JPS60150831A - Preparation of carbonaceous adsorbent having fine pores - Google Patents

Preparation of carbonaceous adsorbent having fine pores

Info

Publication number
JPS60150831A
JPS60150831A JP59008679A JP867984A JPS60150831A JP S60150831 A JPS60150831 A JP S60150831A JP 59008679 A JP59008679 A JP 59008679A JP 867984 A JP867984 A JP 867984A JP S60150831 A JPS60150831 A JP S60150831A
Authority
JP
Japan
Prior art keywords
adsorption
microbeads
temperature
pores
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59008679A
Other languages
Japanese (ja)
Other versions
JPS6248535B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Shigeji Hagiwara
萩原 茂示
Hidemasa Honda
本田 英昌
Takane Miyazaki
宮崎 高嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59008679A priority Critical patent/JPS60150831A/en
Publication of JPS60150831A publication Critical patent/JPS60150831A/en
Publication of JPS6248535B2 publication Critical patent/JPS6248535B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare a carbonaceous adsorbent having uniform and fine pores by introducing nitro group and sulfonic acid group into microbeads of mesocarbon and heat treating the product at a specified temp. in a nonoxidizing atmosphere. CONSTITUTION:Optically anisotropic microspheres generated in heavy bituminous material heat-treated at ca. 350-500 deg.C are separated from the heavy bituminous material to obtain microbeads of mesocarbon. Nitro and sulfonic acid groups are introduced into the microbeads, then the microbeads are heated at 300-600 deg.C in nonoxidizing atmosphere. Thus, a carbonaceous adsorbent having uniform and fine pore having ca. 4Angstrom pore size is prepd. The adsorbent is useful as a kind of molecular sieve.

Description

【発明の詳細な説明】 本発明は約350〜500℃で加熱処理した重質歴青物
中に生成する光学的異方性小球体を該歴青物から分離し
て得られたメソカーボン・マイクロビーズに化学反応に
よってニトロ基、スルホン酸基を導入し、ついで、これ
を非酸化性雰囲気中、300〜600℃で熱処理するこ
とにより、約4A(オングストローム)のほぼ均一な微
細細孔を有する炭素系吸着材の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides mesocarbon microbeads obtained by separating optically anisotropic small spheres generated in heavy bituminous materials heat-treated at about 350 to 500°C from the bituminous materials. By introducing a nitro group and a sulfonic acid group through a chemical reaction, and then heat-treating this in a non-oxidizing atmosphere at 300 to 600°C, a carbon-based material having approximately uniform micropores of about 4A (angstroms) is produced. The present invention relates to a method for manufacturing an adsorbent.

細孔番有する炭素系吸着材としては活性炭があり、これ
は各種工業に多方面で使用されている。
Activated carbon is an example of a carbon-based adsorbent having a pore size, and is used in a wide variety of industries.

活性炭は原料として木材やヤシガラ等の植物系と石炭や
コールタールピッチ、アスファルト等の重質歴青物等が
用いられ、これを焼成して得られる炭素をガス賦活法、
薬品賦活法によって細孔を形成させて製造されている。
Activated carbon uses plant-based materials such as wood and coconut husk, and heavy bituminous materials such as coal, coal tar pitch, and asphalt as raw materials.
It is manufactured by forming pores using a chemical activation method.

最近では活性炭の収率向上のために、アスファルトやポ
リビニルアルコール(PVA)を硫酸処理してスルホン
化し、これを焼成後賦活する方法も開発されている。
Recently, in order to improve the yield of activated carbon, a method has been developed in which asphalt or polyvinyl alcohol (PVA) is treated with sulfuric acid to become sulfonated, and this is activated after firing.

活性炭の表面積は1000〜1500m’ / gと非
常に大きいが、その細孔径分布は広く、そのため特定成
分のみ吸着する選択的吸着性能は持っていない。
Activated carbon has a very large surface area of 1000 to 1500 m'/g, but its pore size distribution is wide, so it does not have selective adsorption ability to adsorb only specific components.

均一な細孔を有する活性炭はポリ塩化ビニリデン(サラ
ン)を原料とするもので、モレキュラシーブ的性質を有
しているためカーボンシーブと呼ばれ、細孔径5人のも
のが市販されている。同じ原料から、6Aのものもある
といわれている。最近、ポリビニルアルコール(PVA
)をスルホン化し、これを不活性ガス中で焼成したとき
、900〜1000℃の高温処理で得られるものは、上
述のカーボンシーブと同様の吸着特性を有し、かつ、そ
の細孔はスリッ)・状であるという報告もある(石橋ら
、燃料協会誌、第62巻、70ページ、 198:11
年)。
Activated carbon with uniform pores is made from polyvinylidene chloride (Saran) and is called carbon sieve because it has molecular sieve-like properties, and is commercially available in 5-pore diameter activated carbon. It is said that there is also a 6A product made from the same raw material. Recently, polyvinyl alcohol (PVA)
) is sulfonated and calcined in an inert gas, the product obtained by high-temperature treatment at 900 to 1000°C has adsorption properties similar to those of the carbon sieve described above, and its pores are smooth.・There is also a report that it is (Ishibashi et al., Fuel Association Journal, Vol. 62, p. 70, 198:11
Year).

このように、均一な微細細孔を有する炭素系吸着材の開
発はいくつか行われているが、用いられる原料はサラン
樹脂のように、焼成によって得られる炭素が特殊な骨格
構造を形成するものであり、かつ、得られる吸着材の収
率は合成樹脂であるため低いという問題がある。一方、
PVAのスルホン化物からのカーボンシーブと同様の吸
着材の製造は導入したスルホン酸基を熱処理によって脱
離させ、これによって細孔を形成させる点では独創的な
考えに基づいていると考えられるが、均一な細孔径が形
成するのは約1000℃の焼成物であり、これ以下の焼
成温度では均一な細孔を形成していない。導入したスル
ホン酸基の脱離は約200℃以上の温度で生ずることか
ら、スルホン酸基の脱離によって形成した細孔は均一で
はな(、焼成温度上昇と共に炭素骨格構造の収縮が生じ
、それと共に細孔も小さくなり、1000℃付近の焼成
によって、細孔が均一化されるものと推定される。した
がって、スルホン酸基の脱離は細孔形成に寄与するが、
これが直接均一な細孔を形成させてはいない。
As described above, several efforts have been made to develop carbon-based adsorbents with uniform micropores, but the raw materials used are materials such as Saran resin, in which the carbon obtained by firing forms a special skeletal structure. Moreover, there is a problem that the yield of the obtained adsorbent is low because it is a synthetic resin. on the other hand,
The production of adsorbents similar to carbon sieves from sulfonated PVA is thought to be based on an original idea in that the introduced sulfonic acid groups are removed by heat treatment, thereby forming pores. Uniform pore diameters are formed in products fired at about 1000° C., and uniform pores are not formed at firing temperatures below this temperature. Since the introduced sulfonic acid groups are eliminated at temperatures above about 200°C, the pores formed by the elimination of the sulfonic acid groups are not uniform (as the sulfonic acid group shrinks as the firing temperature increases, It is assumed that the pores become smaller as well, and that the pores are made more uniform by firing at around 1000°C.Therefore, the elimination of sulfonic acid groups contributes to pore formation;
This does not directly form uniform pores.

本発明者らは固体有機物に導入した基を脱離させること
によって、直接均一な細孔を形成させるへ<、鋭意研究
した結果、メソカーボン・マイクロビーズにスルホン酸
基、ニトロ基を導入し、ついで、250℃以上で加熱処
理によって導入しtコ基を脱離させると、はぼ均一な細
孔が形成することを見い出し、本願発明をなすに至った
The present inventors have conducted extensive research to directly form uniform pores by removing groups introduced into solid organic substances.As a result of intensive research, we have introduced sulfonic acid groups and nitro groups into mesocarbon microbeads. Subsequently, the inventors discovered that when the t group was removed by introducing it by heat treatment at 250° C. or higher, more uniform pores were formed, and the present invention was accomplished based on this finding.

本発明で用いられるメソカーボン・マイクロビーズはコ
ールタールやコールタールピッチ等の石炭系重質歴青物
、ナフサ熱分解時の副生タール(ナフサタール)、流動
接触分解時の副生タール、原油の蒸留残渣油等の石油系
重質歴青物を350〜500℃で熱処理したとき、該歴
青物中に生成した光学的異方性小球体(メソフェース小
球体)を有機溶剤不溶分として歴青物中から分離したも
のである。
Mesocarbon microbeads used in the present invention include coal-based heavy bituminous materials such as coal tar and coal tar pitch, by-product tar during naphtha thermal cracking (naphtha tar), by-product tar during fluid catalytic cracking, and distillation of crude oil. When petroleum-based heavy bituminous materials such as residual oil are heat-treated at 350 to 500°C, optically anisotropic spherules (mesophase spherules) formed in the bituminous materials are separated from the bituminous materials as organic solvent insoluble matter. This is what I did.

この球形1trIJ I Pm1J上のメソカーボン・
マイクロビーズは瞭番杵中庁会坐→主として縮合多環芳
香族化合物より成り、この化合物が一定方向に配列して
ラメラ(薄層)を形成し、とのラメラが積層した構造を
持つものである。この構造からみて、もし、ラメラ間を
拡げることが出来ると、そこに細孔が形成され、かつ、
その細孔はスリット状であることが容易に予想される。
Mesocarbon on this spherical 1trIJ I Pm1J
Microbeads are mainly composed of fused polycyclic aromatic compounds, and these compounds are arranged in a certain direction to form lamellae (thin layers), and have a structure in which these lamellae are stacked. be. Considering this structure, if the lamellae can be expanded, pores will be formed there, and
It is easily expected that the pores are slit-shaped.

そこで、主としてガスによる吸着特性を調べた結果、次
のような吸着挙動を示すことが知られた。すなわち、歴
青物中から分離したままのメソカーボン・マイクロビー
ズの場合、77°にの液体窒素温度での窒素ガス吸着量
は非常に少なく、この量からめた比表面積はメソカーボ
ン・マイクロビーズの粒径から計算される幾何学的な外
部表面積に等しくなるが、吸着ガスを炭酸ガスとし、吸
着温度を 273’にとしたときは比表面積が約110
m”7gであり、303°にでのヨウ素吸着では約28
0r+1′/gと吸着温度上昇と共に吸着量は増加する
。しかし、303にでヨウ素より分子径の大きいメチレ
ンブルーはほとんど吸着されず、選択的吸着能のあるこ
とがわかる。吸着温度上昇によって吸着量が増加するこ
とは一般の吸着材にはあまり認められないことであるが
、この現象は一般の吸着材が無機物であるのに対し、メ
ソカーボン・マイクロビーズは有機物であるため熱膨張
係数が大きく、温度上昇と共にラメラ間が拡大して吸着
量の増大をもたらしたと考えることが出来る。このこと
から、ラメラ間の拡大が表面積の増加につながると考え
られるので、ラメラ間の拡大を官能基の導入によって行
うことを試みた。
Therefore, as a result of investigating the adsorption characteristics mainly due to gas, it was found that the following adsorption behavior was exhibited. In other words, in the case of mesocarbon microbeads that are still separated from bituminous materials, the amount of nitrogen gas adsorbed at a liquid nitrogen temperature of 77° is extremely small, and the specific surface area calculated from this amount is It is equal to the geometric external surface area calculated from the diameter, but when the adsorbed gas is carbon dioxide and the adsorption temperature is 273', the specific surface area is approximately 110
m”7g, and iodine adsorption at 303° is about 28
The amount of adsorption increases as the adsorption temperature rises to 0r+1'/g. However, at 303, methylene blue, which has a larger molecular diameter than iodine, is hardly adsorbed, indicating that it has selective adsorption ability. The amount of adsorption increases with increasing adsorption temperature, which is not often observed in general adsorbents, but this phenomenon is caused by the fact that while general adsorbents are inorganic, mesocarbon microbeads are organic. Therefore, it can be considered that the coefficient of thermal expansion is large, and as the temperature rises, the lamellae expand, resulting in an increase in the amount of adsorption. From this, it is thought that the expansion of the lamellae leads to an increase in the surface area, so we attempted to expand the lamellae by introducing a functional group.

これは前述のようにメソカーボン・マイクロビーズは芳
香族化合物を主体とするものであるので、通常の有機反
応によって容易に官能基が導入可能であろうし、ラメラ
を形成しているがために、導入した官能基はラメラ間に
存在するようになると推定される。そこで、実際に芳香
核置換反応として、ニトロ化、フリーデルクラフト反応
、芳香核脂肪族側鎖に対する反応としてクロル化を行っ
た結果、予想通りの結果を得た(燃料温会誌、第55巻
、第704ページ、 1976年)。ニトロ基、クロル
を導入したメソカーボン・マイクロビーズの吸着挙動は
低温での吸着でも吸着量の減少は認められるが、その減
少は分離したままのメソカーボン・マイクロビーズの場
合よりはるかに少な(、吸着量に対する温度依存性が小
さくなった。この現象は導入した官能基がラメラ間に存
在するため、低温にしてもラメラ間の収縮が阻害された
とみられる。しかし、1947にでの炭酸ガスの吸着量
がらめられる比表面積は約190m’/gであり、吸着
材として用いるには小さい値である。(なお、上記の吸
着挙動の詳細は第6回炭素材料学会要旨集。
This is because, as mentioned above, mesocarbon microbeads are mainly composed of aromatic compounds, so functional groups can be easily introduced through ordinary organic reactions, and because they form lamellae, It is presumed that the introduced functional groups will exist between the lamellae. Therefore, as a result of actually performing nitration, Friedel-Crafts reaction as an aromatic nucleus substitution reaction, and chlorination as a reaction on an aromatic nucleus aliphatic side chain, the results as expected were obtained (Fuel Temperature Society Journal, Vol. 55, p. 704, 1976). The adsorption behavior of mesocarbon microbeads into which nitro groups and chlorine have been introduced shows that the amount of adsorption decreases even when adsorbed at low temperatures, but the decrease is much smaller than that of mesocarbon microbeads that remain separated. The temperature dependence of the amount of adsorption became smaller.This phenomenon appears to be because the introduced functional group exists between the lamellae, which inhibits the contraction between the lamellae even at low temperatures.However, in 1947, when carbon dioxide gas The specific surface area that determines the amount of adsorption is approximately 190 m'/g, which is a small value for use as an adsorbent. (Details of the above adsorption behavior can be found in the 6th Carbon Materials Society Abstracts.

第6〜9ページ、 1979年を参照されたい。)そこ
で、比表面積の増加を計るために、メソカーボン・マイ
クロビーズに導入した官能基を脱離させる乙とを行った
。これは導入した官能基の脱離による新たな細孔の形成
と脱離する官能基(分子)の大きさが同じであることか
ら形成される細孔は均一な大きさを持つことが期待され
るためである。実際に加熱によって導入した官能基を脱
離させた結果、比表面積400m”/g以上、径約4^
のほぼ均一な細孔を有する吸着材として使用可能なマイ
クロビーズが得られ、一応、所期の目的が達せられるこ
とがわかった。
See pages 6-9, 1979. ) Therefore, in order to increase the specific surface area, we removed the functional groups introduced into mesocarbon microbeads. This is because new pores are formed due to the detachment of the introduced functional group and the size of the detached functional group (molecule) is the same, so the pores formed are expected to have a uniform size. This is for the purpose of As a result of actually removing the introduced functional groups by heating, the specific surface area is over 400 m''/g and the diameter is approximately 4^
It was found that microbeads that can be used as an adsorbent material having almost uniform pores were obtained, and that the intended purpose could be achieved.

以下、本発明の方法を詳細に記す。The method of the present invention will be described in detail below.

本発明で用いた原料のメソカーボン・マイクロビーズは
球径約1/Jll+以上の球体である。この製造方法は
前述のように、重質歴青物を350〜5oo℃で熱処理
したときに該歴青物中に生成するメソフェース小球体を
有機溶剤不溶成分として分離したものである。詳細は特
公昭50−39833号、特公昭51−29523号、
特公昭53−9599号公報に記載されている。なお、
歴青物の熱処理時にメソフェースが小球体の段階でとど
まらず、これらの小球体が互いに合体したメソフェース
領域、つまりバルクメソフェースを形成することがある
。このバルクメソフェースは球状ではなく塊状となるが
、これも、メソカーボン・マイクロビーズと同様に原料
として用いることが出来る。
The raw material mesocarbon microbeads used in the present invention are spheres with a sphere diameter of about 1/Jll+ or more. As described above, in this manufacturing method, mesophase spherules produced in a heavy bituminous material when the material is heat-treated at 350 to 500° C. are separated as an organic solvent-insoluble component. For details, see Special Publication No. 50-39833, Special Publication No. 51-29523,
It is described in Japanese Patent Publication No. 53-9599. In addition,
During heat treatment of bituminous materials, mesofaces do not remain in the spherule stage, but sometimes these spherules coalesce to form mesoface regions, that is, bulk mesofaces. Although this bulk mesophase is not spherical but lumpy, it can also be used as a raw material in the same way as mesocarbon microbeads.

メソカーボン・マイクロビーズに官能基を導入するが、
ここではニトロ基とスルホン酸基の導入方法について述
べる。
Introducing functional groups into mesocarbon microbeads,
Here, the method for introducing nitro groups and sulfonic acid groups will be described.

ニトロ化:濃硝酸1モルと濃硫酸14モルの混酸に所定
量のメソカーボン・マイクロビーズを少量づつ加え、0
〜60℃の温度範囲で攪拌しながら15分間以上保持し
た後、多量の水中に入れて反応を停止させ、濾過、水洗
する。反応温度が0℃では30分以上、60℃では15
分以上の保持時間で増量の変化はなく、反応はほぼ完結
したとみられる。
Nitration: Add a predetermined amount of mesocarbon microbeads little by little to a mixed acid of 1 mol of concentrated nitric acid and 14 mol of concentrated sulfuric acid, and
After maintaining the temperature in the temperature range of ~60°C for 15 minutes or more while stirring, the mixture is poured into a large amount of water to stop the reaction, filtered, and washed with water. When the reaction temperature is 0℃, it takes more than 30 minutes, and when the reaction temperature is 60℃, it takes 15 minutes.
There was no change in volume increase after a holding time of 1 minute or more, and the reaction was considered to be almost complete.

このときの増量は30〜40重量%である。また、上記
の反応温度では濾液の着色は認められないが、100℃
では褐色となり、硝酸による酸化分解反応が起こる。そ
のため、あまり高温で反応させることは好ましくない。
The increase in weight at this time is 30 to 40% by weight. In addition, no coloring of the filtrate was observed at the above reaction temperature, but at 100°C
It turns brown and an oxidative decomposition reaction occurs with nitric acid. Therefore, it is not preferable to react at too high a temperature.

スルホン化:濃硫酸を約100℃に加熱し、これにメソ
カーボン・マイクロビーズを加え、約60分以上処理す
る。処理後、多量の水中に入れ、反応を停止させた後、
濾過、水洗する。反応温度と保持時間による増量の変化
は50℃、60分間では約20重量%、80℃、60分
間で約26重量%、100℃、60分間で約30重量%
で、100℃で180分間反応させても、増量は同じで
ある。
Sulfonation: Heat concentrated sulfuric acid to about 100°C, add mesocarbon microbeads, and treat for about 60 minutes or more. After treatment, put it in a large amount of water to stop the reaction,
Filter and wash with water. Changes in weight increase due to reaction temperature and holding time are approximately 20% by weight at 50°C for 60 minutes, approximately 26% by weight at 80°C for 60 minutes, and approximately 30% by weight at 100°C for 60 minutes.
Even if the reaction was carried out at 100°C for 180 minutes, the increase in volume remained the same.

これらの反応によって、本来疎水性であるメソカーボン
・マイクロビーズは親水性となる。
Through these reactions, the originally hydrophobic mesocarbon microbeads become hydrophilic.

ニトロ化またはスルホン化したメソカーボン・マイクロ
ビーズは熱処理することによって細孔を形成させる。熱
天秤によって加熱減量を測定した所、約200℃以上で
減量が生じる。この減量は未反応のメソカーボン・マイ
クロビーズでは認められないので、導入したニトロ基ま
たはスルホン酸基の脱離によると考えられる。しかし、
減量は特定の温度で急激に生ずるのではなく、温度上昇
と共に増加するので、これらの基の脱離は徐々に起こる
と考えられる。この結果から、熱処理は200℃以上で
あり、かつ、ある程度の量の基を脱離させる必要がある
ので、少なくとも 250℃であり、好ましくは300
℃以上の温度である。最高温度は600℃である。60
0℃思上になると、ニトロ基またばスルホン酸基の脱離
によって形成された細孔は炭素の収縮によって消滅し、
比表面積は急激に減少する。したがって、熱処理温度範
囲は300〜600℃となる。また、この処理は酸化性
雰囲気中で行うことは燃焼する恐れがあるため好ましく
なく、不活性雰囲気中で行う必要がある。
Nitrated or sulfonated mesocarbon microbeads are heat-treated to form pores. When the weight loss on heating was measured using a thermobalance, weight loss occurred at temperatures above about 200°C. Since this weight loss was not observed in unreacted mesocarbon microbeads, it is thought to be due to elimination of the introduced nitro group or sulfonic acid group. but,
Elimination of these groups is believed to occur gradually, as the weight loss does not occur abruptly at a particular temperature, but increases with increasing temperature. From this result, the heat treatment is at least 200°C, and since it is necessary to eliminate a certain amount of groups, the temperature is at least 250°C, preferably 300°C.
The temperature is above ℃. The maximum temperature is 600°C. 60
At 0°C, the pores formed by the elimination of nitro groups or sulfonic acid groups disappear due to the contraction of carbon.
The specific surface area decreases rapidly. Therefore, the heat treatment temperature range is 300 to 600°C. Further, it is not preferable to perform this treatment in an oxidizing atmosphere because there is a risk of combustion, and it is necessary to perform this treatment in an inert atmosphere.

このようにして得られたメソカーボン・マイクロビーズ
の比表面積は熱処理温度によって多少異なるが、約35
0〜450m”7gである。この値は活性炭のそれと比
較して30〜50%に過ぎず、小さいが、吸着等混線は
ラングミューア型(いわゆる1型)であり、かつ、分子
径の異なる液体の飽和吸着量からめた細孔径は約4Aと
ほぼ均一な細孔であることから、選択的吸着能を有する
ことが十分期待できる。製造しtコ吸着材の吸着挙動に
与えるニトロ基とスルホン酸基の違いは比表面積がスル
ホン酸基を導入した方がわずか【こ小さくなる以外、特
に認められない。
The specific surface area of the mesocarbon microbeads obtained in this way varies somewhat depending on the heat treatment temperature, but is approximately 35
0 to 450m"7g. This value is only 30 to 50% smaller than that of activated carbon, but the crosstalk such as adsorption is Langmuir type (so-called type 1), and liquids with different molecular sizes The pore diameter calculated from the saturated adsorption amount is about 4A, which is a nearly uniform pore size, so it can be fully expected to have selective adsorption ability. There is no particular difference between the groups, except that the specific surface area becomes slightly smaller when the sulfonic acid group is introduced.

前述のように、メソカーボン・マイクロビーズは約IP
m以上の微細球体であるので、角状粉末より、充填密度
が大きく、そのため、流通抵抗が小さくなる特徴がある
。更に、メソカーボン・マイクロビーズ自体、粘結性を
有し、成形することが可能である。成形は金型により常
温、500〜2000kg / c++rの成形圧で行
う。また、成形後、ニトロ基またはスルホン酸基の導入
を行ってもよいが、これらの基を導入後、成形、加熱処
理を行う方が、成形体の破損を出来るだけ避けられるの
で好ましい。
As mentioned above, mesocarbon microbeads are approximately IP
Since it is a fine sphere of m or more, it has a higher packing density than angular powder, and therefore has a characteristic of lower flow resistance. Furthermore, mesocarbon microbeads themselves have caking properties and can be molded. Molding is performed using a mold at room temperature and a molding pressure of 500 to 2000 kg/c++r. Further, after molding, a nitro group or a sulfonic acid group may be introduced, but it is preferable to perform molding and heat treatment after introducing these groups because damage to the molded product can be avoided as much as possible.

以下、実施例を挙げて本発明の方法を更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

参考例 キノリン中にコールタールピッチを入れ、約90℃に加
熱して溶解2分散させた。これをガラスフィルター(N
o、 4 )で減圧濾過し、濾液を減圧蒸留してキノリ
ンを除き、フリーカーボンを含まないコールタールピッ
チを採取した。このコールタールピッチ約400 gを
容量 500m1のガラス製円筒フラスコに入れ、窒素
ガス気流中、攪拌しながら、430℃で60分間処理し
た。この熱処理したピッチを樹脂に埋込み、研磨した後
反射偏光顕微鏡で観察した所、光学的等方性ピッチ中に
径約IPm以上の光学的異方性な小球体(メソフェース
小球体)が無数(ン存在していたが、少量はこの小球体
がいくつか合体したものも認められた。このピッチを約
3倍量のキノリン中に入れ、約90℃に加熱して溶解。
Reference Example Coal tar pitch was placed in quinoline and heated to about 90°C to dissolve and disperse it. Pass this through a glass filter (N
The filtrate was distilled under reduced pressure to remove quinoline, and coal tar pitch containing no free carbon was collected. Approximately 400 g of this coal tar pitch was placed in a glass cylindrical flask with a capacity of 500 ml, and treated at 430° C. for 60 minutes while stirring in a nitrogen gas stream. After embedding this heat-treated pitch in resin and polishing it, observation using a reflective polarizing microscope revealed that there were countless optically anisotropic small spheres (mesoface small spheres) with a diameter of about IPm or more in the optically isotropic pitch. However, a small amount of aggregates of several of these small spheres were also observed.Put this pitch in approximately three times the volume of quinoline, and dissolve by heating to approximately 90°C.

分散させ、遠心沈澱器にかけて不溶成分を沈澱させtコ
後、上澄の可溶成分を分離した。沈澱物に新たなキノリ
ンを加え、再び約90℃に加熱した後、遠心沈澱器にか
けた。この操作を5回繰返して可溶成分を除いた後、沈
澱物にアセトンを加え、ガラスフィルター(No、 4
 )で濾過した。アセトンで十分洗浄した後、乾燥して
メソカーボン°マイクロビーズを得た。収率は熱処理し
たピッチに対して10.6重量%であった。得られたメ
ソカーボン・マイクロビーズを走査型電子顕微鏡で観察
した所、大部分、径約1 ymR上の球体であり、大き
いものでは約50Pmのものも存在していた。また、少
量ではあるが、角状のものもあった。
After dispersion and centrifugation to precipitate insoluble components, the soluble components of the supernatant were separated. Fresh quinoline was added to the precipitate, heated again to about 90°C, and then subjected to a centrifugal precipitator. After repeating this operation 5 times to remove soluble components, acetone was added to the precipitate, and filtered through a glass filter (No. 4).
) was filtered. After thorough washing with acetone, the beads were dried to obtain mesocarbon ° microbeads. The yield was 10.6% by weight based on the heat-treated pitch. When the obtained mesocarbon microbeads were observed with a scanning electron microscope, most of them were spherical with a diameter of about 1 ymR, and some were large and had a diameter of about 50 Pm. There was also a small amount of angular pieces.

実施例 参考例で得たメソカーボン・マイクロビーズのニトロ化
およびスルホン化は次のようにして行った。
The mesocarbon microbeads obtained in Reference Examples were nitrated and sulfonated as follows.

ニトロ化 500 mlの三角フラスコに濃硝酸80nt’、濃硫
酸100m1!入れ、氷水中または60℃に加熱した水
浴中。
Concentrated nitric acid 80nt' and concentrated sulfuric acid 100ml in a nitration 500ml Erlenmeyer flask! Place in ice water or in a water bath heated to 60°C.

マグネティックスターラーで攪拌しながらメソカーボン
・マイクロビーズ10gを徐々に加えた。それぞれの温
度で60分間または 180分間保持した後、約11の
氷水中に入れて反応を停止させた。これをガラスフィル
ター(No、 4 )で減圧濾過し、水で十分n 浄し
た。フィルター上のメソカーボン・マイクロビーズは一
昼夜、 eo℃で減圧乾燥し、重量を測定した。
10 g of mesocarbon microbeads were gradually added while stirring with a magnetic stirrer. After holding at each temperature for 60 minutes or 180 minutes, the reaction was stopped by placing in ice water for about 1 hour. This was filtered under reduced pressure through a glass filter (No. 4) and thoroughly washed with water. The mesocarbon microbeads on the filter were dried under reduced pressure at EO°C for one day and the weight was measured.

スルホン化 500mI!ノ三角フラスコに濃硫酸100mJ入れ、
50〜100℃に加熱した油浴中で加熱し、攪拌しなが
らメソカーボン・マイクロビーズ10gを徐々に加え、
60〜18(1分間保持した。時間経過後直ちζζフラ
スコを油浴から取り出し、約11の水中に入れて反応を
停止させた。ついで、ガラスフィルター(No、 4 
)で濾過し、十分水洗した後、80℃で一昼夜減圧乾燥
した。
Sulfonation 500mI! Pour 100 mJ of concentrated sulfuric acid into a Erlenmeyer flask.
Heat in an oil bath heated to 50-100°C, gradually add 10 g of mesocarbon microbeads while stirring,
60-18 (held for 1 minute. Immediately after the lapse of time, the ζζ flask was taken out from the oil bath and placed in water of about 11 to stop the reaction. Then, the reaction was stopped using a glass filter (No. 4).
), washed thoroughly with water, and dried under reduced pressure at 80° C. all day and night.

ニトロ化、スルホン化の各反応条件による重量増加率を
第1表に示した。
Table 1 shows the weight increase rate according to each reaction condition of nitration and sulfonation.

第1表 重量増加はニトロ基、スルホン酸基の導入によると考え
られるので、重量増加率の大きい実験番号1,2および
6を選び熱処理しtコ。
Since the weight increase in Table 1 is thought to be due to the introduction of nitro groups and sulfonic acid groups, Experiment Nos. 1, 2 and 6, which had a large weight increase rate, were selected and heat treated.

熱処理は管状炉を用い、黒鉛製容器に試料を約2g入れ
、窒素ガス気流中、昇温速度5℃/ minで250〜
1000℃まで加熱し、各温度で30分間保持しておこ
なった。比較のために原料のメソカーボン・マイクロビ
ーズについても同様にして熱処理した。第2表に熱処理
による収率を示した。
Heat treatment was performed using a tubular furnace, with approximately 2 g of the sample placed in a graphite container and heated to 250 ~ 250 °C at a heating rate of 5 °C/min in a nitrogen gas flow.
It was heated to 1000°C and held at each temperature for 30 minutes. For comparison, the raw material mesocarbon microbeads were also heat-treated in the same manner. Table 2 shows the yield by heat treatment.

第2表 第2表の各熱処理物について細孔容積を知るために炭酸
ガスによるガス吸着法によって吸着量を測定し、吸着等
混線をめた。吸着温度は273および194.5°にで
ある。この吸着等温線からマーシュ(Marsh)の式
およびラングミュア (Langmuir)式によって
単分子層吸着量(Vm)をめ比表面積を計算した。その
結果を第3表および第4表に示した。
Table 2 In order to find out the pore volume of each of the heat-treated products listed in Table 2, the amount of adsorption was measured by a gas adsorption method using carbon dioxide gas, and crosstalk such as adsorption was eliminated. The adsorption temperatures are at 273 and 194.5°. From this adsorption isotherm, the monomolecular layer adsorption amount (Vm) was determined and the specific surface area was calculated using the Marsh equation and Langmuir equation. The results are shown in Tables 3 and 4.

マーシュの式 %式% ) ラングミ11式 P/V=P/Vm+1/bVm比表面
積(S) =0.269 crm−VmV:吸着量(’
 / g ) p V m :単分子層吸着量(rnl
/g)B:定数 T:吸着温度(′K)β:親和係数P
:平衝圧(調Hg)、b:比例定数 σIl: 炭酸ガスの分子断面積、 273にのとき1
8.6^’、 194.5°にのとき17,0にPo;
飽和蒸気圧、 27g”Kのとき26123+maHg
、 194.50にのとき760+w■g さらに、デュミニン(Duminin)式より、ミクロ
ポアー(約30Å以下)の細孔容積(Wo)と単分子層
吸着量からめられる細孔容積(■0)をめ、表中に併記
した。
Marsh's formula % formula %) Langmi 11 formula P/V=P/Vm+1/bVm Specific surface area (S) =0.269 crm-VmV: Adsorption amount ('
/ g) pVm: monomolecular layer adsorption amount (rnl
/g) B: Constant T: Adsorption temperature ('K) β: Affinity coefficient P
: Normal impact pressure (adjusted Hg), b: Constant of proportionality σIl: Molecular cross section of carbon dioxide, 1 when 273
8.6^', Po at 17,0 when at 194.5°;
Saturated vapor pressure, 26123+maHg at 27g”K
, when 194.50 is 760+w g Further, from the Duminin equation, the pore volume (■0) calculated from the pore volume (Wo) of the micropore (approximately 30 Å or less) and the monomolecular layer adsorption amount, Also listed in the table.

デx 2 二”−’式 1ogW = logWo −
0,434(H人’/β2)W=M −V / 224
14・p (ρハ密度、 273’にのときρ= 1.
081.194.5@にのときρ= 1.54cd7g
、Mは分子量=44) A’= (2,303RT)”・ (logPO/P 
)L(Rは気体定数= 1.987eal/deg)単
分子層吸着量からの細孔容積 V o−M−V m/ 22414 ・p第3表かられ
かるように、熱処理していないものの比表面積はニド豐
化、スルホン化しても原料メソカーボン・マイクロピー
ズのそれよりわずかに大きいが、250〜600℃で熱
処理することにより、350〜430/ / gとなり
、はるかに大きな比表面積を持つものになる。吸着温度
の低い第4表の場合も偽同様である。これらの結果はニ
トロ基、スルホン酸基の導入と脱離による効果であるこ
とは明らかである。また、第4表の吸着等混線は処理温
度0のものを除き、いずれもラングミュア型(1型)で
ある。すなわち、相対圧(P/Po)の低い領域で吸着
量が多(、P/Poが約0.2以上での吸着量は非常に
少ないもので、ラングミュア式に対して、いずれも相関
係数0999以上で一致する。処理温度Oの場合は1型
ではあるが、相関係数は0.98以下となり、ラングミ
ュア式では整理できない。デュビニン式よりめた約30
Å以下の細孔容積(W o )と、単分子吸着量からめ
たそれ (vO)とはいずれもほぼ一致し、形成された
細孔は少なくとも30Å以下であると考えられる。
Dex 2 2"-' formula 1ogW = logWo -
0,434 (H person'/β2) W=M −V / 224
14・p (ρdensity, When 273', ρ=1.
When 081.194.5@, ρ= 1.54cd7g
, M is molecular weight = 44) A' = (2,303RT)" (logPO/P
) L (R is gas constant = 1.987 eal/deg) Pore volume from monomolecular layer adsorption amount V o-M-V m/ 22414 ・p As seen from Table 3, the ratio of the non-heat-treated one Although the surface area is slightly larger than that of the raw mesocarbon/micropeas even if it is converted into a carbonate or sulfonate, it becomes 350 to 430//g by heat treatment at 250 to 600°C, and has a much larger specific surface area. become. The case of Table 4 where the adsorption temperature is low is also false. It is clear that these results are the result of the introduction and removal of nitro groups and sulfonic acid groups. Further, all of the adsorption and other crosstalks in Table 4 are of the Langmuir type (type 1), except for those at a processing temperature of 0. In other words, the amount of adsorption is large in the region of low relative pressure (P/Po) (the amount of adsorption is very small when P/Po is about 0.2 or more, and the correlation coefficient is It matches at 0999 or more.At the processing temperature O, it is type 1, but the correlation coefficient is less than 0.98, and it cannot be sorted out by the Langmuir equation.Approximately 30 by the Dubinin equation.
The pore volume (W o ) of Å or less and the volume (vO) determined from the amount of adsorbed single molecules are almost the same, and it is considered that the pores formed are at least 30 Å or less.

なお、比較のために市販されているカーボンシーブ(商
品名MSC5A)を194.5°にで炭酸ガスの吸着量
を測定した結果、ラングミュア式で整理され、比表面積
565m’/ g、 Wo =0.158 m17 g
For comparison, the adsorption amount of carbon dioxide was measured using a commercially available carbon sieve (trade name MSC5A) at 194.5°, and the results were summarized using the Langmuir equation, with a specific surface area of 565 m'/g, Wo = 0. .158 m17 g
.

V o= 0.155rn1/ gとなり、本発明の吸
着材より比表面積の大きいものであることがわかる。
V o = 0.155rn1/g, which indicates that the adsorbent has a larger specific surface area than the adsorbent of the present invention.

乙の細孔の形と大きさを決めるために、分子径の異なる
液体の飽和吸着量をめた。吸着方法は平田らの方法(化
学工学、第24巻、572ページ。
In order to determine the shape and size of the pores, the saturated adsorption amount of liquids with different molecular diameters was determined. The adsorption method is the method of Hirata et al. (Chemical Engineering, Vol. 24, p. 572).

1970年)に準拠したもので、外径8 mm 、長さ
100鴫の枝材ガラス管2個を1組とし、その1個に試
料約1g入れ、120℃で5X10mmHgで脱気した
後、液体を入れた他の1個と枝管部分で接続した。これ
を30℃の空気恒温槽中で20日間放置した後、試料の
重量増加量を測定した。この増加量を液体の30℃での
密度で除した値を飽和吸着量とした。用いた試料は代表
例として、第2表の実験番号2および6の処理温度50
0℃のものである。液体の種類2分子径、密度および飽
和吸着量をまとめて第5表に示した。
(1970), one set consists of two branch glass tubes with an outer diameter of 8 mm and a length of 100 mm. Approximately 1 g of the sample is placed in each tube, and after degassing at 5 x 10 mm Hg at 120 °C, the liquid It was connected to the other one with a branch pipe in it. After leaving this in an air constant temperature bath at 30° C. for 20 days, the weight increase of the sample was measured. The value obtained by dividing this increase by the density of the liquid at 30° C. was defined as the saturated adsorption amount. As a representative example, the samples used were treated at a treatment temperature of 50°C in Experiment Nos. 2 and 6 in Table 2.
It is at 0°C. Table 5 summarizes the molecular diameter, density, and saturated adsorption amount for each type of liquid.

第5表 この表かられかるように、ベンゼン、メタノールの吸着
量は多いが、シクロヘキサン、四塩化炭素は少ない。こ
の結果は大部分の細孔は約4^程度の細孔径を持つこと
を示している。また、ベンゼンは平面分子であり、その
拡がりは大きいにも拘らず、メタノールと同様に吸着量
が多いことは細孔がスリット状であることを示すもので
ある。
Table 5 As can be seen from this table, the amounts of benzene and methanol adsorbed are large, but the amounts of cyclohexane and carbon tetrachloride are small. This result shows that most of the pores have a pore diameter of about 4^. Furthermore, benzene is a planar molecule, and although its spread is large, the adsorption amount is large, similar to methanol, which indicates that the pores are slit-shaped.

この結果からは細孔の大きさ、形を厳密に定めることは
出来ないが、概略、細孔径約4にのスリット形であるこ
とから、一種のモレキュラシーブとして使用することで
出来る。
Although the size and shape of the pores cannot be determined strictly from this result, since they are generally slit-shaped with a pore diameter of about 4, it can be used as a kind of molecular sieve.

特許出願人 工業技術院長 川 1)裕 部指定代理人
 工業技術院 九州工業技術試験所長消 水 嘉 重 
部 手続補正書(方式) %式% 2、発明の名称 微細細孔を有する炭素系吸着材の製造方法3、補正をす
る者 4、指定代理人
Patent applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Yoshige Hirobe, Director of the Kyushu Institute of Industrial Science and Technology, Agency of Industrial Science and Technology
Departmental Procedures Amendment (Method) % Formula % 2. Name of invention Method for producing carbon-based adsorbent having micropores 3. Person making the amendment 4. Designated agent

Claims (1)

【特許請求の範囲】 1、メソカーボン・マイクロピーズにニトロ基。 スルホン酸基を導入し、ついで、非酸化性雰囲気中、3
00〜600℃で加熱処理することを特徴とする微細細
孔を有する炭素系吸着材の製造方法。
[Claims] 1. Nitro group in mesocarbon micropeas. The sulfonic acid group is introduced, and then in a non-oxidizing atmosphere, 3
A method for producing a carbon-based adsorbent having fine pores, the method comprising heating at a temperature of 00 to 600°C.
JP59008679A 1984-01-20 1984-01-20 Preparation of carbonaceous adsorbent having fine pores Granted JPS60150831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008679A JPS60150831A (en) 1984-01-20 1984-01-20 Preparation of carbonaceous adsorbent having fine pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008679A JPS60150831A (en) 1984-01-20 1984-01-20 Preparation of carbonaceous adsorbent having fine pores

Publications (2)

Publication Number Publication Date
JPS60150831A true JPS60150831A (en) 1985-08-08
JPS6248535B2 JPS6248535B2 (en) 1987-10-14

Family

ID=11699612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008679A Granted JPS60150831A (en) 1984-01-20 1984-01-20 Preparation of carbonaceous adsorbent having fine pores

Country Status (1)

Country Link
JP (1) JPS60150831A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366796A1 (en) * 1987-11-20 1990-05-09 Osaka Gas Co., Ltd Activated carbon and process for its production
JPH02160045A (en) * 1988-12-13 1990-06-20 Osaka Gas Co Ltd Active carbon stuck with fiber
JP2006509974A (en) * 2002-12-10 2006-03-23 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Gas storage and dispensing system with monolithic carbon adsorbent
US7862646B2 (en) 2006-01-30 2011-01-04 Advanced Technology Materials, Inc. Nanoporous articles and methods of making same
US7951225B2 (en) 2005-05-03 2011-05-31 Advanced Technology Materials, Inc. Fluid storage and dispensing systems, and fluid supply processes comprising same
US8539781B2 (en) 2007-06-22 2013-09-24 Advanced Technology Materials, Inc. Component for solar adsorption refrigeration system and method of making such component
US8858685B2 (en) 2002-12-10 2014-10-14 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US9062829B2 (en) 2002-12-09 2015-06-23 Entegris, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US9126139B2 (en) 2012-05-29 2015-09-08 Entegris, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
US9234628B2 (en) 2011-01-19 2016-01-12 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366796A1 (en) * 1987-11-20 1990-05-09 Osaka Gas Co., Ltd Activated carbon and process for its production
JPH02160045A (en) * 1988-12-13 1990-06-20 Osaka Gas Co Ltd Active carbon stuck with fiber
US9636626B2 (en) 2002-12-09 2017-05-02 Entegris, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
US9062829B2 (en) 2002-12-09 2015-06-23 Entegris, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
KR101137461B1 (en) * 2002-12-10 2012-04-20 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Pyrolyzed monolith carbon physical adsorbent
JP2016052655A (en) * 2002-12-10 2016-04-14 インテグリス・インコーポレーテッド Gas storage and measure distribution system for monolith carbon absorber
TWI386587B (en) * 2002-12-10 2013-02-21 Advanced Tech Materials Gas storage and dispensing system with monolithic carbon adsorbent
US8858685B2 (en) 2002-12-10 2014-10-14 Advanced Technology Materials, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
JP2009008266A (en) * 2002-12-10 2009-01-15 Advanced Technology Materials Inc Gas storage, measurement and distribution system with monolithic carbon adsorbent
JP2006509974A (en) * 2002-12-10 2006-03-23 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Gas storage and dispensing system with monolithic carbon adsorbent
US9518701B2 (en) 2002-12-10 2016-12-13 Entegris, Inc. Gas storage and dispensing system with monolithic carbon adsorbent
US7951225B2 (en) 2005-05-03 2011-05-31 Advanced Technology Materials, Inc. Fluid storage and dispensing systems, and fluid supply processes comprising same
US8282023B2 (en) 2005-05-03 2012-10-09 Advanced Technology Materials, Inc. Fluid storage and dispensing systems, and fluid supply processes comprising same
US8221532B2 (en) 2006-01-30 2012-07-17 Carruthers J Donald Nanoporous articles and methods of making same
US7862646B2 (en) 2006-01-30 2011-01-04 Advanced Technology Materials, Inc. Nanoporous articles and methods of making same
US8539781B2 (en) 2007-06-22 2013-09-24 Advanced Technology Materials, Inc. Component for solar adsorption refrigeration system and method of making such component
US9132412B2 (en) 2007-06-22 2015-09-15 Entegris, Inc. Component for solar adsorption refrigeration system and method of making such component
US9234628B2 (en) 2011-01-19 2016-01-12 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
US9126139B2 (en) 2012-05-29 2015-09-08 Entegris, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent

Also Published As

Publication number Publication date
JPS6248535B2 (en) 1987-10-14

Similar Documents

Publication Publication Date Title
US4820318A (en) Removal of organic compounds from gas streams using carbon molecular sieves
US7195713B2 (en) Material for chromatography
CA1117513A (en) Spherical activated carbon having low dusting property and high physical strength and process for producing the same
JPH01308817A (en) Carbonaceous adsorbent occurring from thermally decomposed polysulfonated polymer
JPS60150831A (en) Preparation of carbonaceous adsorbent having fine pores
JPS62176908A (en) Preparation of molecular sieve comprising carbon
IE900320L (en) Carbon molecular sieves for purification of¹chlorofluorocarbons
CN111699036B (en) Excellent carbon adsorbents
JPS5945914A (en) Preparation of carbonaceous molecular sieve
JPS63139080A (en) Graphite body and manufacture
Lin et al. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers
JPS6022947B2 (en) Activated carbon for blood purification
US5597545A (en) Recovery of HF from aqueous streams
RU2046094C1 (en) Synthetic hydrocarbon diamond-containing material
EP0394350B1 (en) Hydrophobic carbon molecular sieves
JPH03169339A (en) Production of carbonaceous adsorbing material having pores
JPS62129144A (en) Porous composite structure and its preparation
KR102537725B1 (en) sulfuric acid treatment
DE4233577A1 (en) Adsorption of chloro:fluorocarbon(s) onto hydrophobic molecular sieve - composed of dealuminised natural or synthetic zeolite with a well defined pore size
JPH0742177B2 (en) Method for producing hollow carbonaceous spheres
JPS6252116A (en) Production of formed activated carbon
JPS61242907A (en) Porous mesocarbon microbead and production thereof
JPS61233080A (en) Porous bulk mesophase and production thereof
JPH0284545A (en) High surface fiber
WO1999062616A1 (en) Carbon structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term