earth element permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH05315169A (en) Manufacture of rare earth magnet
JPH05315113A (en) Manufacture of permanent magnet
JPH02252219A (en) Manufacture of rare earth element magnet