JPH06157158A - Production of hollow carbonaceous spherical body - Google Patents

Production of hollow carbonaceous spherical body

Info

Publication number
JPH06157158A
JPH06157158A JP4335597A JP33559792A JPH06157158A JP H06157158 A JPH06157158 A JP H06157158A JP 4335597 A JP4335597 A JP 4335597A JP 33559792 A JP33559792 A JP 33559792A JP H06157158 A JPH06157158 A JP H06157158A
Authority
JP
Japan
Prior art keywords
pitch
iodine
powder
hollow
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4335597A
Other languages
Japanese (ja)
Other versions
JPH0742177B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Keiko Nishikubo
桂子 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4335597A priority Critical patent/JPH0742177B2/en
Publication of JPH06157158A publication Critical patent/JPH06157158A/en
Publication of JPH0742177B2 publication Critical patent/JPH0742177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a hollow carbonaceous spherical body of light weight excel lent in heat resistance and chemical resistance by allowing a pitch powder having specified softening point and size to adsorb a specified amt. of iodine in an iodine vapor and then treating the powder by heating at specified temp. CONSTITUTION:A pitch powder having 150-300 deg.C softening point and 005-1mm particle diameter is prepared. Then the powder is treated to adsorb 80-250wt.% iodine as the weight increase in an iodine vapor at 80-130 deg.C, and then treated by heating at >=400 deg.C. By this method, first, the surface of pitch particles is hardened, and then the inner pitch which is not hardened is melted by heating. Then the powder is foamed by the gas component produced in the pitch to obtain a hollow carbonaceous spherical powder. The obtd. hollow carbonaceous spherical powder can be used as a light-weight filler or activated to be used as a hollow activated carbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重質瀝青物であるピッチ
類粉末をヨー素で処理した後,熱処理することによっ
て,軽量,耐熱性,耐薬品性を有する中空炭素球状体を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing hollow carbon spheres having light weight, heat resistance and chemical resistance by treating pitch-type powder, which is a heavy bituminous material, with iodine and then heat-treating it. It is about.

【0002】[0002]

【従来の技術】一般の炭素材料は軽量かつ耐熱性であ
り,弾性率,高温強度が高い特性を有するため工業的基
礎材料の1つとして多方面で使用されている。さらに軽
量な炭素材料としてはカーボンフォーム,多孔質炭素,
中空炭素球等がある。
2. Description of the Related Art A general carbon material is lightweight and heat resistant, and is used in various fields as one of industrial basic materials because it has characteristics of high elastic modulus and high temperature strength. Further lightweight carbon materials include carbon foam, porous carbon,
There are hollow carbon spheres and the like.

【0003】カーボンフォームはポリウレタンやフェノ
ール樹脂を発泡,硬化させた後,焼成するか,中空炭素
球をバインダーで成形,焼成することによって製造され
ている(例えば,USP3302999,稲田ほか,
「炭素」,No.69,36頁,1972年)。これらは
かさ密度が0.5g/cm3程度のブロック状のもので
ある。多孔質炭素は活性炭が代表的なものであるが,活
性炭のような数nm以下の吸着機能を有する細孔を持つ
ものではなく,さらに大きな孔を有する粒状体がある。
これはピッチ,炭素質メソフェース等の炭素質材料粉末
にニトロ基を導入し,300℃以上の温度で加熱,発泡
させたもので,充填密度が0.1−0.5g/cm3
あり,これに圧縮荷重を加えて体積を大きく変えても荷
重を除くことにより元の体積に戻るいわゆる弾性回復能
を有する弾性体である(特開昭63−139080号公
報)。中空炭素球としては中空フェノール樹脂球を焼成
して製造するもの。発泡剤を加えた特定性状のピッチを
急速加熱して溶融,噴霧して中空球とし,焼成して製造
される(天城,「Materials」,16巻,31
5頁,1971年)。これは粒径約75−250μmの
真球に近いかさ密度0.1−0.3g/cm3のもので
ある。さらに,発泡ポリスチレン球を芯材とし,この球
の表面に石炭粉末を造粒によって付着させた後,焼成し
てポリスチレン球を分解,除去する炭素中空球の製造方
法も提案されている(小林他,「炭素」,No.72,
25頁,1973年)。これは球の外径0.7−12m
m,かさ密度0.4−0.5g/cm3のものである。
Carbon foam is produced by foaming and curing polyurethane or phenol resin and then firing or molding hollow carbon spheres with a binder and firing (for example, USP 3302999, Inada et al.,
"Carbon", No. 69, p. 36, 1972). These are block-shaped with a bulk density of about 0.5 g / cm 3 . Activated carbon is a typical example of porous carbon, but it does not have pores having an adsorption function of several nm or less as in activated carbon, but there are granular bodies having larger pores.
This is a product in which a nitro group is introduced into carbonaceous material powder such as pitch and carbonaceous mesophase, which is heated and foamed at a temperature of 300 ° C. or higher, and the packing density is 0.1-0.5 g / cm 3 , This is an elastic body having a so-called elastic recovery ability that returns to the original volume by removing the load even if the volume is largely changed by applying a compressive load (Japanese Patent Laid-Open No. 63-139080). Hollow carbon spheres are produced by firing hollow phenolic resin spheres. It is manufactured by rapidly heating, melting, and spraying a pitch with a specific property to which a foaming agent has been added to form hollow spheres, and then firing (Amagi, "Materials", Vol. 16, 31).
P. 5, 1971). This has a bulk density of 0.1-0.3 g / cm 3 close to a true sphere having a particle size of about 75-250 μm. Further, a method for producing hollow carbon spheres has been proposed in which expanded polystyrene spheres are used as a core material, coal powder is attached to the surface of the spheres by granulation, and then the polystyrene spheres are decomposed and removed by firing (Kobayashi et al. , "Carbon", No. 72,
25, 1973). This is the outer diameter of the sphere 0.7-12m
m, bulk density 0.4-0.5 g / cm 3 .

【0004】[0004]

【発明が解決しようとする課題】このように,多泡質炭
素や炭素中空球の製造にはいくつかの方法が提案されて
いるが,本発の方法はこれらの方法とは異なる考えに基
づいた新しい方法を提案するものである。すなわち,特
開昭63−139080号の発明では導入したニトロ基
が分解するとき,発生する熱とガスによって発泡させる
ものであり,天城の方法は特定の性状を持つピッチを急
速加熱による溶融と噴霧による球形化,発泡剤から発生
するガスによって発泡させるものであり,さらに,小林
らの方法は熱分解によって容易に除去されるものを芯材
に使用するものである。これに対して,本発明の方法は
ピッチ粒子表面を硬化させ,加熱することによって内部
の未硬化ピッチが溶融すると共に,それから発生するガ
ス成分によって発泡させるものである。
As described above, several methods have been proposed for producing multi-cellular carbon and hollow carbon spheres, but the method of the present invention is based on an idea different from these methods. It proposes a new method. That is, in the invention of Japanese Patent Laid-Open No. 63-139080, when the introduced nitro group is decomposed, it is foamed by the heat and gas generated. Amagi's method melts and sprays a pitch having a specific property by rapid heating. Spheroidizing by means of spheroidizing, foaming by the gas generated from the blowing agent, and the method of Kobayashi et al. Uses a core material that is easily removed by thermal decomposition. On the other hand, in the method of the present invention, the surface of the pitch particles is hardened and the uncured pitch inside is melted by heating and foamed by the gas component generated therefrom.

【0005】したがって,本発明の第1の目的は上記の
新しい中空の炭素球状体を製造方法を提案することにあ
り,第2の目的は天城の方法に見られるような特定の性
状のピッチから炭素中空体を製造するのではなく,軟化
点を有する通常のピッチを用いることが出来る方法を提
案することにある。
Therefore, a first object of the present invention is to propose a method for producing the above new hollow carbon sphere, and a second object is to obtain a pitch having a specific property as seen in the Amagi method. It is to propose a method that can use an ordinary pitch having a softening point, instead of producing a hollow carbon body.

【0006】[0006]

【問題を解決するための手段】本発明の方法は重質瀝青
物であるピッチを適当な粒度に粉砕し,これをヨー素蒸
気中で処理した後,必要ならば吸着しているヨー素を回
収し,ついで,400℃以上の温度で熱処理することに
よって中空の炭素球状体を製造するものである。
According to the method of the present invention, heavy bituminous pitch is crushed to an appropriate particle size, treated with iodine vapor, and if necessary, adsorbed iodine is removed. The hollow carbon spheres are produced by recovering and then heat treating at a temperature of 400 ° C. or higher.

【0007】重質瀝青物であるピッチは石炭系,石油系
のいずれでも用いることが出来る。例えば,石炭系では
コールタールピッチであり,石油系では原油の蒸留残渣
油,FCCデンカントオイル,ナフサタールの重質瀝青
物を熱処理によってピッチとしたものが挙げられる。こ
れらのピッチの軟化点は150−350℃,望ましくは
150−300℃である。それは,適当な粒度に粉砕し
たピッチをヨー素蒸気中で処理したとき,この処理温度
よりも少なくとも50℃以上高くないと,処理中に溶融
するためである。しかし,軟化点が300℃以上と高く
なると,ヨー素処理後の熱処理によって球形化させるた
めのヨー素蒸気中での処理条件の設定が非常に困難とな
り,処理条件がゆるやかであると粒子は融着し,それよ
りわずかに条件を厳しくすると発泡せず,形状が変化し
ないものとなる。350℃以上になるとヨー素処理をわ
ずかに行っても溶融しないものに変化し,球形化は不可
能に近い。さらに,塊状であるピッチは粉砕して粒度を
調整するが,この粒度は0.05−1mmの範囲が望ま
しい。これより小さくなると,ヨー素の処理条件の設定
が非常に困難となる。すなわち,処理条件がゆるやかで
あると熱処理時に溶融するし,それよりわずかに条件を
厳しくすると全く溶融しなくなりピッチ全体が硬化し,
発泡しなくなる。また,粒子が1mm以上と大きくなる
と,発泡しても球状ではなく,いも虫状の,しかも孔の
多いものとなり,中空球体とはいえないものとなる。
Pitch, which is a heavy bituminous material, can be used in either coal-based or petroleum-based pitch. For example, coal-based pitch is coal tar, and petroleum-based pitch is obtained by heat treatment of distillation residue oil of crude oil, FCC dencant oil, and heavy bituminous product of naphtha tar. The softening point of these pitches is 150-350 ° C, preferably 150-300 ° C. This is because when the pitch crushed to an appropriate grain size is treated in iodine vapor, it will melt during the treatment unless it is at least 50 ° C. higher than the treatment temperature. However, when the softening point becomes higher than 300 ° C, it becomes very difficult to set the treatment conditions in the iodine vapor for spheroidizing by the heat treatment after the iodine treatment, and if the treatment conditions are gentle, the particles will melt. If you wear it and make the conditions slightly stricter than that, it will not foam and the shape will not change. At 350 ° C or higher, even if a small amount of iodine treatment is performed, it changes to one that does not melt, and spheroidization is almost impossible. Furthermore, the pitch which is a lump is crushed to adjust the particle size, and the particle size is preferably in the range of 0.05-1 mm. Below this value, it becomes very difficult to set the processing conditions for iodine. In other words, if the treatment conditions are mild, it will melt during heat treatment, and if the conditions are made slightly stricter than that, it will not melt at all and the entire pitch will harden,
No foaming. Further, when the particles become large as 1 mm or more, even if they are foamed, they are not spherical, but are worm-like and have many pores, so that they cannot be said to be hollow spheres.

【0008】粒度を調製したピッチはヨー素中で処理す
る。この処理にはヨー素蒸気中での処理する気相法と
水,低級アルコール,ヘキサン等の炭化水素にヨー素を
溶解させ,その中にピッチを入れて処理する液相法があ
る。しかし,本発明では液相法は用いることが出来な
い。それはピッチ中に球形化に必要なヨー素量を吸着さ
せることが出来ないためである。ヨー素蒸気中での処理
はヨー素は融点113℃,沸点184.5℃の蒸気圧の
高い物質であるので,ヨー素結晶を加熱して蒸気を発生
させ,この蒸気中にピッチを置き吸着させる。具体的に
はヨー素蒸気中での処理ではヨー素は腐食性が強いの
で,蓋のあるガラス製容器にヨー素を入れ,ピッチを入
れた蓋のないガラス製容器をその上に置き,あらかじめ
所定の温度に加熱した炉中で所定時間放置する。この処
理によってヨー素はピッチに吸着され,その量は重量増
加として示される。この吸着量はピッチの種類,軟化点
および粒度によって異なるが,約80−250%の範囲
である。この量より少ないと,次の熱処理時に溶融し,
塊状物となる。また,多くなると粒子全体が硬化し,中
空体とはならない。
The grain-sized pitch is treated in iodine. This treatment includes a vapor phase method of treating in iodine vapor and a liquid phase method of dissolving iodine in a hydrocarbon such as water, lower alcohol and hexane, and putting pitch in the solution to treat. However, the liquid phase method cannot be used in the present invention. This is because it is not possible to adsorb the amount of iodine required for spheroidization in the pitch. Iodine is a substance with a high vapor pressure of 113 ° C and a boiling point of 184.5 ° C. Therefore, iodine crystals are heated to generate vapor, and a pitch is placed in the vapor for adsorption. Let Specifically, since iodine is highly corrosive when treated in iodine vapor, put iodine in a glass container with a lid and place a pitched glass container without a lid on it. It is left for a predetermined time in a furnace heated to a predetermined temperature. This treatment causes iodine to be adsorbed on the pitch, the amount of which is shown as an increase in weight. This amount of adsorption varies depending on the type of pitch, softening point and grain size, but is in the range of about 80-250%. If it is less than this amount, it will melt during the next heat treatment,
It becomes a lump. Also, when the number of particles increases, the entire particles harden and do not become hollow bodies.

【0009】このようにしてヨー素処理したピッチは少
なくともピッチの軟化点以上の温度で熱処理する。好ま
しくは400℃以上の温度で熱処理する。中空球状体に
なるための最低温度は昇温速度に影響されるようであ
る。すなわち,昇温速度が遅いと低い温度が,急速であ
ると高い温度が必要である。さらに,この熱処理によっ
て吸着したヨー素は大部分ガスとして排出されるので,
回収することが出来る。また,吸着したヨー素を回収す
るためにヨー素処理したピッチからあらかじめ前処理に
よってヨー素を除去した後,熱処理を行ってもよい。こ
の場合にはヨー素処理したピッチを常圧または減圧下で
ピッチの軟化点以下の温度で加熱するかあるいはヨー素
の良溶剤である低級アルコール等の有機溶剤や水に入れ
て溶解させる。このヨー素を除去する前処理を行っても
中空化には何等影響を与えない。
The pitch thus iodine-treated is heat-treated at a temperature of at least the softening point of the pitch. Heat treatment is preferably performed at a temperature of 400 ° C. or higher. The minimum temperature for forming a hollow sphere seems to be affected by the heating rate. That is, a low temperature rise requires a low temperature and a rapid temperature rise requires a high temperature. Furthermore, most of the iodine adsorbed by this heat treatment is discharged as gas,
Can be collected. Further, in order to collect the adsorbed iodine, the heat treatment may be performed after the iodine is removed from the pitch subjected to the iodine treatment by the pretreatment in advance. In this case, the iodine-treated pitch is heated under normal pressure or reduced pressure at a temperature not higher than the softening point of the pitch, or is put in an organic solvent such as a lower alcohol which is a good solvent for iodine, or water to be dissolved. The pretreatment for removing the iodine does not affect the hollowing.

【0010】このようにして得られた中空球状体は熱処
理温度が約500℃以下のものは未だ水素を含有する炭
化水素である。これを炭素にするには800℃以上に加
熱する必要があり,さらに,2000℃以上の加熱処理
で黒鉛球状体となる。この熱処理によって形状に特に変
化はない。なお,炭素材では約1500℃以下の温度で
焼成したものを炭素質,約2000℃以上で焼成したも
のを黒鉛質と呼称しているが,本発明では炭化水素より
構成される中空球体から黒鉛質のそれまで総称して炭素
質と呼ぶ。
In the hollow spheres thus obtained, those having a heat treatment temperature of about 500 ° C. or lower are hydrocarbons containing hydrogen. In order to turn this into carbon, it is necessary to heat it to 800 ° C. or higher, and further it becomes a graphite spherical body by a heat treatment at 2000 ° C. or higher. There is no particular change in shape due to this heat treatment. In the case of a carbon material, what is calcined at a temperature of about 1500 ° C. or lower is called carbonaceous matter, and that which is calcined at about 2000 ° C. or higher is called graphite. In the present invention, hollow spheres composed of hydrocarbons are referred to as graphite. The quality up to that point is collectively called carbonaceous.

【0011】得られる中空炭素質球状体は用いたピッチ
の粒度よりわずかに大きいものであり,重量と最密充填
したときの体積から求めた充填密度は0.3−0.6
(g/cm3)である。この球状体の壁を構成する組織
はピッチのそれと同じである。すなわち,光学的に異方
性な炭素質メソフェースを含有するピッチ(メソフェー
スピッチ)では球の表面に平行に炭素層面が配列した異
方性組織であり,光学的に等方性なピッチを用いた場合
には特に明確な配列を示さない光学的等方性組織とな
る。したがってピッチの組織によって中空球状体のそれ
を決めることが出来る。
The hollow carbonaceous spheres obtained were slightly larger than the grain size of the pitch used, and the packing density obtained from the weight and the volume when the packing was closest packed was 0.3-0.6.
(G / cm 3 ). The organization of the walls of this spheroid is the same as that of the pitch. That is, a pitch containing an optically anisotropic carbonaceous mesophase (mesoface pitch) is an anisotropic structure in which carbon layer surfaces are arranged parallel to the surface of a sphere, and an optically isotropic pitch is used. If it is present, it becomes an optically isotropic tissue that does not show a particularly clear arrangement. Therefore, that of the hollow sphere can be determined by the structure of the pitch.

【0012】[0012]

【実施例】以下,本発明の方法を実施例によってさらに
詳細に説明する。
EXAMPLES The method of the present invention will be described in more detail below with reference to examples.

【0013】実施例1 フリーカーボンをキノリン不溶成分として除去したキノ
リン可溶コールターピッチ300gを500mlの3口
円筒形フラスコに入れた。中央孔にフラスコ底に達する
ガラス管を差込み,側孔に温度計と分解生成物溜出管を
取り付けた。中央孔の管から窒素ガスを毎分2L吹き込
みながら,430℃で30分間熱処理した。得られたピ
ッチは軟化点231℃であり,偏光顕微鏡による組織観
察から光学的等方性であった。このピッチを粉砕し,フ
ルイで1.19−0.71mm(以下,この粒度のもの
を粒度Aで表す。),0.71−0.25mm(同粒度
B),0.25−0.105mm(同粒度C),0.1
05−0.053mm(同粒度D)および0.053m
m以下(同粒度E)に分けた。
Example 1 300 g of quinoline-soluble Coulter pitch from which free carbon was removed as a quinoline-insoluble component was placed in a 500-ml three-necked cylindrical flask. A glass tube reaching the bottom of the flask was inserted into the central hole, and a thermometer and a decomposition product distillation tube were attached to the side hole. Heat treatment was carried out at 430 ° C. for 30 minutes while blowing 2 L of nitrogen gas per minute from the tube having the central hole. The obtained pitch had a softening point of 231 ° C. and was optically isotropic from the observation of the structure with a polarization microscope. This pitch was crushed and sieved to 1.19-0.71 mm (hereinafter, this grain size is represented by grain size A), 0.71-0.25 mm (same grain size B), 0.25-0.105 mm. (Same grain size C), 0.1
05-0.053mm (same particle size D) and 0.053m
It was divided into m or less (same particle size E).

【0014】これらのピッチ粒子を内径20mm,高さ
50mmのガラス瓶に1g入れた。ヨー素粉末を入れた
内容積500mlのガラス製試薬瓶にピッチを入れた蓋
をしていないガラス瓶を置き,試薬瓶の蓋をした後,あ
らかじめ120℃に加熱した恒温炉に入れ,1−8時間
処理した。この処理過程で時々ピッチを入れた瓶を振動
させてピッチの攪拌を行った。ヨー素処理したピッチを
磁性皿に入れ,管状炉中,窒素ガスを流しながら毎分1
0℃の昇温速度で1000℃まで加熱し,30分間保持
して熱処理した。このようにして得られたものを走査型
電子顕微鏡(SEM)で形状を観察すると共に樹脂に埋
め込んで研磨し,断面を顕微鏡で観察した。さらに,5
mlのメスフラスコに炭素化物1gを入れ,その高さか
ら体積を測定して充填密度を求めた。得られた結果をま
とめて表1に示す。なお,炭素化処理の収率は原料ピッ
チに対する割合である。なお,表1の実験No.1,2,3,9,1
0および12は比較例である。
1 g of these pitch particles was placed in a glass bottle having an inner diameter of 20 mm and a height of 50 mm. Place a glass bottle with a pitch and without a lid in a glass reagent bottle with an internal volume of 500 ml containing iodine powder, put the lid on the reagent bottle, and then put it in a constant temperature oven preheated to 120 ° C., 1-8 Time processed. During the process, the bottle containing the pitch was sometimes vibrated to stir the pitch. Put the iodine-treated pitch in a magnetic dish and in a tubular furnace, while flowing nitrogen gas, 1 per minute
It was heated to 1000 ° C. at a temperature rising rate of 0 ° C. and kept for 30 minutes for heat treatment. The shape of the thus-obtained material was observed with a scanning electron microscope (SEM), embedded in a resin and polished, and the cross section was observed with a microscope. Furthermore, 5
1 g of carbonized product was placed in a ml volumetric flask, and the volume was measured from the height to obtain the packing density. The obtained results are summarized in Table 1. The yield of carbonization is the ratio to the raw material pitch. In addition, Experiment No. 1, 2, 3, 9, 1 in Table 1
0 and 12 are comparative examples.

【0015】[0015]

【表1】 [Table 1]

【0016】球状物の走査型電子顕微鏡(SEM)で観
察したところ球状であり,また,この球状物を樹脂に埋
め込み,研磨した後,反射偏光顕微鏡で観察したとこ
ろ,壁の厚さは約30μmであり,その組織は等方性で
あった。
The sphere was spherical when observed with a scanning electron microscope (SEM), and when the sphere was embedded in resin and polished, and then observed with a reflection polarization microscope, the wall thickness was about 30 μm. And the organization was isotropic.

【0017】実施例2 実施例1で用いたコールタールピッチを実施例1と同様
にして430℃,120分間熱処理した。得られたピッ
チは軟化点288℃であり,その組織観察から大部分光
学的異方性であり,その異方性量は98%であった。こ
のピッチを粉砕し,実施例1と同様にしてヨー素処理を
行った後,1000℃で炭素化した。このようにして得
られた炭素化物の形状および充填密度をまとめて表2に
示す。なお,表2の実験No.16-19,23,25,30,33および36
は比較例である。
Example 2 The coal tar pitch used in Example 1 was heat-treated in the same manner as in Example 1 at 430 ° C. for 120 minutes. The obtained pitch had a softening point of 288 ° C., and from the observation of its structure, it was mostly optical anisotropy, and the amount of anisotropy was 98%. The pitch was crushed, treated with iodine in the same manner as in Example 1, and then carbonized at 1000 ° C. The shape and packing density of the carbonized product thus obtained are summarized in Table 2. Experiment Nos. 16-19, 23, 25, 30, 33 and 36 of Table 2
Is a comparative example.

【0018】[0018]

【表2】 [Table 2]

【0019】 これらの球状物をSEMで形状を観察し
たところ球状であった。その代表的なものとして表2の
実験No.27の球状体を図1に示す。また,これを樹脂に
埋め込み,研磨して反射偏光顕微鏡で観察したところ,
図2に示したように,中空であり,壁の厚さは約40μ
mであり,かつ,その組織は炭素層面が壁に対して平行
に配列した光学的異方性であった。
When the shape of these spherical objects was observed by SEM, they were spherical. As a typical example, the spherical body of Experiment No. 27 in Table 2 is shown in FIG. Also, when this was embedded in resin, polished, and observed with a reflection polarization microscope,
As shown in Fig. 2, it is hollow and the wall thickness is about 40μ.
m and the texture was optical anisotropy with the carbon layer planes arranged parallel to the walls.

【0020】実施例3 実施例1および2で用いたピッチの粒度B(0.25−
0.71mm)のものを実施例1のピッチでは120
℃,3時間,実施例2のピッチでは120℃,1時間ヨ
ー素蒸気中で処理した。ついで,吸着したヨー素を回収
するために減圧処理とエタノール抽出処理を行った。減
圧処理は0.1Torrの減圧下,50℃,15時間脱
気処理した。エタノール抽出処理は約200倍量のエタ
ノール中にヨー素処理ピッチを入れ,攪拌しながら27
℃,20時間放置した後,ガラスフィルターでろ過し,
エタノールで着色しなくなるまで洗浄した後乾燥した。
これらのピッチ粉末を実施例1と同様にして1000
℃,30分間熱処理した。得られた結果をまとめて表3
に示す。なお,収率は用いた原料ピッチに対する割合で
ある。熱処理物をSEMと反射偏光顕微鏡で形状,組織
を調べたが,ヨー素回収処理を施さなかった場合と同様
であった。
Example 3 The pitch grain size B (0.25- used in Examples 1 and 2)
0.71 mm) is 120 at the pitch of Example 1.
It was treated in iodine vapor for 3 hours at 120 ° C. for 1 hour at the pitch of Example 2. Next, decompression treatment and ethanol extraction treatment were performed to recover the adsorbed iodine. The depressurization treatment was performed under a reduced pressure of 0.1 Torr at 50 ° C. for 15 hours. For the ethanol extraction treatment, put the iodine-treated pitch in about 200 times the volume of ethanol and stir it with stirring.
After standing at ℃ for 20 hours, filter with a glass filter,
It was washed with ethanol until it was not colored, and then dried.
These pitch powders were treated with 1000 in the same manner as in Example 1.
Heat treatment was performed at 30 ° C. for 30 minutes. The results obtained are summarized in Table 3
Shown in. The yield is the ratio to the raw material pitch used. The shape and structure of the heat-treated product were examined with an SEM and a reflection polarization microscope, and it was the same as when the iodine recovery treatment was not performed.

【0021】さらに,減圧下で脱気処理したピッチを昇
温速度および最高温度を変えて熱処理した後,充填密度
を測定した。得られた結果を表4にまとめて示したが,
収率は用いた原料ピッチに対する割合である。なお,表
4の実験No.41,44,45,47,48および52は比較例である。
Further, the pitch degassed under reduced pressure was heat-treated while changing the heating rate and the maximum temperature, and then the packing density was measured. The results obtained are summarized in Table 4,
The yield is a ratio with respect to the raw material pitch used. The experiments Nos. 41, 44, 45, 47, 48 and 52 in Table 4 are comparative examples.

【0022】[0022]

【表4】 [Table 4]

【0023】表4の結果から,充填密度の低い球状体を
得るには低速の昇温速度で400℃以上で熱処理する
か,急速昇温では温度を高くする必要のあることが分か
る。さらに,400℃で得た実験No.50の球状体を元素
分析したところ,炭素含有量94.3%,水素含有量
2.3%,窒素含有量0.3%であり,この球状体は炭
化水素であった。
From the results shown in Table 4, it is understood that in order to obtain spherical bodies having a low packing density, it is necessary to perform heat treatment at a slow heating rate at 400 ° C. or higher, or to raise the temperature for rapid heating. Furthermore, elemental analysis of the spherical body of Experiment No. 50 obtained at 400 ° C. showed that the carbon content was 94.3%, the hydrogen content was 2.3%, and the nitrogen content was 0.3%. It was a hydrocarbon.

【0024】さらに,表3の脱気処理後,1000℃で
熱処理した球状物(実験NO.37,39)をタンマン炉でアル
ゴンガス気流中,1500,2000および2800℃
で60分間保持して処理した。得られた球状体の形状を
SEMで,反射偏光顕微鏡で組織を観察したところ10
00℃処理のものとほぼ同様であった。表5に収率およ
び充填密度を示す。なお,収率は原料ピッチに対する割
合である。
Furthermore, after the degassing treatment in Table 3, the spherical particles (experiment No. 37, 39) heat-treated at 1000 ° C. were placed in a Tammann furnace in an argon gas stream at 1500, 2000 and 2800 ° C.
And held for 60 minutes for processing. The shape of the obtained spherical body was observed by SEM and the structure was observed by a reflection polarization microscope.
It was almost the same as that of the treatment at 00 ° C. Table 5 shows the yield and packing density. The yield is the ratio to the raw material pitch.

【0025】[0025]

【表5】 [Table 5]

【0026】比較例1 軟化点77℃のコールタールピッチ300gを500m
lの円筒形フラスコに入れ,窒素ガス気流中,攪拌しな
がら430℃で3.5時間熱処理し,軟化点368℃の
ピッチを得た。このピッチを0.25−0.71mmに
粉砕し,80℃のヨー素蒸気中で1時間処理した。この
ものの収率は160.6(wt%)であった。これを昇
温速度10℃/minで1000℃まで熱処理したとこ
ろ形状が変化しない炭素粉末となった。そこで,80℃
でのヨー素処理時間を10および30分とし,収率はそ
れぞれ121.3および142.6wt%のヨー素処理
物を得た。これを上記と同様にして1000℃まで熱処
理したが,同様に不融であった。
Comparative Example 1 300 g of coal tar pitch having a softening point of 77 ° C. is 500 m
It was put in a cylindrical flask of 1 l and heat-treated at 430 ° C. for 3.5 hours while stirring in a nitrogen gas stream to obtain a pitch having a softening point of 368 ° C. The pitch was crushed to 0.25 to 0.71 mm and treated in iodine vapor at 80 ° C. for 1 hour. The yield of this product was 160.6 (wt%). When this was heat-treated at a temperature rising rate of 10 ° C / min to 1000 ° C, a carbon powder whose shape did not change was obtained. Therefore, 80 ℃
The iodine treatment time was 10 and 30 minutes, and yields of 121.3 and 142.6 wt% iodine-treated products were obtained. This was heat-treated to 1000 ° C. in the same manner as above, but it was also infusible.

【0027】実施例4 ナフサの熱分解によるエチレン製造時に副生する重質油
分であるナフサタールピッチおよび流動接触分解法(F
CC法)で副生するFCCデカントオイルを出発原料と
した。これらの原料を500ml円筒形フラスコに30
0g入れ,ナフサタールピッチでは430℃,60分
間,FCCデカントオイルでは460℃,120分間熱
処理した。得られたピッチの軟化点はナフサタールピッ
チは218℃,FCCデカントオイルでは203℃であ
った。これらのピッチを0.25−0.71mmに粉砕
し,実施例1と同様にしてヨー素蒸気中で処理した後,
昇温速度10℃/minで1000℃まで熱処理した。
得られた結果をまとめて表6に示す。なお,表6の実験
No.55,58および62は比較例である。
Example 4 Naphtha tar pitch, which is a heavy oil by-produced during ethylene production by thermal decomposition of naphtha, and fluid catalytic cracking method (F
FCC decant oil produced as a by-product in the CC method) was used as a starting material. Add these ingredients to a 500 ml cylindrical flask.
0 g was added, and naphtha tar pitch was heat-treated at 430 ° C. for 60 minutes, and FCC decant oil was heat-treated at 460 ° C. for 120 minutes. The softening point of the obtained pitch was 218 ° C. for naphthatar pitch and 203 ° C. for FCC decant oil. After crushing these pitches to 0.25 to 0.71 mm and treating them in iodine vapor in the same manner as in Example 1,
Heat treatment was performed up to 1000 ° C. at a heating rate of 10 ° C./min.
The obtained results are summarized in Table 6. The experiments in Table 6
Nos. 55, 58 and 62 are comparative examples.

【0028】[0028]

【表6】 [Table 6]

【0029】比較例2 石油の減圧蒸留残渣油であるアスファルト300gを5
00ml円筒形フラスコに入れ,420℃,15分間熱
処理し,軟化点137℃のピッチを得た。このピッチを
0.71−0.25mmに粉砕し,実施例1と同様にし
てヨー素処理した。80℃でヨー素処理した場合,1お
よび3時間処理では粒子の形状であったが,5時間処理
では粒子が互いに融着し,8時間処理では粒子の形状を
とどめない程度まで溶融した。100℃では1時間処理
ですでに溶融した状態となった。粒子の形状を保持して
いた80℃,3時間処理のものを1000℃で熱処理し
たところ溶融し,塊状発泡体となった。
Comparative Example 2 300 g of asphalt, which is a residual oil of vacuum distillation of petroleum, was added to 5 parts.
It was put in a 00 ml cylindrical flask and heat-treated at 420 ° C. for 15 minutes to obtain a pitch having a softening point of 137 ° C. The pitch was crushed to 0.71-0.25 mm and treated with iodine in the same manner as in Example 1. When iodine treatment was performed at 80 ° C., the shape of the particles was 1 and 3 hours, but the particles were fused to each other in the treatment for 5 hours and melted to such an extent that the shape of the particles could not be retained in the treatment for 8 hours. At 100 ° C., it was already in a molten state after 1 hour of treatment. What was treated at 80 ° C. for 3 hours while maintaining the shape of the particles was heat-treated at 1000 ° C. to be melted to form a lumpy foam.

【0030】実施例5 比較例1で用いた同様のアスファルト300gを500
ml円筒形フラスコに入れ,420℃,45分間熱処理
した。得られたピッチの軟化点は209℃であった。こ
のピッチを0.71−0.25mmに粉砕し,実施例1
と同様にしてヨー素処理した。ついで,1000℃まで
焼成し,生成物の状況を調べた。得られた結果を表7に
示す。なお,表7の実験No.63および66は比較例であ
る。
Example 5 300 g of the same asphalt used in Comparative Example 1 was added to 500
It was put in a ml cylindrical flask and heat-treated at 420 ° C. for 45 minutes. The softening point of the obtained pitch was 209 ° C. This pitch was crushed to 0.71-0.25 mm, and
Iodine was treated in the same manner as in. Then, it was fired up to 1000 ° C. and the condition of the product was examined. The results obtained are shown in Table 7. Experiment Nos. 63 and 66 in Table 7 are comparative examples.

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【発明の効果】ピッチ粉末にヨー素を吸着処理し,熱処
理によって中空化させる簡単な操作によって中空炭素質
球状体を製造することが出来る。その理由は次のようで
あると推定される。すなわち,ヨー素はピッチ繊維の不
融化処理に見られるように,ピッチを熱可塑性から熱硬
化性に変換させる効果がある。この効果をピッチ粒子に
適用した場合,粒子表面から硬化が始まると推定され
る。粒子表面付近のみを硬化させたピッチ粒子を加熱す
ると内部は溶融,分解し,これによって発生したガスに
よって発泡すると思われる。
EFFECT OF THE INVENTION Hollow carbonaceous spheres can be produced by a simple operation of adsorbing iodine on pitch powder and making it hollow by heat treatment. The reason is presumed to be as follows. That is, iodine has the effect of converting pitch from thermoplasticity to thermosetting, as seen in the infusibilizing treatment of pitch fibers. When this effect is applied to pitch particles, it is presumed that hardening starts from the particle surface. It is considered that when the pitch particles, which are hardened only near the surface of the particles, are heated, the inside melts and decomposes, and the gas generated thereby causes foaming.

【0033】本発明の方法の特徴を列記すると次のよう
である。 (1)軟化点が約150−300℃のピッチであればその
種類は問わない。 (2)80−130℃の比較的低温でヨー素処理を行うと
いう簡単な操作で目的を達成することが出来ると共に,
大部分のヨー素は回収することが出来る。 (3)発泡操作であるヨー素処理物の熱処理も約400℃
と比較的低い温度である。このことは得られる中空球は
未だ炭化水素であるので,種々の化学反応性を有するこ
とを意味する。したがって,表面改質が可能である。
The features of the method of the present invention are listed below. (1) Any kind of pitch is acceptable as long as it has a softening point of about 150 to 300 ° C. (2) The objective can be achieved by the simple operation of performing iodine treatment at a relatively low temperature of 80-130 ° C.
Most iodine can be recovered. (3) The heat treatment of the iodine treatment, which is a foaming operation, is also about 400 ° C.
And relatively low temperature. This means that the obtained hollow spheres are still hydrocarbons and therefore have various chemical reactivities. Therefore, surface modification is possible.

【0034】本発明によって得られる中空炭素質球状体
は従来の炭素中空球と同様に軽量充填材や賦活による中
空活性炭として使用することが出来る。また,400−
500℃で中空化したものは炭化水素であるので,イオ
ン交換基等の導入により軽量交換体の製造も可能である
と共に,交換基としてスルホン基を導入した場合はこれ
を800−1000℃で熱処理することによってスルホ
ン基は分解してスルホ基となり,これは水との濡れ性に
優れているので,炭素の疎水性表面を改質することもで
きる。
The hollow carbonaceous spheres obtained according to the present invention can be used as a lightweight filler or a hollow activated carbon by activation as in the case of conventional carbon hollow spheres. Also, 400-
Since hydrocarbons hollowed out at 500 ° C are hydrocarbons, it is possible to manufacture lightweight exchangers by introducing ion-exchange groups, etc., and when sulfone groups are introduced as exchange groups, this is heat-treated at 800-1000 ° C. By doing so, the sulfone group is decomposed to become a sulfo group, which has excellent wettability with water, so that the hydrophobic surface of carbon can be modified.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2,実験No.27で得られた球状体の走査
型電子顕微鏡写真(100倍)である。
FIG. 1 is a scanning electron micrograph (100 ×) of a spherical body obtained in Example 2 and Experiment No. 27.

【図2】実施例2,実験No.27で得られた球状体の断面
の反射顕微鏡写真(250倍)である。
FIG. 2 is a reflection micrograph (250 times) of a cross section of a spherical body obtained in Example 2 and Experiment No. 27.

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軟化点150−300℃,0.05−1
mmの大きさであるピッチ類粉末をヨー素蒸気中で重量
増加量で表されるヨー素吸着量が80−250重量%の
範囲になるように80−130℃で処理した後,400
℃以上の温度で熱処理することを特徴とする中空炭素質
球状体の製造方法。
1. A softening point of 150-300 ° C., 0.05-1
After processing the pitch powder having a size of mm in iodine vapor at 80-130 ° C. so that the iodine adsorption amount represented by the weight increase amount is in the range of 80-250% by weight, 400
A method for producing a hollow carbonaceous sphere, which comprises performing a heat treatment at a temperature of ℃ or higher.
JP4335597A 1992-11-19 1992-11-19 Method for producing hollow carbonaceous spheres Expired - Fee Related JPH0742177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4335597A JPH0742177B2 (en) 1992-11-19 1992-11-19 Method for producing hollow carbonaceous spheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4335597A JPH0742177B2 (en) 1992-11-19 1992-11-19 Method for producing hollow carbonaceous spheres

Publications (2)

Publication Number Publication Date
JPH06157158A true JPH06157158A (en) 1994-06-03
JPH0742177B2 JPH0742177B2 (en) 1995-05-10

Family

ID=18290368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4335597A Expired - Fee Related JPH0742177B2 (en) 1992-11-19 1992-11-19 Method for producing hollow carbonaceous spheres

Country Status (1)

Country Link
JP (1) JPH0742177B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083150A1 (en) * 2003-03-20 2004-09-30 Yazaki Corporation Ceramics hollow particles, composite material containing ceramics hollow particles and sliding member
JP2007153675A (en) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology Method for producing high specific surface area pitch
CN110482521A (en) * 2019-07-24 2019-11-22 厦门大学 A kind of preparation method of hollow carbon balls
CN113905981A (en) * 2019-06-03 2022-01-07 三和淀粉工业株式会社 Spherical carbon particles and process for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275927A (en) * 1990-12-20 1992-10-01 W R Grace & Co Method for production of small hollow spherical glass particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275927A (en) * 1990-12-20 1992-10-01 W R Grace & Co Method for production of small hollow spherical glass particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083150A1 (en) * 2003-03-20 2004-09-30 Yazaki Corporation Ceramics hollow particles, composite material containing ceramics hollow particles and sliding member
JP2007153675A (en) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology Method for producing high specific surface area pitch
CN113905981A (en) * 2019-06-03 2022-01-07 三和淀粉工业株式会社 Spherical carbon particles and process for producing the same
CN113905981B (en) * 2019-06-03 2024-02-20 三和淀粉工业株式会社 Spherical carbon particles and method for producing same
CN110482521A (en) * 2019-07-24 2019-11-22 厦门大学 A kind of preparation method of hollow carbon balls
CN110482521B (en) * 2019-07-24 2021-04-06 厦门大学 Preparation method of hollow carbon spheres

Also Published As

Publication number Publication date
JPH0742177B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
CA2359032C (en) Method of making a reinforced carbon foam material and related product
CA1117513A (en) Spherical activated carbon having low dusting property and high physical strength and process for producing the same
KR101100334B1 (en) Process for producing spherical activated carbon
JPH0233679B2 (en)
JPH0511049B2 (en)
JPH06157158A (en) Production of hollow carbonaceous spherical body
JPS60150831A (en) Preparation of carbonaceous adsorbent having fine pores
EP1448370A1 (en) Stealth foam and production method
KR100653929B1 (en) Product method for matrix pitch using carbon complex material reinforced carbon fiber
JP2630466B2 (en) Manufacturing method of carbon material
KR101927615B1 (en) Manufacturing method of petroleum-based binder pitch with high quinoline-insoluble content
JPS6252116A (en) Production of formed activated carbon
JPS59122586A (en) Production of potentially anisotropic pitch
JPS61251504A (en) Production of formed graphite
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPS59207822A (en) Production of carbon material
JPS5893786A (en) Preparation of mesophase bead-containing pitch
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH0212903B2 (en)
JP3205938B2 (en) Filler for liquid chromatography and method for producing the same
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH06158054A (en) Method for infusibilizing pitch
JPH03170310A (en) Production of amorphous carbon material
JPS61242907A (en) Porous mesocarbon microbead and production thereof
JPH03103490A (en) Coal tar-based impregnating pitch and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term