JPH03170310A - Production of amorphous carbon material - Google Patents

Production of amorphous carbon material

Info

Publication number
JPH03170310A
JPH03170310A JP1309897A JP30989789A JPH03170310A JP H03170310 A JPH03170310 A JP H03170310A JP 1309897 A JP1309897 A JP 1309897A JP 30989789 A JP30989789 A JP 30989789A JP H03170310 A JPH03170310 A JP H03170310A
Authority
JP
Japan
Prior art keywords
acid
mesophase
treatment
carbonaceous
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309897A
Other languages
Japanese (ja)
Inventor
Masaki Fujii
政喜 藤井
Masanori Minohata
箕畑 政則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP1309897A priority Critical patent/JPH03170310A/en
Publication of JPH03170310A publication Critical patent/JPH03170310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain an amorphous carbon material having improved gaseously transmissible property by subjecting a carbonaceous material to a specific treatment, heating and baking the produced aqua-mesophase or amphiphilic carbonaceous mesophase in an inert atmosphere and, as necessary, heat-treating the product at a high temperature. CONSTITUTION:A carbonaceous material having an H2 content of >=2wt.% and produced by the heat-treatment of a raw material such as coal tar pitch is treated with an acid or oxidizing agent such as HNO3, H2SO4, mixture of HNO3 and H2SO4, H2O2 or KMnO4 and the oxidation product is filtered, washed with water and dried. The dried material is dissolved in water, a basic aqueous solution or an organic solvent, the solution is filtered to remove insoluble components and the dissolved components are precipitated again and filtered to obtain an aqua-mesophase or amphiphilic carbonaceous mesophase. The mesophase is heated in a non-oxidizing atmosphere to >=600 deg.C at a heating rate of <=30 deg.C/h in the case of the treatment with an acid or an oxidizing agent containing HNO3 or at an arbitrary heating rate otherwise to effect the carbonization and baking of the mesophase. As necessary, the carbonized product is heated at a high temperature (>=2000 deg.C) to obtain the objective amorphous carbon material having isotropic fine structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファス炭素材料に関し、特に、るつぼ、
ボート材等の冶金用治具、メカニカルシールや軸受等の
機械用治具、半導体用治具あるいはガス不滲透性材料用
等に好適に用いられる等方的組織を有するアモルファス
炭素材料の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an amorphous carbon material, particularly a crucible,
This invention relates to a method for producing an amorphous carbon material having an isotropic structure that is suitable for use in metallurgical jigs such as boat materials, mechanical jigs such as mechanical seals and bearings, semiconductor jigs, gas-impermeable materials, etc. .

〔発明の背景〕[Background of the invention]

ピッチ等の重質歴青物の熱処理による炭素への移行段階
で生成する炭素質メソフェースは、その過程で平面的な
縮合多還芳香族を主体とする化合物が配向し積層した構
造を有しているため、この炭素質メソフェースを高温ド
で黒鉛化処理することによって黒鉛結晶の発達した易黒
鉛化性炭素を得ることができる。
Carbonaceous mesophase, which is generated during the transition stage of heat treatment of pitch and other heavy bituminous materials to carbon, has a structure in which compounds mainly composed of planar condensed polycyclic aromatics are oriented and stacked during the process. Therefore, graphitizable carbon with developed graphite crystals can be obtained by graphitizing this carbonaceous mesophase at a high temperature.

一方、黒鉛結品が発達していない炭素伺料としてはガラ
ス状炭素が知られている。たとえば、フェノール樹脂、
フラン樹脂およびビニリデン樹脂等の熱硬化性樹脂やセ
ルロース等は、3次元的分子の結合を有するため、炭素
化以前の熱処理過程において、この構逍による制約を受
けて芳香族平面の成長とその層状化が妨げられるため、
高温による黒鉛化処理によっても黒鉛結晶了の発達した
ところがほとんど認められない難黒鉛化性炭素を与える
。この難黒鉛化性炭素は硬質でかつ等方的組織を有し、
破断面がガラス状の外観光沢を呈し、気体透過度が極め
て低いなど、その性質かガラスに類似していることから
ガラス状炭素と呼ばれている。
On the other hand, glassy carbon is known as a carbon material in which graphite crystals are not developed. For example, phenolic resin,
Thermosetting resins such as furan resins and vinylidene resins, cellulose, etc. have three-dimensional molecular bonds, so during the heat treatment process before carbonization, the growth of aromatic planes and their layered structure are restricted by this structure. Because it prevents
Even when graphitized at high temperatures, non-graphitizable carbon is obtained in which hardly any developed graphite crystals are observed. This non-graphitizable carbon has a hard and isotropic structure,
It is called glassy carbon because its properties are similar to glass, with its fractured surface exhibiting a glossy glass-like appearance and extremely low gas permeability.

ガラス状炭素は上記の特性に加え、炭素自身の持つ、軽
量、耐薬品性、電気伝導性、熱伝導性、潤滑性、耐熱性
等にも優れるため、るつぼ、ボート材等の冶金用、メカ
ニカルシール、軸受等の機械用、半導体治具あるいはガ
ス不滲透性月料用等、数多くの工業用H料へ利用されて
いる。
In addition to the above properties, glassy carbon has excellent properties such as light weight, chemical resistance, electrical conductivity, thermal conductivity, lubricity, and heat resistance, so it is suitable for metallurgical and mechanical applications such as crucibles and boat materials. It is used in many industrial H materials such as seals, bearings, and other machinery, semiconductor jigs, and gas-impermeable materials.

また、等方的組織を有する等方性炭素材料が知られてい
る。これは、微粉化した炭素材を骨材として、それ自身
が自己焼結性を持つときは一元系の材料として、もしく
は自己焼結性を持たない場合にはバインダーを加えて二
元系で成形した後、焼成することにより得られる。この
ような等方性炭素は、骨材の粘度配合調整による充填奇
度を上げる方法(特公昭63−23124号公報)、熱
処理時の収縮率の大きな骨材を用いる方法(特公昭57
−25484号公報)、さらにホットプレス処理を行う
方法等により高密度化を図ることで高硬度で緻密なもの
となり、上述したガラス状炭素と同様な特性を有するア
モルファス炭素材料が得られる。このようにして得られ
るアモルファス炭素材料は、メカニカルシール軸受等の
機械用部材、放電加工用電極材料、原子炉用炉月、半導
体用治具、鋳造用ダイスあるいはホットプレス用型材等
、数多くの工業的利用がなされている。
Furthermore, isotropic carbon materials having an isotropic structure are known. This can be molded using pulverized carbon material as an aggregate, either as a one-component material if it has self-sintering properties, or as a binary material with the addition of a binder if it does not have self-sintering properties. After that, it is obtained by firing. Such isotropic carbon can be obtained by increasing the filling oddness by adjusting the viscosity of the aggregate (Japanese Patent Publication No. 63-23124), or by using aggregate with a high shrinkage rate during heat treatment (Japanese Patent Publication No. 57/1989).
-25484), and by further increasing the density by hot pressing, etc., it becomes highly hard and dense, and an amorphous carbon material having the same properties as the above-mentioned glassy carbon can be obtained. The amorphous carbon material obtained in this way can be used in many industrial applications such as mechanical parts such as mechanical seal bearings, electrode materials for electrical discharge machining, reactor parts for nuclear reactors, semiconductor jigs, casting dies, and mold materials for hot presses. It is being used for various purposes.

しかしながら、上記ガラス状炭素は、その製造面におい
て熱硬化性樹脂やセルロース等を原料どするため、本質
的に以下に示されるような欠点を有している。
However, since the glassy carbon uses thermosetting resins, cellulose, etc. as raw materials in its manufacture, it essentially has the following drawbacks.

すなわち、炭素化焼成過程における反応は、多くの分解
ガス、水の発生を伴うため、収早が低く、また、大きな
収縮を伴うためクラックや割れを生じやすい。これを解
決するために、所定の形状をした基盤上に、筆、噴霧、
遠心法などにより樹脂を薄く塗布・硬化させる操作を繰
り返す、いわゆる多重塗布法が工夫されている(11本
特許412380号)。また、熱硬化性樹脂を粉砕し、
骨材として成形体を作製し、炭素化焼成する方法も行わ
れている(日本特許420682号)。
That is, the reaction in the carbonization firing process is accompanied by the generation of a large amount of decomposed gas and water, so the recovery rate is low, and the reaction is accompanied by large shrinkage, which tends to cause cracks and fractures. To solve this problem, we applied brush, spray, and
A so-called multi-coating method has been devised, in which the operation of applying and curing a thin layer of resin using a centrifugal method or the like is repeated (No. 11 Patent No. 412,380). We also crush thermosetting resin,
There is also a method in which a molded body is produced as an aggregate and carbonized and fired (Japanese Patent No. 420682).

しかし、実際に製造する場合、本発明者らの知見によれ
ば、これらの操作はかなり繁雑なものであり、また、い
ずれの方法においても、その炭素化、焼成工程は、例え
ば500℃までを1℃/hr,900℃までを59C/
hr(英国特許956,452号、同1,024,97
1号)といった非常に低速の昇温を厳密制御して行う必
要があることから、繁雑な条件菅理と多大の■j7間を
要するという問題がある。また、原料の点においても、
従来の方法は、合或樹脂が用いられるため、コストの点
で必ずしも1ニ業化に有利であるとはいえない。
However, in actual production, according to the knowledge of the present inventors, these operations are quite complicated, and in both methods, the carbonization and firing steps are heated up to, for example, 500°C. 1℃/hr, 59C/hr up to 900℃
hr (British Patent No. 956,452, British Patent No. 1,024,97
Since it is necessary to strictly control the temperature increase at a very slow rate such as No. 1), there is a problem that it requires complicated conditions and a large amount of time. Also, in terms of raw materials,
Since the conventional method uses a composite resin, it cannot necessarily be said that it is advantageous for single production in terms of cost.

等方性炭素についていえば、従来の等方性炭素は、炭素
材の微粉細後の粘度調整が難しく、また、バインダーの
添加量も比較的多くなり、そのための揮発分の調整工捏
も別途必要となる。さらに、ホットプレスの使用は高価
であり、工程も繁雑となり、高密度化のための含浸処理
が行われる場合にはさらに工程が増加する要因となり、
結果的にコストアップとなる。
Regarding isotropic carbon, with conventional isotropic carbon, it is difficult to adjust the viscosity after the carbon material is finely pulverized, and the amount of binder added is relatively large, and the volatile content adjustment process is required separately. It becomes necessary. Furthermore, the use of hot press is expensive and the process is complicated, and when impregnation treatment is performed for densification, the number of steps increases further.
As a result, costs increase.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記の問題点を解決すべく研究を重ねた
結果、工業的な原料としてn゛利である、ピッチ、メソ
フェース含有ピッチ、炭素質メソフェースおよび生コー
クスなどの炭素化処理により易黒鉛化性の炭素を与える
炭素質材料を原料とし、この炭累質材料に対して特定の
酸処理ならびに再析出を経て得られたメソフェースを熱
処理することによって、良好な特性をh゛するアモルフ
ァス横造の炭素材が得られることを見出した。さらに、
上記の酸処理が硝酸を含む酸による処理の場合にあって
は、熱処理工程における昇温速度を厳格に制御すること
が、良好なアモルファス炭素材を得る上において重要で
あることを見出した。
As a result of repeated research to solve the above problems, the present inventors have found that pitch, mesophase-containing pitch, carbonaceous mesophase, raw coke, etc., which are advantageous as industrial raw materials, can be easily carbonized. By using a carbonaceous material that provides graphitizable carbon as a raw material and heat-treating the mesophase obtained by subjecting this carbonaceous material to a specific acid treatment and re-precipitation, an amorphous lateral material with good properties can be produced. It was discovered that a carbon material with a strong structure can be obtained. moreover,
It has been found that when the above acid treatment is a treatment with an acid containing nitric acid, it is important to strictly control the temperature increase rate in the heat treatment process in order to obtain a good amorphous carbon material.

本発明は上記知見に県づいてなされたものであり、より
詳しくは、炭索質利料を酸処理もしくは酸化処理したも
のを、水、塩基性水溶l&もしくは有機溶媒に溶解させ
た後、溶解成分を再析出させて得られたアクアメソフェ
ースまたは両親媒性炭素質メソフェースを、不活性雰囲
気中において、前記酸処理もしくは酸化処理が硝酸を含
む酸による処理の場合にあっては30℃/11『以下の
昇温速度で、その他の場合は限定しない昇温速度で、6
00℃以上の温度まで炭素化ないし焼成し、あるいはさ
らに必要に応じて2000℃以上の高温で熱処理するこ
とによって実質的に等方性の微細構造を有するアモルフ
ァス炭素材を得ることを特徴とするものである。
The present invention has been made based on the above findings, and more specifically, carbonaceous material treated with acid or oxidized is dissolved in water, basic aqueous solution & or organic solvent, and then dissolved. The aqua mesophase or amphiphilic carbonaceous mesophase obtained by redepositing the components is treated in an inert atmosphere at 30° C./11 in the case where the acid treatment or oxidation treatment is a treatment with an acid containing nitric acid. ``At the following heating rate, otherwise unrestricted heating rate, 6
An amorphous carbon material having a substantially isotropic microstructure is obtained by carbonizing or firing to a temperature of 00°C or higher, or further heat-treating at a high temperature of 2000°C or higher as necessary. It is.

上述した方法によってアモルファス構造の炭素材が得ら
れる理由は必ずしも明らかではないが、次のように考え
ることができる。すなわち、一般に上述した原料炭素質
月料は多還多核芳香族化合物が配向、積層したものであ
り、したがってその組織は異方性を示すが、アクアメソ
フェースもしくは両親媒性炭素質メソフェースは、その
製造工程において一旦、溶液中に溶解・分散状態にした
後、析出させる工程を経由するため、その配向は等方向
となり、従って、これを炭素化、焼或して得られた炭素
材も等方的な組織を示す、いわゆるアモルファスの炭素
材が生成するものと考えられる。
The reason why a carbon material having an amorphous structure can be obtained by the above-mentioned method is not necessarily clear, but it can be considered as follows. In other words, the above-mentioned raw material carbonaceous material is generally composed of oriented and laminated polycyclic polynuclear aromatic compounds, and therefore its structure exhibits anisotropy, but aqua mesophase or amphiphilic carbonaceous mesophase In the manufacturing process, the orientation is isotropic as the carbon material is first dissolved and dispersed in a solution and then precipitated. It is thought that a so-called amorphous carbon material exhibiting a similar structure is produced.

なお、本発明においては、製造過程において、材料が一
旦均一な溶液状態を経ることより、その溶液に金属、金
属酸化物、セラミックス、炭素材料等を混合することは
極めて容易であり、それらが均一に分散したアモルファ
ス炭素を製造することも容易になされ得る。
In addition, in the present invention, since the materials are once in a uniform solution state during the manufacturing process, it is extremely easy to mix metals, metal oxides, ceramics, carbon materials, etc. into the solution, and the materials are uniformly dissolved. It is also possible to easily produce amorphous carbon dispersed in .

〔発明の具体的説明〕[Specific description of the invention]

本発明に用いる炭索質材料としては、重質歴青物である
ピッチ類の熱処理によって製造されるピッチ、メソフェ
ースピッチ、炭索質メソフェースおよび生コークスなど
が用いられ得るが、このうちでも炭索質メソフェースお
よび(または)生コークスが好ましく用いられ得る。
As the carbonaceous material used in the present invention, pitch produced by heat treatment of pitch, which is a heavy bituminous substance, mesoface pitch, carbonaceous mesoface, raw coke, etc. can be used. Mesophase and/or raw coke may preferably be used.

これら炭素質材料の原料として用いられるピッチ類とし
ては、コールタールピッチ、石炭波化物の石炭系ピッチ
、石油の蒸留残渣油、ナフサの熱分解時に副生ずるナフ
サタールピッチ、ナフサ等の流動接触分解法CFCC法
)で副生ずるFCCデカントオイル等の石油系ピッチ、
PVC等の合成高分子の熱分解で得られるピッチJrj
,が具体例として挙げられ、炭素化処理によって易黒鉛
化性炭素を与えるものであれば特に種類は問わない。炭
素質メソフェースを得るにあたっては、これらのピッチ
類を約350〜500℃で熱処理する。この熱処理によ
って、炭素質メソフェース(生コークスを含む)を生威
させる。炭素質メソフェースの生成は、熱処理物を偏光
顕微鏡下で観察することによって容易に知ることができ
る。すなわち、炭素質メソフェースは光学的等方性相で
あるピッチ中に生成してくる光学的異方性相として識別
され得る。このとき、炭素質メソフェースの形態は、熱
処理が緩やかな段階、すなわち炭素化過程の初期段階で
生戊するメソフェース小球体であっても、この小球体が
成長して互いに合体したいわゆるバルクメソフェースで
もよい。
The pitches used as raw materials for these carbonaceous materials include coal tar pitch, coal-based pitch of coal wave compounds, petroleum distillation residue oil, naphtha tar pitch produced as a by-product during the thermal decomposition of naphtha, and fluid catalytic cracking of naphtha. Petroleum-based pitch such as FCC decant oil produced by the CFCC method),
Pitch Jrj obtained by thermal decomposition of synthetic polymers such as PVC
, are cited as specific examples, and any type is not particularly limited as long as it provides graphitizable carbon through carbonization treatment. To obtain carbonaceous mesophase, these pitches are heat treated at about 350 to 500°C. Through this heat treatment, carbonaceous mesophase (including raw coke) is brought to life. The generation of carbonaceous mesophase can be easily detected by observing the heat-treated product under a polarizing microscope. That is, the carbonaceous mesophase can be identified as an optically anisotropic phase that is generated in a pitch that is an optically isotropic phase. At this time, the morphology of the carbonaceous mesophase can be either mesophase spherules that are formed during the slow stage of heat treatment, that is, the initial stage of the carbonization process, or so-called bulk mesophase that is formed by the growth of these spherules and coalescence with each other. good.

炭素質メソフェースを生成させる熱処理条件は、熱処理
したピッチから分離される炭素質メソフェースの元素組
成によって決められる。特に水素の含有率が2重量%以
上になるようにすることが好ましい。これは次の工程で
ある硝酸、硫酸、硝酸と硫酸の混酸などの酸による処理
における官能基(カルボキシル基、スルホン酸基、水酸
基等)の導入量に関与するためである。従って、熱処理
条件を厳しくしてピッチ類を全量固化させたセミコ−ク
スでは、水素量が5%以下とならないように過度の熱処
理は避けることか肝要である。
The heat treatment conditions for producing carbonaceous mesofaces are determined by the elemental composition of the carbonaceous mesofaces separated from the heat-treated pitch. In particular, it is preferable that the hydrogen content be 2% by weight or more. This is because it is involved in the amount of functional groups (carboxyl group, sulfonic acid group, hydroxyl group, etc.) introduced in the next step, treatment with an acid such as nitric acid, sulfuric acid, or a mixed acid of nitric acid and sulfuric acid. Therefore, it is important to avoid excessive heat treatment so that the hydrogen content does not fall below 5% in semi-coke in which pitches are completely solidified under strict heat treatment conditions.

熱処理したピッチから炭素質メソフェースの分離は、沈
降法または(および)溶剤分別法により実施することが
できる。すなわち、熱処裡したピッチを、このピッチが
溶融状ガにおいて、静置すると炭素質メソフェースが下
方に沈降するので、この部分のみを採取する。また、溶
剤としてキノリン、ピリジン等の有機溶剤、アントラセ
ン油や、クレオソート油等の芳香族化合物を多量に含有
する芳香族系油に熱処理したピッチを溶解、分散させ、
これらの溶剤の不溶性成分として行ることができる。
Separation of carbonaceous mesophase from heat-treated pitch can be carried out by sedimentation methods and/or solvent fractionation methods. That is, when the heat-treated pitch is allowed to stand still in a molten state, the carbonaceous mesophase settles downward, so only this portion is collected. In addition, heat-treated pitch is dissolved and dispersed in an organic solvent such as quinoline or pyridine as a solvent, or an aromatic oil containing a large amount of aromatic compounds such as anthracene oil or creosote oil.
It can be carried out as an insoluble component of these solvents.

上記のようにして得られた炭素質H料を、硝酸、硫酸、
硝酸と硫酸との混合物、発煙硫酸等の酸、もしくは過酸
化水素、重クロム酸カリウム等の酸化剤で処理すること
により、炭素質利料を構成する分子内へ、カルボキシル
基、スルホン酸基、水酸基等の親水性の官能基を導入す
る。本発明において、酸処理という用語は、上述した酸
ならびに酸化剤による処理の双方を包含する処理を意味
する。
The carbonaceous H material obtained as above was mixed with nitric acid, sulfuric acid,
By treating with a mixture of nitric acid and sulfuric acid, an acid such as fuming sulfuric acid, or an oxidizing agent such as hydrogen peroxide or potassium dichromate, carboxyl groups, sulfonic acid groups, Introducing a hydrophilic functional group such as a hydroxyl group. In the present invention, the term acid treatment means a treatment that includes both the above-mentioned acid and treatment with an oxidizing agent.

このとき、上記酸ないし酸化剤で処理した炭素質月料は
、塩基性水溶波に可溶性となることが発明者により見出
されている(PreprinL of” 18thBi
ennial Conr. of’ Carbon, 
p.405(1987 ) 、特開昭64−9288号
公報)。すなわち、上述した酸処理物に対して、一定の
pHとなるように塩基性水溶液を加えると、炭索質材料
の酸処理物は可溶状態となる。さらに、この可溶分に酸
水溶液を加えることにより、すなわち、可溶分のpHを
3以下、望ましくは1以下に調整することにより、可溶
化された炭索質材料が炭素質成分として再析出する(こ
のようにして析出した炭素質成分を、『アクアメソフェ
ース』と称する)。
At this time, the inventor has discovered that the carbonaceous material treated with the acid or oxidizing agent becomes soluble in the basic aqueous solution (PreprinL of" 18thBi
annual Conr. of' Carbon,
p. 405 (1987), Japanese Unexamined Patent Publication No. 64-9288). That is, when a basic aqueous solution is added to the acid-treated product described above so as to maintain a constant pH, the acid-treated carbonaceous material becomes soluble. Furthermore, by adding an acid aqueous solution to this soluble component, that is, by adjusting the pH of the soluble component to 3 or less, preferably 1 or less, the solubilized carbonaceous material is redeposited as a carbonaceous component. (The carbonaceous component thus precipitated is called "aqua mesoface").

一方、上記炭素質材料の酸処理物は、有機溶剤にも可溶
であることが知られており(特開昭64−9288号公
報)、これを有機溶剤に溶解させた後、蒸発等により溶
剤を除去して炭素質戊分を得る(このようにして得た炭
素質成分を『両親媒性炭素質メソフェース』と称する)
On the other hand, it is known that the above-mentioned acid-treated carbonaceous material is also soluble in organic solvents (Japanese Unexamined Patent Publication No. 64-9288), and after dissolving it in an organic solvent, evaporation etc. Remove the solvent to obtain a carbonaceous fraction (the carbonaceous component obtained in this way is called "amphiphilic carbonaceous mesophase")
.

上述したアクアメソフェースもしくは両親媒性炭索質メ
ソフェースは、乾燥時の収縮が比較的大きく、通常の乾
燥で得られる物は粒径2〜3帥の粒子しか得られない。
The above-mentioned aqua mesophase or amphiphilic carbonaceous mesophase has a relatively large shrinkage during drying, and only particles with a particle size of 2 to 3 particles can be obtained by normal drying.

しかし、本発明においては、乾燥速度や湿度の調整、表
面張力のコントロールなどの操作により20++++l
1以上の任意の粒子形にコントロールすることができる
。表面張力のコントロールとしては、例えば、アルコー
ル、ホルマリン、アンモニア、DMFなどの添加剤を添
加することによりコントロールすることができる。
However, in the present invention, by adjusting drying speed, humidity, controlling surface tension, etc.
It is possible to control one or more arbitrary particle shapes. Surface tension can be controlled, for example, by adding additives such as alcohol, formalin, ammonia, and DMF.

次に、アクアメソフェースもしくは両親媒性炭素質メソ
フェースを、非酸化性雰囲気中において、硝酸を含む酸
による処理の場合にあっては30°C/hr以下の昇温
速度で、あるいはその他の場合は限定しない昇温温度で
、600℃以上、好ましくは1000℃以上の温度まで
炭素化、焼成し、さらに必要に応じて2000℃以上の
高温で熱処理する。加熱温度が600℃より低いと、十
分炭素化せず、したがって目的とするアモルファス炭素
材料としての性質を賦与することが困難となる。
Next, the aqua mesophase or amphiphilic carbonaceous mesophase is treated in a non-oxidizing atmosphere with a heating rate of 30°C/hr or less in the case of treatment with an acid containing nitric acid, or in other cases. is carbonized and fired at an elevated temperature of not limited to 600° C. or higher, preferably 1000° C. or higher, and further heat-treated at a high temperature of 2000° C. or higher if necessary. If the heating temperature is lower than 600° C., sufficient carbonization will not occur, and therefore it will be difficult to impart the desired properties as an amorphous carbon material.

このとき、硝酸を含む酸を用いて酸処理したものについ
て昇温速度を30℃/hr以下に制限するのは、特に2
50〜300℃まで温度範囲において、30℃/hrを
超える昇温速度、たとえば100℃/hr以上の速度で
急速に炭素化処理すると多量のガスの発坐を伴いながら
膨脹・発泡する現象が発生し、このため緻密な構造の炭
素材が得られないためである。
At this time, it is particularly important to limit the temperature increase rate to 30°C/hr or less for items that have been acid-treated using an acid containing nitric acid.
In the temperature range of 50 to 300°C, if carbonization is performed rapidly at a heating rate exceeding 30°C/hr, for example at a rate of 100°C/hr or more, expansion and foaming accompanied by the generation of a large amount of gas will occur. However, this is because a carbon material with a dense structure cannot be obtained.

このようにして得られたアモルファス炭素は、緻密な等
方的組織をHし、2000℃以上の高温で熱処理しても
黒鉛結晶の発達しない難黒鉛化性炭素である。そのため
、ガス不透過性を有し、また、1000℃以下の焼成品
は、賦括によって均一な細孔が形成される等の特徴を示
す。
The amorphous carbon thus obtained is a non-graphitizable carbon that has a dense isotropic structure and does not develop graphite crystals even when heat treated at a high temperature of 2000° C. or higher. Therefore, it has gas impermeability, and products fired at 1000° C. or lower exhibit characteristics such as uniform pores being formed by loading.

以下、実施例を挙げて、本発明をさらに詳しく説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

(丈施例1) ディレードコー力一法で得られた生コークスを微粉砕し
、平均粒径を10μmとした。この元素組戊は、炭素9
5.lwt%、水素3.1wt%、窒素0.6wt%で
あった。この5gを300mlの容量の三角フラスコに
96%硫酸と70%硝酸の50 : 50容量比の混酸
100mlを入れたものへ少量ずつ加えた。全量加えた
後、あらかじめ80℃に加熱した油浴で4時間加熱した
(Example 1) Raw coke obtained by a delayed coke force method was finely pulverized to have an average particle size of 10 μm. This elemental composition is carbon 9
5. 1 wt%, hydrogen 3.1 wt%, and nitrogen 0.6 wt%. 5 g of this was added little by little to a 300 ml Erlenmeyer flask containing 100 ml of a mixed acid of 96% sulfuric acid and 70% nitric acid in a 50:50 volume ratio. After adding the entire amount, it was heated for 4 hours in an oil bath preheated to 80°C.

ついで、ガラスフィノレタ−( No. 4 )で冫戸
過し、水で十分洗浄した後、乾燥した。収率は140重
凰%であった。これを水に分散させ、撹伴しながらpH
10となるまでIN−NaOHを加えた。
Then, it was filtered through a glass finoletter (No. 4), thoroughly washed with water, and then dried. The yield was 140%. Disperse this in water and adjust the pH while stirring.
IN-NaOH was added until the concentration reached 10.

つぎにメンプランフィルター(0,1μm)で枦過し、
?戸液を得た。不溶分量は生コークスに対して0.7重
量%であった。これにIN−HCIをpH1以下となる
ように加え、沈殿物をガラスフィノレタ−( No. 
4 )で冫戸過した。これを30×50X10mmの容
器に充拉し、底に水を入れ、上に1mmの孔を数多くあ
けたアルミ箔で蓋をしたデシケーター中で20日間放置
し、さらに、120℃の乾燥器で10hr乾燥した。こ
のときの収率は、原料生コークスに対して133重量%
あった。
Next, pass through a Menplan filter (0.1 μm),
? I got the liquid. The amount of insoluble matter was 0.7% by weight based on the raw coke. IN-HCI was added to this to make the pH less than 1, and the precipitate was transferred to a glass finoletter (No.
4) I was disappointed. Fill this into a 30 x 50 x 10 mm container, fill it with water at the bottom, leave it in a dessicator covered with aluminum foil with many 1 mm holes on the top for 20 days, and then put it in a dryer at 120°C for 10 hours. Dry. The yield at this time was 133% by weight based on the raw material raw coke.
there were.

これを管状炉を用いて、窒素ガス気流中30℃/1】『
の昇温速度で1000℃まで加熱し、1時間保持して焼
成処理した。さらにタンマン炉を用いてアルゴンガス流
通下、2800゜Cまて加熱し30分間保持した。得ら
れたものは粒径20〜30WIII1以下の粒状体で、
収率は生コークスに対して50.8重量%であった。第
1図は、得られたアモルファス炭素材の透過型電子顕微
鏡写真であり、第2図はX線回折像写真である。黒鉛結
晶子がランダムにイf在しており、回折パターンにも配
向が全く観察されない。
This was heated at 30°C/1 in a nitrogen gas stream using a tube furnace.
The sample was heated to 1000° C. at a heating rate of 1,000° C. and held for 1 hour for firing treatment. Further, the mixture was heated to 2800°C using a Tammann furnace under argon gas flow and held for 30 minutes. What was obtained was a granular material with a particle size of 20 to 30WIII1 or less,
The yield was 50.8% by weight based on raw coke. FIG. 1 is a transmission electron micrograph of the obtained amorphous carbon material, and FIG. 2 is an X-ray diffraction image. Graphite crystallites are randomly distributed, and no orientation is observed in the diffraction pattern.

このようにして得られたアモルファス炭素祠の特性を表
1に示した。
Table 1 shows the characteristics of the amorphous carbon grain thus obtained.

表 1 比重はJIS  R7212に準拠して測定。table 1 Specific gravity is measured in accordance with JIS R7212.

(実施例2) コールタールピッチ500gに対してキノリンを約15
00ml加え、約90℃に加熱し、溶解させた。これを
遠心沈降機によって不溶成分を沈降させ、上澄みを定性
枦紙によって、減圧枦過した。
(Example 2) About 15% of quinoline is added to 500g of coal tar pitch.
00ml was added and heated to about 90°C to dissolve it. The insoluble components were precipitated using a centrifugal sedimentation machine, and the supernatant was filtered through qualitative paper under reduced pressure.

枦液を減圧蒸留してキノリンを除き、フリーカーボンを
含有しないピッチを得た。このピッチ300gを500
mlのガラス製固筒状容器に入れ、窒素ガス気流中、撹
伴しながら、450℃まで加1t:) 熱し、この温度で45分間保持した。時間経過後、直ち
に室温まで冷却して熱処理ピッチ273gを得た。熱処
理ピッチ200gに対してキノリン600ml加え、約
90℃に加熱して、溶解、分散させた。これを遠心沈降
機により、不溶成分を沈降させ、上澄みを除き、不溶或
分に新たなキノリンを加え、約90℃に加熱した後、遠
心沈降機で不溶成分を沈降させた。この操作を5回繰り
返した後、不溶成分はベンゼン、ついでアセトンで十分
に洗浄してキノリンを除き、約70℃で乾燥して、炭素
質メソフェース98gを得た。ついで、この炭素質メソ
フェース50gを200mlのキノリンに入れ、約25
0℃に加熱して、キノリンを還流させながら3時間保持
した後、遠心沈降機で不溶成分を沈降させ、上澄みを除
いた。不溶成分にキノリンを加え、約90℃に加熱した
後、遠心沈降機で不溶成分を沈降させ、上澄みを除いた
The citrus liquor was distilled under reduced pressure to remove quinoline, yielding pitch containing no free carbon. This pitch of 300g is 500g
The mixture was placed in a ml glass solid cylindrical container, heated to 450° C. for 1 t while stirring in a nitrogen gas stream, and maintained at this temperature for 45 minutes. After the elapse of time, the mixture was immediately cooled to room temperature to obtain 273 g of heat-treated pitch. 600 ml of quinoline was added to 200 g of heat-treated pitch and heated to about 90° C. to dissolve and disperse. The insoluble components were sedimented using a centrifugal sedimentation machine, the supernatant was removed, fresh quinoline was added to the insoluble portion, and after heating to about 90°C, the insoluble components were sedimented using a centrifugal sedimentation machine. After repeating this operation five times, the insoluble components were thoroughly washed with benzene and then with acetone to remove quinoline, and the mixture was dried at about 70° C. to obtain 98 g of carbonaceous mesophase. Next, 50 g of this carbonaceous mesophase was added to 200 ml of quinoline, and about 25 g of
After heating to 0° C. and holding for 3 hours while refluxing the quinoline, insoluble components were precipitated using a centrifugal sedimentation machine, and the supernatant was removed. After adding quinoline to the insoluble components and heating to about 90° C., the insoluble components were sedimented using a centrifugal sedimentation machine, and the supernatant was removed.

この操作を8同繰り返した後、不溶成分にベンゼン、次
いでアセトンで十分洗浄してキノリンを除き、約70℃
で乾燥して、炭素質メンフェース44gを得た。このよ
うにして調製した炭索質メソフェースの元素組成は、炭
素Q2.3wt%、水素3.4wt%、窒素1.4wt
%であった。
After repeating this operation 8 times, the insoluble components were thoroughly washed with benzene and then with acetone to remove quinoline, and the mixture was heated to about 70°C.
was dried to obtain 44 g of carbonaceous membrane. The elemental composition of the carbonaceous mesophase prepared in this way was 2.3 wt% carbon Q, 3.4 wt% hydrogen, and 1.4 wt% nitrogen.
%Met.

この0.35w以下の粒度の5gを300mlの三角フ
ラスコに30%の発煙硫酸100mlを入れたものへ加
えた後、あらかじめ150℃に加熱した油浴中で5時間
保持した。油浴から取り出し、室温まで冷却した後、こ
れを300mlの水中へ徐々に移した。ついで、ガラス
フィルター( No. 4 )で冫戸過し、pH1の硝
酸で洗浄した後、乾燥した。
After adding 5 g of this particle size of 0.35 W or less to a 300 ml Erlenmeyer flask containing 100 ml of 30% oleum, the flask was held in an oil bath preheated to 150° C. for 5 hours. After removing from the oil bath and cooling to room temperature, it was gradually transferred to 300 ml of water. Then, it was filtered through a glass filter (No. 4), washed with nitric acid of pH 1, and then dried.

収率は151.0重量%であった。The yield was 151.0% by weight.

この2gをジメチルスルホキシド(DMSO)100m
lに加え十分撹伴した後、目開き0.  5μmのテフ
ロン製メンプランフィノレターで冫戸過した。枦液を加
熱してDMSOを蒸発させた後、減圧乾燥させ両親媒性
炭素質メソフェースを得た。
Add 2g of this to 100ml of dimethyl sulfoxide (DMSO)
After stirring thoroughly, the mesh size is 0. It was passed through a 5 μm Teflon Membrane Fino Letter. After heating the resin solution to evaporate DMSO, it was dried under reduced pressure to obtain amphiphilic carbonaceous mesophase.

このときの収率は、原料炭素質メソフェースに対して1
50.2重量%であり、不溶成分は存71:シなかった
At this time, the yield is 1 for the raw material carbonaceous mesophase.
It was 50.2% by weight, and no insoluble components were present.

これを管状炉を用いて、窒素ガス気流中300℃/ h
 rの昇温速度で1000℃まで加熱し、1時間保持し
て焼成処理した。さらにタンマン炉を用いてアルゴンガ
ス流通下、2800℃まで加熱し、1時間保持した。収
率は炭素質メソフェースに対して46.0重量%であっ
た。第3図は、得られたアモルファス炭素材の透過型電
子顕微鏡写真であり、第4図はX線回折像写真である。
This was heated at 300°C/h in a nitrogen gas stream using a tube furnace.
It was heated to 1000° C. at a heating rate of r and held for 1 hour for firing treatment. Further, the mixture was heated to 2800° C. using a Tammann furnace under argon gas flow and maintained for 1 hour. The yield was 46.0% by weight based on the carbonaceous mesophase. FIG. 3 is a transmission electron micrograph of the obtained amorphous carbon material, and FIG. 4 is an X-ray diffraction image.

黒鉛結晶子がランダムに存在しており、回折パターンに
も配向が全く観察されない。
Graphite crystallites exist randomly, and no orientation is observed in the diffraction pattern.

このようにして得られたアモルファス炭素材の特性を表
1に示した。
Table 1 shows the properties of the amorphous carbon material thus obtained.

(実施例3) 実施例2で用いたと同じ炭素質メソフェースの0.35
mm以下の粒度の5gを300mlの三角フラスコに3
1%の過酸化水素水100mlを入れたものへ加えた後
、あらかじめ100℃に加熱した油浴中で3時間保持し
た。油浴から取り出し、室温まで冷却した後、ガラスフ
ィルター( No. 4 )で冫戸過し、乾燥した。収
率は51.6重量%であった。
(Example 3) 0.35 of the same carbonaceous mesophase used in Example 2
Add 5 g of particle size below 3 mm to a 300 ml Erlenmeyer flask.
After adding it to a solution containing 100 ml of 1% hydrogen peroxide solution, it was kept in an oil bath preheated to 100° C. for 3 hours. The mixture was taken out from the oil bath, cooled to room temperature, filtered through a glass filter (No. 4), and dried. The yield was 51.6% by weight.

これを水に分散させ、撹伴しながら、pH2となるまで
IN−NaOHを加えた。つぎにメンプランフィノレタ
−(0.5μm)で枦過し、冫戸戚を得た。不溶分量は
生コークスに対して0.8重量%であった。これにIN
−HCIをpH1以下となるように加え、沈殿物をガラ
スフィルター(NO,4)で枦過した後、乾燥した、こ
のときの収率は、原料生コークスに対して41.8重量
%であった。
This was dispersed in water, and while stirring, IN-NaOH was added until the pH reached 2. Next, it was passed through a membrane filter (0.5 μm) to obtain a filtrate. The amount of insoluble matter was 0.8% by weight based on the raw coke. IN to this
-HCI was added to make the pH less than 1, and the precipitate was filtered through a glass filter (NO, 4) and dried.The yield at this time was 41.8% by weight based on the raw material raw coke. Ta.

これを管状炉を用いて、窒素ガス気流中300℃/hr
の昇温速度で600℃まで加熱し、1時間保持して焼成
処理した。この熱処理物の特性を表2に示した。
This was heated at 300°C/hr in a nitrogen gas stream using a tube furnace.
The sample was heated to 600° C. at a temperature increase rate of 100° C. and held for 1 hour for firing treatment. The properties of this heat-treated product are shown in Table 2.

さらに、この焼成品を管状炉を用いて、二酸化炭素ガス
気流中100℃/hrの昇温速度で600℃まで加熱し
、1時間保持して賦活処理した。この処理物の特性を表
2に示した。
Further, this fired product was heated to 600° C. in a carbon dioxide gas stream at a heating rate of 100° C./hr using a tubular furnace, and was maintained for 1 hour for activation treatment. The characteristics of this treated product are shown in Table 2.

2U 表 2 (比較例1) 実施例1で得られた酸処理物(アクアメソフェスとして
いないもの)を水洗乾燥したものを、実施例1と同様に
してて、管状炉で窒素ガス気流中30℃/hrの昇温速
度で1000℃まで加熱処理した後、タンマン炉で28
00℃で30分間処理した。収率は生コークスに対して
48.6重量%であった。この特性を表3に示した。
2U Table 2 (Comparative Example 1) The acid-treated product obtained in Example 1 (not as Aqua Mesofes) was washed with water and dried in the same manner as in Example 1, and heated in a tube furnace in a nitrogen gas stream for 30 minutes. After heat treatment to 1000℃ at a heating rate of ℃/hr, heat treatment was carried out at 28℃ in a Tammann furnace.
It was treated at 00°C for 30 minutes. The yield was 48.6% by weight based on raw coke. This characteristic is shown in Table 3.

(比較例2) 実施例1の昇温速度を50℃/hrて実施した以外他の
条件は、実施例1と同条件で行った。得られた熱処理物
の特性を表3に示した。
(Comparative Example 2) The same conditions as in Example 1 were used except that the temperature increase rate in Example 1 was changed to 50° C./hr. Table 3 shows the properties of the heat-treated product obtained.

表 3table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は、各々、実施例1および実施例2
で得られたアモルファス炭素材の結晶構造を示す透過型
電子顕微鏡写真であり、第2図および第4図は、各々、
実施例1および2で得られたアモルファス炭素材のX線
回折像写真である。
FIG. 1 and FIG. 3 show Example 1 and Example 2, respectively.
FIGS. 2 and 4 are transmission electron micrographs showing the crystal structure of the amorphous carbon material obtained in
1 is an X-ray diffraction image photograph of the amorphous carbon materials obtained in Examples 1 and 2.

Claims (1)

【特許請求の範囲】 1、炭素質材料を酸処理もしくは酸化処理したものを、
水、塩基性水溶液もしくは有機溶媒に溶解させた後、溶
解成分を再析出させて得られたアクアメソフェースまた
は両親媒性炭素質メソフェースを、不活性雰囲気中にお
いて、前記酸処理もしくは酸化処理が硝酸を含む酸によ
る処理の場合にあっては30℃/hr以下の昇温速度で
、その他の場合は限定しない昇温速度で、600℃以上
の温度まで炭素化ないし焼成し、あるいはさらに必要に
応じて2000℃以上の高温で熱処理することによって
実質的に等方性の微細構造を有する炭素材を得ることを
特徴とする、アモルファス炭素材の製造方法。 2、炭素質材料が、その水素含有量が2重量%以上であ
り、通常の炭素化処理により易黒鉛化性炭素を与えるも
のであることを特徴とする、請求項1に記載の方法。 3、酸処理もしくは酸化処理が、硝酸、硫酸、硝酸と硫
酸との混合物、過酸化水素水、過マンガン酸カリウム等
の酸ないしは酸化剤で処理することを特徴とする、請求
項1に記載の方法。
[Claims] 1. Carbonaceous material treated with acid or oxidation,
After dissolving in water, a basic aqueous solution, or an organic solvent, the aqua mesophase or amphiphilic carbonaceous mesophase obtained by reprecipitating the dissolved components is subjected to the acid treatment or oxidation treatment using nitric acid in an inert atmosphere. In the case of treatment with an acid containing acid, carbonization or sintering is carried out to a temperature of 600 °C or more at a temperature increase rate of 30 °C / hr or less, and in other cases, at an unrestricted temperature increase rate, or further as necessary. 1. A method for producing an amorphous carbon material, the method comprising obtaining a carbon material having a substantially isotropic microstructure by heat-treating the carbon material at a high temperature of 2000° C. or higher. 2. The method according to claim 1, wherein the carbonaceous material has a hydrogen content of 2% by weight or more and is capable of providing graphitizable carbon by ordinary carbonization treatment. 3. The acid treatment or oxidation treatment according to claim 1, wherein the acid treatment or oxidation treatment is performed with an acid or an oxidizing agent such as nitric acid, sulfuric acid, a mixture of nitric acid and sulfuric acid, hydrogen peroxide, potassium permanganate, etc. Method.
JP1309897A 1989-11-29 1989-11-29 Production of amorphous carbon material Pending JPH03170310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309897A JPH03170310A (en) 1989-11-29 1989-11-29 Production of amorphous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309897A JPH03170310A (en) 1989-11-29 1989-11-29 Production of amorphous carbon material

Publications (1)

Publication Number Publication Date
JPH03170310A true JPH03170310A (en) 1991-07-23

Family

ID=17998641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309897A Pending JPH03170310A (en) 1989-11-29 1989-11-29 Production of amorphous carbon material

Country Status (1)

Country Link
JP (1) JPH03170310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
CN115924886A (en) * 2022-12-22 2023-04-07 华中科技大学 Method for preparing amphiphilic nano biochar material from biomass and coal slime

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
CN115924886A (en) * 2022-12-22 2023-04-07 华中科技大学 Method for preparing amphiphilic nano biochar material from biomass and coal slime
CN115924886B (en) * 2022-12-22 2024-06-04 华中科技大学 Method for preparing amphiphilic nano biochar material by using biomass and coal slime

Similar Documents

Publication Publication Date Title
US4908200A (en) Method for producing elastic graphite structures
JPH0233679B2 (en)
US4883617A (en) Method of forming binderless carbon materials
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPH03170310A (en) Production of amorphous carbon material
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
US5017358A (en) Preparation of elastic graphite materials
US5057297A (en) Method for producing elastic graphite structures
KR102073155B1 (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JPS62138361A (en) Manufacture of high density formed body from carbon material
KR100501830B1 (en) Process for preparing spherical activated carbon
JPS58156023A (en) Production of carbon fiber
JPH03169339A (en) Production of carbonaceous adsorbing material having pores
JPH10204441A (en) Production of impregnation pitch and its production apparatus
KR101079666B1 (en) Producing method of Graphene-pitch composits and Carbon block
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPS61251504A (en) Production of formed graphite
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH0151441B2 (en)
JPH0212903B2 (en)
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JPH0323210A (en) Production of porous carbon
JPH0375212A (en) Preparation of elastic graphite
JPS6335451A (en) Manufacture of hard carbon material