JPH06163145A - Surface-shaped heating unit - Google Patents
Surface-shaped heating unitInfo
- Publication number
- JPH06163145A JPH06163145A JP4315237A JP31523792A JPH06163145A JP H06163145 A JPH06163145 A JP H06163145A JP 4315237 A JP4315237 A JP 4315237A JP 31523792 A JP31523792 A JP 31523792A JP H06163145 A JPH06163145 A JP H06163145A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- electrodes
- resistance
- sub
- resistance film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/006—Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はミラー(鏡)や窓の曇
りや、着氷の防止等に使用される面状発熱体に関し、特
に周辺の主電極領域を含めて面全体の温度上昇を一様に
したものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar heating element used for preventing fogging of mirrors and windows and icing, and particularly for increasing the temperature of the entire surface including the peripheral main electrode area. It is uniform.
【0002】[0002]
【従来の技術】この種の面状発熱体1は例えば図1に示
すように、絶縁性基板2上の対向する周辺に沿って第
1,第2主電極4,5が形成され、それら第1,第2主
電極4,5より櫛歯状の第1,第2副電極6,7がそれ
ぞれ導出される。第1(第2)副電極6(7)は隣接す
る第2(第1)副電極7(6)の中間に挟まれて互いに
対向して配され、第1,第2副電極6,7の間にPTC
(Positive Temperatur Coefficient :正温度係数)抵
抗膜8が一様に形成される。2. Description of the Related Art In a sheet heating element 1 of this type, for example, as shown in FIG. 1, first and second main electrodes 4 and 5 are formed along an opposing periphery of an insulating substrate 2, and these The first and second main electrodes 4 and 5 lead out comb-shaped first and second sub-electrodes 6 and 7, respectively. The first (second) sub-electrode 6 (7) is sandwiched between the adjacent second (first) sub-electrodes 7 (6), and is disposed so as to face each other. Between PTC
(Positive Temperatur Coefficient) The resistance film 8 is uniformly formed.
【0003】第1,第2主電極4,5及び第1,第2副
電極6,7は、銀または銅等の金属粒を熱硬化性または
熱可塑性樹脂に分散させ、樹脂を固化させて導電路とし
たものである。また導電路の抵抗を低くするために金属
粒の充填率が大きく、そのため導電路の抵抗値の温度特
性は、例えば銀−フェノール系ではRa (160°)/
Ra (20°)≒1.35となり、温度に対し線形であ
る。The first and second main electrodes 4 and 5 and the first and second sub electrodes 6 and 7 are prepared by dispersing metal particles such as silver or copper in a thermosetting or thermoplastic resin and solidifying the resin. It is a conductive path. Further, since the filling factor of the metal particles is large in order to reduce the resistance of the conductive path, the temperature characteristic of the resistance value of the conductive path is, for example, Ra (160 °) /
Ra (20 °) ≈1.35, which is linear with temperature.
【0004】一方、面状発熱体1ではPTC抵抗膜8に
よる発熱だけでなく、第1,第2主電極領域も発熱さ
せ、周辺部も含めてなるべく面全体が一様に発熱するこ
とを目標にしている。そのため、特に「主電極の発熱密
度をPTC領域の発熱密度とほゞ等しくする」ことがI
TW社によりUSPAT.4,857,711 号として提案され
ている。そこでは、主電極の材質を電導銀(インク)と
している。それ以上の記載はないが、電子回路等に使用
される一般的なインクと解釈される。このような銀イン
クは印刷焼成されると、前述のような線形の抵抗温度係
数を示す。On the other hand, in the planar heating element 1, not only the heat generated by the PTC resistance film 8 but also the first and second main electrode regions are heated so that the entire surface including the peripheral portion is heated as uniformly as possible. I have to. Therefore, it is particularly necessary to "make the heat generation density of the main electrode approximately equal to that of the PTC region".
USPAT. Proposed as No. 4,857,711. There, the material of the main electrode is conductive silver (ink). Although not described further, it is understood as a general ink used for electronic circuits and the like. When such a silver ink is printed and baked, it exhibits a linear temperature coefficient of resistance as described above.
【0005】[0005]
【発明が解決しようとする課題】従来の技術では、前記
ITW社の提案のように主電極の発熱密度をPTC抵抗
膜の発熱密度とほゞ等しくすることは、ある一点の温度
(例えば20℃)とその近傍では実現できるが、例えば
−30℃〜100℃のように広い温度範囲に亘って実現
することはできなかった。この発明の目的は、所定の広
い温度範囲に亘って主電極の発熱密度をPTC抵抗膜の
発熱密度にほゞ等しい面状発電体を提供することにあ
る。In the prior art, it is necessary to make the heat generation density of the main electrode approximately equal to the heat generation density of the PTC resistance film, as proposed by ITW, at a certain temperature (for example, 20 ° C.). ) And its vicinity, but could not be realized over a wide temperature range such as −30 ° C. to 100 ° C. An object of the present invention is to provide a planar power generator in which the heat generation density of the main electrode is approximately equal to the heat generation density of the PTC resistance film over a predetermined wide temperature range.
【0006】[0006]
【課題を解決するための手段】この発明では、所定の温
度範囲に亘って、第1,第2主電極の温度Tにおける固
有抵抗ρ(T)の基準温度T0 における固有抵抗ρ(T
0 )に対する比ρ(T)/ρ(T0 )を、第1,第2副
電極間の抵抗膜の温度Tにおける抵抗値R3 (T)の基
準温度T0 における抵抗値R3 (T0 )に対する比R3
(T)/R3 (T0 )にほゞ等しく設定する。According to the present invention, the specific resistance ρ (T at the reference temperature T 0 of the specific resistance ρ (T) at the temperature T of the first and second main electrodes over a predetermined temperature range.
The ratio ρ (T) / ρ (T 0 ) to the resistance value R 3 (T) at the reference temperature T 0 of the resistance value R 3 (T) at the temperature T of the resistance film between the first and second sub-electrodes. The ratio of 0) R 3
Set (T) / R 3 (T 0 ) almost equal.
【0007】[0007]
【実施例】はじめに、従来の技術では、主電極の発熱密
度をPTC抵抗膜の発熱密度に近似することが、ある一
点の温度とその近傍においてしか実現できなかった原因
について究明する。図1Bに示すように、第1,第2主
電極4,5の幅の広い方の端面に電池9より電圧Vを印
加したとき、主電極に流入/流出する電流をI0 とする
と、面状発熱体1の全抵抗Rは R=V/I0 …… (1) で定義される。この全抵抗Rは第1,第2主電極4,5
による抵抗R1 と、第1,第2副電極6,7による抵抗
R2 と、第1,第2副電極6,7間のPTC抵抗膜8に
よる抵抗R3 とより成る。しかし、 R1≪R3 ,R2≪R3 …… (2) となるように各部を作製しているので、 R=R1+R2+R3 ≒R3 …… (3) と見なすことができる。従って、(1)式より I0 =V/R≒V/R3 …… (4) また、面状発熱体1の消費電力Pは P=V2/R≒V2/R3 =P3 …… (5) 即ち、抵抗膜8の消費電力P3 にほゞ等しい。EXAMPLE First, in the prior art, the reason why the heat generation density of the main electrode can be approximated to the heat generation density of the PTC resistance film only at a certain temperature and its vicinity will be investigated. As shown in FIG. 1B, when a voltage V is applied from the battery 9 to the wider end faces of the first and second main electrodes 4 and 5, the current flowing in / out of the main electrode is I 0 , The total resistance R of the heating element 1 is defined by R = V / I 0 (1) This total resistance R is the first and second main electrodes 4, 5
A resistor R 1 by, first, a resistance R 2 of the second sub-electrodes 6, 7, and more as the first, resistor R 3 by PTC resistive film 8 between the second sub-electrode 6,7. However, since the prepared respective parts such that R 1 «R 3, R 2 «R 3 ...... (2), be regarded as R = R 1 + R 2 + R 3 ≒ R 3 ...... (3) it can. Therefore, from the equation (1), I 0 = V / R≈V / R 3 (4) Further, the power consumption P of the sheet heating element 1 is P = V 2 / R≈V 2 / R 3 = P 3 (5) That is, it is almost equal to the power consumption P 3 of the resistance film 8.
【0008】抵抗膜8の発熱密度、つまり電力密度p3
は、抵抗膜8の全面積をAとすれば、(5)式より p3 =P3/A=V2/R3 A …… (6) と表される。抵抗膜8による発熱エリアを図1のように
M×Lの矩形と仮定すると、副電極6,7の各1本に流
れる電流は両端の電極を除いていずれもほゞ等しくな
る。何となれば、(2)式によって主及び副電極での電
圧降下が、抵抗膜8の電圧降下に対して無視することが
でき、対向する第1,第2副電極間には全てほゞ等しい
電圧Vが印加されるからである。Heat generation density of the resistance film 8, that is, power density p 3
Is expressed as p 3 = P 3 / A = V 2 / R 3 A (6) from the equation (5), where A is the total area of the resistance film 8. Assuming that the heat generating area by the resistance film 8 is an M × L rectangle as shown in FIG. 1, the currents flowing through each one of the sub electrodes 6 and 7 are almost equal except for the electrodes at both ends. What is required is that the voltage drop at the main and sub electrodes can be neglected with respect to the voltage drop at the resistance film 8 by the formula (2), and all the first and second sub electrodes facing each other are almost equal. This is because the voltage V is applied.
【0009】副電極6,7の各1本の電流が全て同一で
あると見做すと、副電極から主電極(またはその逆)に
流れる電流は、主電極の単位長当たりI0 /Lとなる。
従って、主電極4,5の終端から主電極に沿って測った
距離xの位置の主電極の電流I1 (x)は、 I1(x)=(I0/L)x …… (7) となる。主電極の発熱密度を一様にするために、幅w
(x)を距離xに比例して大きくして、その電流密度を
一様にする必要がある。従って、 w(x)=ax (a:比例定数) …… (8) 主電極の距離xの位置での発熱密度、つまり電力密度p
1 (x)は、距離x〜x+Δx間の主電極の発熱電力Δ
P1 (x)をその面積w(x)Δxで割れば求められ
る。即ち、 p1(x)=ΔP1(x)/w(x)Δx …… (9) 主電極の発熱電力ΔP1 (x)はx〜x+Δx間の抵抗
をΔR1 (x)とすれば ΔP1(x)=ΔR1(x)I1(x)2 …… (10) 抵抗分ΔR1 (x)は主電極の固有抵抗をρ,厚さをh
とすれば ΔR1(x)=ρ{Δx/w(x)h} …… (11) となる。(9)式に(10),(11),(7),(8)式
を代入すれば p1(x)=ΔR1(x)I1(x)2/w(x)Δx =ρ{Δx/w(x)h}(I0/L)2x2/w(x)Δx =ρI0 2 x2/w(x)2hL2 =ρI0 2 x2/a2x2hL2 =ρI0 2 /a2hL2 上式のI0 に(4)式を代入すれば p1(x)≒ρV2/a2hR3 2L2 …… (12) 上式で表される主電極4,5の発熱密度p1 (x)と、
(6)式で表されるPTC抵抗膜8の発熱密度p3 を等
しい、即ち p1(x)=p3 …… (13) とするためには ρV2/a2hR3 2 L2 =V2/R3A ∴ ha2 =(A/L2)(ρ/R3) …… (14) とすればよいことが分かる。Assuming that the currents of the respective sub-electrodes 6 and 7 are all the same, the current flowing from the sub-electrode to the main electrode (or vice versa) is I 0 / L per unit length of the main electrode. Becomes
Therefore, the current I 1 (x) of the main electrode at the position of the distance x measured along the main electrodes from the ends of the main electrodes 4 and 5 is: I 1 (x) = (I 0 / L) x (7) ). In order to make the heat generation density of the main electrode uniform, the width w
It is necessary to increase (x) in proportion to the distance x to make the current density uniform. Therefore, w (x) = ax (a: proportional constant) (8) Heat generation density at the position of distance x of the main electrode, that is, power density p
1 (x) is the heat generation power Δ of the main electrode between the distances x and x + Δx
It can be obtained by dividing P 1 (x) by its area w (x) Δx. That is, p 1 (x) = ΔP 1 (x) / w (x) Δx (9) The heat generation power ΔP 1 (x) of the main electrode is expressed by assuming that the resistance between x and x + Δx is ΔR 1 (x). ΔP 1 (x) = ΔR 1 (x) I 1 (x) 2 (10) The resistance component ΔR 1 (x) is the resistivity of the main electrode ρ and the thickness h.
Then, ΔR 1 (x) = ρ {Δx / w (x) h} (11) Substituting equations (10), (11), (7), and (8) into equation (9), p 1 (x) = ΔR 1 (x) I 1 (x) 2 / w (x) Δx = ρ {Δx / w (x) h} (I 0 / L) 2 x 2 / w (x) Δx = ρI 0 2 x 2 / w (x) 2 hL 2 = ρI 0 2 x 2 / a 2 x 2 hL 2 = ρI 0 2 / a 2 hL 2 By substituting equation (4) for I 0 in the above equation, p 1 (x) ≈ρV 2 / a 2 hR 3 2 L 2 (12) The heat generation density p 1 (x) of the main electrodes 4 and 5
In order to make the heat generation densities p 3 of the PTC resistance film 8 represented by the formula (6) equal, that is, p 1 (x) = p 3 (13), ρV 2 / a 2 hR 3 2 L 2 = It can be seen that V 2 / R 3 A ∴ ha 2 = (A / L 2 ) (ρ / R 3 ) ... (14)
【0010】ところが銀または銅等の金属粒を熱硬化性
または熱可塑性樹脂に分散させ固化させた従来の主電極
4,5の固有抵抗ρと、カーボン粒と樹脂またはゴムを
主原料とする従来の抵抗膜8の抵抗R3 とでは、図1C
に示すように各々の温度依存性は大きく異なる。そのた
めある1つの温度でha2 を(14)式のように決定して
も、他の温度では(14)式、従って(13)式は成立しな
くなる。However, the specific resistance ρ of the conventional main electrodes 4 and 5 obtained by dispersing and solidifying metal particles such as silver or copper in a thermosetting or thermoplastic resin, and a conventional method using carbon particles and resin or rubber as a main raw material. The resistance R 3 of the resistance film 8 of FIG.
As shown in, each temperature dependence is greatly different. Therefore, even if ha 2 is determined as in equation (14) at one temperature, equation (14), and therefore equation (13), will not hold at other temperatures.
【0011】以上によって、従来の主電極の発熱密度を
抵抗膜の発熱密度に近似することが、ある一点とその近
傍の温度においてしか実現できなかった原因が究明され
た。この発明では、この原因究明の成果を踏まえて、主
電極4,5の固有抵抗の比ρ(T)/ρ(T0 )を抵抗
膜8の抵抗値の比R3 (T)/R3 (T0 )にほゞ等し
く設定する。なおTは温度であり、T0 は基準温度で、
例えば20℃に選ばれる。From the above, the reason why the conventional method of approximating the heat generation density of the main electrode to the heat generation density of the resistance film could be realized only at a certain point and the temperature in the vicinity thereof was clarified. In the present invention, based on the results of the investigation of the cause, the ratio ρ (T) / ρ (T 0 ) of the specific resistances of the main electrodes 4 and 5 is changed to the ratio R 3 (T) / R 3 of the resistance values of the resistance film 8. Set approximately equal to (T 0 ). Note that T is the temperature, T 0 is the reference temperature,
For example, 20 ° C is selected.
【0012】そのため、PTC抵抗膜8が、カーボン粒
子と、熱膨張係数が大きく、常温より少し高い温度で変
態する樹脂或いはゴムとの混合物であることを考慮し
て、主電極についても、銀または銅粒子とPTC抵抗膜
に用いるのと同様な樹脂或いはゴムを用いて作製する。
例えば、銀フレークにエチレンビニールアセテート共重
合樹脂やシリコンゴム粒子等を混合し、溶媒でとかした
インクで主電極及び副電極をスクリーン印刷し、加熱焼
成する。従って主電極についても図1Cのρ′(T)/
ρ′(20℃)=f1 ′(T)のように広い温度範囲
(例えば−30〜100℃)においてPTC抵抗膜のR
3 (T)/R3 (20℃)=f3 (T)とほゞ同じ特性
の、正の大きな温度係数が付与される。Therefore, considering that the PTC resistance film 8 is a mixture of carbon particles and a resin or rubber having a large coefficient of thermal expansion and transforming at a temperature slightly higher than room temperature, silver or silver is also used for the main electrode. It is manufactured using the same resin or rubber as that used for the copper particles and the PTC resistance film.
For example, silver flake is mixed with ethylene vinyl acetate copolymer resin, silicon rubber particles, and the like, and the main electrode and the sub electrode are screen-printed with an ink melted with a solvent and heated and baked. Therefore, also for the main electrode, ρ ′ (T) / in FIG. 1C
R of the PTC resistance film in a wide temperature range (for example, -30 to 100 ° C) such as ρ '(20 ° C) = f 1 ' (T).
A large positive temperature coefficient having substantially the same characteristics as 3 (T) / R 3 (20 ° C.) = F 3 (T) is given.
【0013】所定の広い温度範囲(例えば−30〜10
0°C)において、 f1′(T)=ρ′(T)/ρ′(20℃)≒f3(T)=R3(T)/R3(20℃) …… (15) となるように、主電極の固有抵抗ρ(T)をρ′(T)
に設定すれば、(14)式は広い温度範囲において、 ha2 =(A/L2){ρ′(T)/R3(T)} =(A/L2){f1′(T)ρ′(20℃)/f3(T)R3(20℃)} ≒(A/L2){ρ′(20℃)/R3(20℃)}=一定 …… (16) となり、主電極の発熱密度p1 (x)は確かに、広い温
度範囲においてPTC抵抗膜8の発熱密度p3 にほゞ等
しくなる。A predetermined wide temperature range (for example, -30 to 10)
At 0 ° C, f 1 ′ (T) = ρ ′ (T) / ρ ′ (20 ° C.) ≈f 3 (T) = R 3 (T) / R 3 (20 ° C.) (15) So that the specific resistance ρ (T) of the main electrode is ρ ′ (T)
(14) is set in a wide temperature range, ha 2 = (A / L 2 ) {ρ ′ (T) / R 3 (T)} = (A / L 2 ) {f 1 ′ (T ) Ρ '(20 ° C) / f 3 (T) R 3 (20 ° C)} ≒ (A / L 2 ) {ρ' (20 ° C) / R 3 (20 ° C)} = constant …… (16) Indeed, the heat generation density p 1 (x) of the main electrode is almost equal to the heat generation density p 3 of the PTC resistance film 8 in a wide temperature range.
【0014】なお、PTC抵抗膜8がM×Lの矩形状で
ある場合には、前述したように主電極の幅は (8)式のw
(x)=axとなるが、他の例えば楕円等では、幅w
(x)はxに対し非線形となる。When the PTC resistance film 8 has an M × L rectangular shape, the width of the main electrode is w in the formula (8) as described above.
(X) = ax, but for other ellipses, the width w
(X) is non-linear with respect to x.
【0015】[0015]
【発明の効果】この発明によれば所定の広い温度範囲に
亘って、主電極領域の発熱密度をPTC抵抗膜領域の発
熱密度にほゞ等しくすることができるので、面状発熱体
の周辺を含めて面全体を一様な温度上昇にすることがで
きる。According to the present invention, the heat generation density of the main electrode region can be made substantially equal to the heat generation density of the PTC resistance film region over a predetermined wide temperature range. It is possible to raise the temperature uniformly on the entire surface including the surface.
【図1】Aは面状発熱体の一例を示す平面図、BはAの
各部の寸法を示す平面図、CはBのPTC抵抗膜の抵抗
値R3 (T)及び主電極の固有抵抗ρ(T)の温度特性
を示す図。FIG. 1A is a plan view showing an example of a planar heating element, B is a plan view showing dimensions of each part of A, and C is a resistance value R 3 (T) of a PTC resistance film of B and a specific resistance of a main electrode. The figure which shows the temperature characteristic of (rho) (T).
Claims (1)
2主電極が形成され、それら第1,第2主電極より櫛歯
状の第1,第2副電極がそれぞれ導出され、それら第1
(第2)副電極は隣接する第2(第1)副電極の中間に
挟まれて互いに対向して配され、それら第1,第2副電
極の間に抵抗膜が一様に形成されて成る面状発熱体にお
いて、 所定の温度範囲に亘って、前記第1,第2主電極の温度
Tにおける固有抵抗ρ(T)の基準温度T0 における固
有抵抗ρ(T0 )に対する比ρ(T)/ρ(T 0 )を、
前記第1,第2副電極間の前記抵抗膜の温度Tにおける
抵抗値R3 (T)の基準温度T0 における抵抗値R
3 (T0 )に対する比R3 (T)/R3 (T 0 )にほゞ
等しくしたことを特徴とする面状発熱体。1. A first and a second shape having a shape facing each other on an insulating substrate.
Two main electrodes are formed, and comb teeth are formed from the first and second main electrodes.
-Shaped first and second sub-electrodes are respectively led out,
The (second) sub-electrode is placed in the middle of the adjacent second (first) sub-electrode.
They are sandwiched and are arranged to face each other.
A sheet-like heating element with a resistive film uniformly formed between the electrodes
The temperature of the first and second main electrodes over a predetermined temperature range.
Reference temperature T of specific resistance ρ (T) at T0Solid in
Resistive ρ (T0) Ratio ρ (T) / ρ (T 0),
At the temperature T of the resistive film between the first and second sub-electrodes
Resistance value R3(T) reference temperature T0Resistance value at
3(T0) To R3(T) / R3(T 0) Niho
A sheet heating element characterized by equalization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4315237A JPH06163145A (en) | 1992-11-25 | 1992-11-25 | Surface-shaped heating unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4315237A JPH06163145A (en) | 1992-11-25 | 1992-11-25 | Surface-shaped heating unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06163145A true JPH06163145A (en) | 1994-06-10 |
Family
ID=18063033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4315237A Pending JPH06163145A (en) | 1992-11-25 | 1992-11-25 | Surface-shaped heating unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06163145A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102536A1 (en) * | 2020-11-11 | 2022-05-19 | リンテック株式会社 | Wiring sheet and sheet-form heater |
-
1992
- 1992-11-25 JP JP4315237A patent/JPH06163145A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102536A1 (en) * | 2020-11-11 | 2022-05-19 | リンテック株式会社 | Wiring sheet and sheet-form heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4882466A (en) | Electrical devices comprising conductive polymers | |
EP0417097B1 (en) | Heating element and method for making such a heating element | |
CA1233911A (en) | Laminar conductive polymer devices | |
JPS5952521B2 (en) | electrical resistance device | |
JPH06163145A (en) | Surface-shaped heating unit | |
JP2503729B2 (en) | Planar heating element | |
JPH05217711A (en) | Ptc composition | |
EP0176284B1 (en) | Electrical contact between metals of different resistivities | |
JP2852778B2 (en) | Heat-sensitive electrical resistance composition | |
JP2531025B2 (en) | Planar heating element | |
JP3140883B2 (en) | Panel heater using PTC | |
JP3049843B2 (en) | Method of forming resistor electrode structure | |
JP3817488B2 (en) | Composite heating element and design method thereof | |
JPS60184836A (en) | Laminated conductive polymer device | |
JPH0286087A (en) | Polymer ptc element | |
JPH0646073Y2 (en) | Sheet heating element | |
JPH02148681A (en) | Positive resistance-temperature coefficient heater | |
JPH0439901A (en) | Sheet material for organic positive temperature coefficient thermistor | |
JPH04353176A (en) | Surface type heating unit | |
JPH06203946A (en) | Flat heater element | |
JP3006272B2 (en) | Planar heating element | |
JPH10241835A (en) | Planaer heating element | |
JPS63308887A (en) | Heating element | |
JP2004014286A (en) | Heating element | |
JPH0746628B2 (en) | Positive resistance temperature coefficient heating element |