JPH06155433A - Board material for concrete form - Google Patents

Board material for concrete form

Info

Publication number
JPH06155433A
JPH06155433A JP31817492A JP31817492A JPH06155433A JP H06155433 A JPH06155433 A JP H06155433A JP 31817492 A JP31817492 A JP 31817492A JP 31817492 A JP31817492 A JP 31817492A JP H06155433 A JPH06155433 A JP H06155433A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin layer
plate
fiber
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31817492A
Other languages
Japanese (ja)
Other versions
JP3012416B2 (en
Inventor
Tadamichi Nozawa
忠道 野沢
Satoru Matoba
哲 的場
Takao Kimura
隆夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Nippon Steel Corp filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4318174A priority Critical patent/JP3012416B2/en
Publication of JPH06155433A publication Critical patent/JPH06155433A/en
Application granted granted Critical
Publication of JP3012416B2 publication Critical patent/JP3012416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

PURPOSE:To improve the bending strength and rigidity, both of which withstand the large load at the construction of concrete, and surface smoothness and releasability on the surface properties of the constructed concrete. CONSTITUTION:The board material concerned consists of porous thermoplastic resin layer 2, which is reinforced by fibers or non-woven material produced by paper-making method, and the thermoplastic resin layer 3, which is laminated onto one side or both sides of the layer 2 and has the thickness of 0.2-2mm. The reinforcing fibers and air bubbles of the fiber reinforced thermoplastic resin layer 2 are covered by the laminated surface of the thermoplastic resin layer 3 under the condition that the total apparent density is set to be 0.3-1g/cm<3> and the basis weight is set to be 4,500g/m<2> or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
多孔質成形品のコンクリート型枠用板材(以後、型枠用
板材と称する)に関するものである。本発明の型枠用板
材は、従来木材が使用されていた建築、土木等のコンク
リート施工に広く使用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate material for concrete formwork (hereinafter referred to as a formwork plate material) which is a fiber-reinforced thermoplastic resin porous molded product. INDUSTRIAL APPLICABILITY The plate material for a formwork of the present invention can be widely used for construction such as construction and civil engineering where wood has been conventionally used.

【0002】[0002]

【従来の技術】近年、地球環境問題により、南洋材の伐
採が問題視されている。南洋材は、従来から合板に加工
され、建築、土木等のコンクリート施工時に型枠用板材
として大量に使用されており、それに代わる素材の開発
が望まれている。型枠用板材としては、コンクリート施
工時の大荷重に耐えうる曲げ強さ、剛性と、施工された
コンクリートの表面性状に関わる表面平滑性、離型性等
の性能が要求される。
2. Description of the Related Art In recent years, due to global environmental problems, the cutting of South Sea timber has been regarded as a problem. Traditionally, Nanyo wood has been processed into plywood, and has been used in large quantities as a plate material for formwork during concrete construction such as construction and civil engineering, and it is desired to develop alternative materials. The plate material for formwork is required to have bending strength and rigidity capable of withstanding a large load during concrete construction, and surface smoothness and mold releasability related to the surface properties of the constructed concrete.

【0003】従来使用されている木材型枠用板材の代替
品として、比較的長い強化繊維と熱可塑性樹脂から構成
されている繊維強化熱可塑性樹脂成形品は、その特性と
して比較的軽量かつ、高い強度、剛性を有していること
から注目を集めている。しかし、繊維強化熱可塑性樹脂
成形品の密度は1〜1.3g/cm3 で、木材合板の0.5
〜0.7g/cm3 に比べて軽量とはいえず、木材合板と同
レベルの強度、剛性を発現させるためには、製品の重量
増加につながり、製品のコスト・アップに結び付く。ま
た、強化繊維として代表的なガラス繊維は、コンクリー
トに付着し易いため、コンクリートとの離型性が問題に
なる。
As a substitute for the plate material for wood formwork that has been conventionally used, a fiber reinforced thermoplastic resin molded product composed of a relatively long reinforcing fiber and a thermoplastic resin is relatively lightweight and high in characteristics. It is attracting attention because of its strength and rigidity. However, the density of the fiber reinforced thermoplastic resin molded product is 1 to 1.3 g / cm 3, which is 0.5 of wood plywood.
It can not be said lighter than ~0.7g / cm 3, the strength of wood plywood the same level, in order to express the stiffness leads to increase in the weight of the product, leading to cost-up of the product. Further, since glass fiber, which is a typical reinforcing fiber, easily adheres to concrete, its releasability from concrete becomes a problem.

【0004】繊維強化熱可塑性樹脂成形品の機械的性質
の向上と、軽量化を図る方法として、抄造法(特公昭5
2−12283号公報、特公昭55−9119号公報)
によるシート状成形素材を用いた多孔質成形品の製造方
法(特開昭60−179234号公報、特開昭62−1
61529号公報)が提案されている。この多孔質成形
品は、シート状成形素材が成形前にマトリックスである
熱可塑性樹脂の軟化点または融点以上に加熱される際に
生じるシート膨張を利用して成形される。
As a method for improving the mechanical properties and reducing the weight of a fiber-reinforced thermoplastic resin molded product, a papermaking method (Japanese Patent Publication No.
No. 2-12283, Japanese Patent Publication No. 55-9119)
According to the method for producing a porous molded article using a sheet-shaped molding material (JP-A-60-179234, JP-A-62-1).
No. 61529) has been proposed. This porous molded product is molded by utilizing the sheet expansion that occurs when the sheet-shaped molding material is heated to the softening point or melting point of the thermoplastic resin which is the matrix before molding.

【0005】シート状成形素材は、抄造技術を応用し
て、直径3〜30μm、長さ3〜50mmの強化繊維と熱
可塑性樹脂粉末を均一に分散して不織材料を製造し、こ
の不織材料を原料とし加熱、加圧を行いさらに冷却して
製造される。抄造法で製造される不織材料は、強化繊維
がモノフィラメント(単一の繊維)の状態で分散してい
るため、非常にかさ高いという性質を示す。不織材料の
厚みは、強化繊維の含有量とその形状、抄造条件により
異なるが、シート状成形素材として一般的に用いられる
空隙を除去したシートに比べ10倍程度の厚みを有して
いる。シート状成形素材は、加熱により、熱可塑性樹脂
の強化繊維に対する結合力が弱まるため、強化繊維の残
留応力が解放され、元に戻ろうとするスプリングバック
により膨張する。この膨張したシート状成形素材を、成
形型内に挿入し、膨張したシート厚み以下でかつ内包す
る空隙を残す範囲にクリアランスを設定し、目的とする
膨張倍率を得る条件で加圧、冷却成形することにより、
多孔質成形品を製造する。
The sheet-shaped molding material is produced by applying a papermaking technique to uniformly disperse reinforcing fibers having a diameter of 3 to 30 μm and a length of 3 to 50 mm and a thermoplastic resin powder to produce a non-woven material. It is manufactured by using the material as a raw material, heating, pressurizing, and further cooling. The non-woven material produced by the papermaking method has a property that it is very bulky because the reinforcing fibers are dispersed in the state of monofilaments (single fibers). The thickness of the non-woven material varies depending on the content of reinforcing fibers, its shape, and papermaking conditions, but is about 10 times as thick as that of a sheet from which voids are generally used as a sheet-shaped forming material. The heating of the sheet-shaped molding material weakens the binding force of the thermoplastic resin to the reinforcing fibers, so that the residual stress of the reinforcing fibers is released, and the sheet-shaped molding material expands due to the springback to return to the original state. This expanded sheet-shaped molding material is inserted into a molding die, and a clearance is set within a range that is less than the expanded sheet thickness and leaves a void to be included, and pressurization and cooling molding are performed under the condition that a desired expansion ratio is obtained. By
A porous molded article is manufactured.

【0006】多孔質成形品は、膨張により面積当りの強
度、弾性率は低下するが、重量一定で成形品の厚肉化を
図ることができ、材料力学的に曲げ強さが成形品板厚の
2乗に、曲げ剛性が成形品板厚の3乗に比例することか
ら、通常の繊維強化熱可塑性樹脂成形品に比べて、機械
的性質の向上と軽量化が得られる。
Although the strength and elastic modulus per area of the porous molded product are lowered due to expansion, the molded product can be made thicker with a constant weight, and the flexural strength of the molded product is determined by the material thickness. Since the bending rigidity is proportional to the cube of the plate thickness of the molded product, the mechanical properties are improved and the weight is reduced as compared with a normal fiber-reinforced thermoplastic resin molded product.

【0007】しかし、上記の方法で成形された多孔質成
形品では、以下に述べるように型枠用板材としては、外
観性状と機械的性質が十分とはいえない。従来の多孔質
成形品の成形方法の一例を図3に示した。シート状成形
素材13は、一般的には遠赤外線加熱炉14内で熱可塑
性樹脂の軟化点または融点以上に加熱される。シート状
成形素材の膨張は、最初に加熱されるシートの表面から
始まり次第に熱が板厚中心部におよぶにつれて全体的に
膨張する。しかし膨張によりシート内部には断熱空気層
が形成されるため、熱伝導率が低下する。この熱伝導率
の低下は、不均一なシート膨張の原因となる。シート状
成形素材は、表面付近が大きく膨張するが、遠赤外線に
よる熱がシート内部に十分伝わらない状態で加熱される
ために、膨張したシート表面では局部加熱による熱可塑
性樹脂の熱劣化が発生する。この加熱膨張による悪影響
は、シート状成形素材の初期厚みが厚くなるに従って増
幅される。結果として、板厚3.5mm以上(坪量450
0 g/m2 以上、坪量:単位面積当りのシート状成形素材
の重量)のシート状成形素材の加熱では、表面の局部加
熱を避ける必要があるために表面付近が膨張した層(1
5)、内部はほとんど膨張していない層(16)が形成
される。
However, in the porous molded article molded by the above method, the appearance and mechanical properties cannot be said to be sufficient as a mold plate material as described below. An example of a conventional method for forming a porous molded article is shown in FIG. The sheet-shaped molding material 13 is generally heated in a far infrared heating furnace 14 to a temperature above the softening point or melting point of the thermoplastic resin. The expansion of the sheet-shaped molding material starts from the surface of the sheet that is first heated, and gradually expands as the heat reaches the center of the plate thickness. However, due to the expansion, a heat insulating air layer is formed inside the sheet, so that the thermal conductivity is reduced. This decrease in thermal conductivity causes uneven sheet expansion. The sheet-shaped molding material expands greatly in the vicinity of the surface, but since it is heated in the state where heat from far infrared rays is not sufficiently transmitted inside the sheet, thermal expansion of the thermoplastic resin occurs due to local heating on the expanded sheet surface. . The adverse effect of this thermal expansion is amplified as the initial thickness of the sheet-shaped molding material increases. As a result, a plate thickness of 3.5 mm or more (basis weight 450
When heating a sheet-shaped molding material having a surface weight of 0 g / m 2 or more and a grammage: the weight of the sheet-shaped molding material per unit area), it is necessary to avoid local heating of the surface, and thus a layer expanded near the surface (1
5), a layer (16) is formed which has hardly expanded inside.

【0008】また、シート状成形素材は、無負荷の状態
で膨張するため、表面部に凹凸17が生じる。表面部の
凹凸は、シート状成形素材中の強化繊維がランダム配向
しており、スプリングバックがシート内で不均一に発生
するために生じる。さらに、シート表面では、強化繊維
がスプリングバックにより露出し(18)、外観が著し
く悪化する。この膨張したシート状成形素材を、冷却プ
レス盤12内に挿入し、クリアランスを膨張したシート
の厚み以下で、かつ内包する空隙を残す範囲に設定し、
目的とする膨張倍率を得る条件で加圧、冷却成形して、
多孔質成形品19を製造する。
Further, since the sheet-shaped molding material expands in an unloaded state, irregularities 17 are formed on the surface. The unevenness of the surface portion occurs because the reinforcing fibers in the sheet-shaped molding material are randomly oriented, and springback occurs unevenly in the sheet. Further, on the sheet surface, the reinforcing fibers are exposed by spring back (18), and the appearance is significantly deteriorated. This expanded sheet-shaped forming material is inserted into the cooling press platen 12, and the clearance is set to be equal to or less than the expanded sheet thickness and to leave a void to be included therein.
Press and cool and mold under the conditions to obtain the desired expansion ratio,
The porous molded product 19 is manufactured.

【0009】多孔質成形品は、クリアランス設定による
低圧、冷却成形であるため、加熱されたシート状成形素
材の熱可塑性樹脂が流動することによる外観の向上は得
られない。結果として、多孔質成形品の外観が膨張した
加熱シートの外観を受け継ぐため、シート表面の凹凸に
よるしわ20、強化繊維の露出19による外観低下が生
じる。
Since the porous molded article is low-pressure, cold-molded by setting the clearance, it is not possible to improve the appearance by flowing the thermoplastic resin of the heated sheet-shaped molding material. As a result, since the appearance of the porous molded article inherits the appearance of the expanded heating sheet, wrinkles 20 due to the unevenness of the sheet surface and exposure of the reinforcing fibers 19 cause deterioration of the appearance.

【0010】また加熱膨張したシート状成形素材は、三
次元的にランダム配向した強化繊維の交差部分が熱可塑
性樹脂により融着された構造であり、多孔質成形品はこ
の構造を凍結して成形されたものであるため、多孔質成
形品内部および表面には気泡が存在する。さらに多孔質
成形品の膨張状態は、シート状成形素材と同様に表面付
近が大きくなり内部がほとんど膨張していないため、製
品が曲げられる場合に引張り、圧縮の荷重が加わる表面
部が、機械的に弱い構造になり機械的性質が低下する。
The heat-expanded sheet-shaped molding material has a structure in which crossing portions of reinforcing fibers that are three-dimensionally randomly oriented are fused by a thermoplastic resin, and a porous molded product is formed by freezing this structure. As a result, air bubbles exist inside and on the surface of the porous molded product. In addition, the expanded state of the porous molded product is similar to the sheet-shaped molding material, since the vicinity of the surface is large and the inside has hardly expanded, so when the product is bent, the surface part to which tension and compression loads are mechanically The structure becomes weak and mechanical properties deteriorate.

【0011】結果として、この多孔質成形品を型枠用板
材として使用した場合には、表面しわによるコンクリー
ト施工表面の平滑性の低下、コンクリートが多孔質成形
品内部の気泡中に侵入し、強化繊維と付着することによ
る離型性の低下、コンクリート施工時の大荷重下での型
枠用板材のたわみが、コンクリート施工表面に転写され
ることによる平滑性の低下が問題となる。
As a result, when this porous molded product is used as a plate material for formwork, the smoothness of the concrete construction surface is deteriorated due to surface wrinkles, and concrete penetrates into the air bubbles inside the porous molded product to strengthen it. There is a problem that the mold releasability decreases due to the adhesion with the fibers, and the flexure of the form plate material under a large load during concrete construction is transferred to the concrete construction surface, resulting in a decrease in smoothness.

【0012】[0012]

【発明が解決しようとする課題】本発明は、コンクリー
ト施工時の大荷重に耐えうる曲げ強さ、剛性と、施工さ
れたコンクリートの表面性状に関わる表面平滑性、離型
性を改良した型枠用板材を提供する。
DISCLOSURE OF THE INVENTION The present invention is a formwork having improved bending strength and rigidity capable of withstanding a large load during concrete construction, and surface smoothness and mold releasability relating to the surface properties of the constructed concrete. Providing board materials.

【0013】[0013]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次の通りである。 (1)抄造法による不織材料を用いてなる多孔質の繊維
強化熱可塑性樹脂層とその片面または両面に積層された
厚み0.2〜2mmの熱可塑性樹脂層からなり、前記繊維
強化熱可塑性樹脂層の強化繊維と気泡が、前記熱可塑性
樹脂層の積層面により覆われており、全体の見かけ密度
が0.3〜1g/cm3 で、坪量が4500 g/m2 以上のコ
ンクリート型枠用板材。 (2)前記繊維強化熱可塑性樹脂層の強化繊維含有量が
10体積%以上である上記(1)記載のコンクリート型
枠用板材。 (3)前記熱可塑性樹脂層が、無機フィラー含有熱可塑
性樹脂層と、その更に外側に配置した厚み0.01〜1
mmの熱可塑性樹脂層からなる上記(1)または(2)記
載のコンクリート型枠用板材。 (4)片側または両側の表面に、化粧模様の凹凸加工
(シボ加工)が施されている上記(1)〜(3)のいず
れかに記載のコンクリート型枠用板材。
The gist of the present invention is as follows. (1) A fiber-reinforced thermoplastic resin layer comprising a porous fiber-reinforced thermoplastic resin layer made of a non-woven material produced by a papermaking method and a thermoplastic resin layer having a thickness of 0.2 to 2 mm laminated on one side or both sides thereof. A concrete mold in which the reinforcing fibers and bubbles of the resin layer are covered by the laminated surface of the thermoplastic resin layer, the overall apparent density is 0.3 to 1 g / cm 3 , and the basis weight is 4500 g / m 2 or more. Frame plate material. (2) The plate material for concrete formwork according to the above (1), wherein the reinforcing fiber content of the fiber-reinforced thermoplastic resin layer is 10% by volume or more. (3) The thermoplastic resin layer comprises an inorganic filler-containing thermoplastic resin layer and a thickness of 0.01 to 1 arranged further outside thereof.
The plate material for concrete formwork according to the above (1) or (2), which comprises a thermoplastic resin layer having a thickness of mm. (4) The plate material for concrete formwork according to any one of (1) to (3) above, wherein the surface of one side or both sides is subjected to unevenness processing (texturing) of a decorative pattern.

【0014】本発明の型枠用板材の一例を図1に示し
た。本発明の型枠用板材1は、多孔質の繊維強化熱可塑
性樹脂層2と、その片面または両面に積層された厚み
0.2〜2mmの熱可塑性樹脂層3からなり、全体の見か
け密度が0.3〜1g/cm3 で、坪量が4500 g/m2
上である。見かけ密度とは、製品重量をその体積で除し
た値である。
An example of the form plate material of the present invention is shown in FIG. The mold plate material 1 of the present invention comprises a porous fiber-reinforced thermoplastic resin layer 2 and a thermoplastic resin layer 3 having a thickness of 0.2 to 2 mm laminated on one side or both sides thereof, and the overall apparent density is It is 0.3 to 1 g / cm 3 , and the basis weight is 4500 g / m 2 or more. Apparent density is the product weight divided by its volume.

【0015】繊維強化熱可塑性樹脂層2は、均一な膨張
が実施され、強化繊維4の交差部分が熱可塑性樹脂5で
効率よく接着されているために、優れた機械的性質が得
られる。また表面の熱可塑性樹脂層3は、非常に平滑性
が優れており、繊維強化熱可塑性樹脂層2を覆っている
ため、型枠用合板として良好な性能を示す。つまり、本
発明の型枠用板材1では、コンクリート施工時の大荷重
に耐えうる曲げ強さ、剛性を有しており、良好な平滑面
によりコンクリートの表面性状が向上し、強化繊維と繊
維強化熱可塑性樹脂層2の気泡が表面の熱可塑性樹脂層
3で覆われているために、コンクリートの侵入、付着に
よる離型性の問題が解決される。
Since the fiber-reinforced thermoplastic resin layer 2 is uniformly expanded and the crossing portions of the reinforcing fibers 4 are efficiently adhered by the thermoplastic resin 5, excellent mechanical properties can be obtained. Further, the thermoplastic resin layer 3 on the surface has very excellent smoothness and covers the fiber reinforced thermoplastic resin layer 2, and therefore exhibits good performance as a plywood for formwork. That is, the plate material 1 for formwork of the present invention has bending strength and rigidity capable of withstanding a large load at the time of concrete construction, and the good smooth surface improves the surface property of the concrete, and the reinforcing fiber and the fiber reinforced Since the bubbles of the thermoplastic resin layer 2 are covered with the thermoplastic resin layer 3 on the surface, the problem of mold releasability due to intrusion and adhesion of concrete is solved.

【0016】本発明の型枠用板材1の成形方法の一例を
図2に示した。抄造法により製造された強化繊維と熱可
塑性樹脂からなる不織材料6の片面または両面に熱可塑
性樹脂フィルム7を積層し、さらにこの積層体の両面に
平滑面を有する板状体8を重ね合わせて加熱プレス盤9
内に挿入し、熱可塑性樹脂が溶融するまで加熱する。熱
可塑性樹脂が溶融するまで加熱された後、強化繊維の間
に熱可塑性樹脂を含浸させるため、繊維破損が生じない
圧力で加圧を行う(10)。つづいて、熱可塑性樹脂が
溶融している状態のままで加圧を除去し、不織材料を強
化繊維のスプリングバックにより膨張させ(11)、膨
張した不織材料と熱可塑性樹脂フィルムおよび板状体を
重ね合わせた状態で、冷却プレス盤12内に挿入し、ク
リアランスをこれらの膨張した積層体の厚み以下で、か
つ繊維強化熱可塑性樹脂層に内包する空隙を残す範囲に
設定して、目的とする膨張倍率を得る条件で加圧、冷却
成形し、板状体を取り外すことにより、本発明の型枠用
板材1を成形する。
FIG. 2 shows an example of a method for molding the plate material 1 for a mold according to the present invention. A thermoplastic resin film 7 is laminated on one side or both sides of a non-woven material 6 made of a reinforcing fiber and a thermoplastic resin produced by a papermaking method, and a plate-like body 8 having a smooth surface is superposed on both sides of this laminated body. Heating press machine 9
Insert inside and heat until the thermoplastic resin melts. After the thermoplastic resin is heated until it is melted, the thermoplastic resin is impregnated between the reinforcing fibers, so that pressure is applied at a pressure that does not cause fiber breakage (10). Subsequently, the pressure is removed while the thermoplastic resin is still molten, and the nonwoven material is expanded by the springback of the reinforcing fiber (11), and the expanded nonwoven material, the thermoplastic resin film, and the plate-like material are expanded. With the bodies superposed, they are inserted into the cooling press board 12, and the clearance is set to a range not more than the thickness of these expanded laminates and to a range in which voids included in the fiber-reinforced thermoplastic resin layer remain. By pressurizing, cooling and molding under the condition that the expansion ratio is obtained, and removing the plate-shaped body, the plate material 1 for formwork of the present invention is molded.

【0017】図2の成形方法では、加熱、加圧工程と加
圧、冷却工程を別々の専用プレス機で実施したが、一台
のプレス機により加熱、加圧、解圧、冷却成形を実施す
ることもできる。また、加熱プレス盤での不織材料の加
熱時間を短縮することを目的として、不織材料を予熱す
ることは成形サイクルの短縮につながり好ましい。不織
材料の予熱には、不織材料の通気性を利用して熱風を通
過させ短時間に加熱する方法やオーブンによる加熱が行
われる。
In the molding method of FIG. 2, the heating, pressurizing step and the pressurizing and cooling steps were carried out by separate dedicated press machines, but heating, pressurizing, depressurizing and cooling molding were carried out by one press machine. You can also do it. In addition, preheating the non-woven material for the purpose of shortening the heating time of the non-woven material on the hot press machine is preferable because it shortens the molding cycle. For the preheating of the non-woven material, there is used a method of passing hot air for heating in a short time by utilizing air permeability of the non-woven material, or heating by an oven.

【0018】不織材料の代わりに、不織材料を加熱、加
圧、冷却成形したシート状成形素材を使用した場合も、
同様に強化繊維のスプリングバックによる膨張が発生
し、本発明の型枠用板材を得ることができる。但し、こ
の場合はシート状成形素材の成形工程により、全行程が
長くなるため効率的ではない。この方法で成形された型
枠用板材は、周囲の形状が不安定なため、実際には成形
品の周囲をトリミングすることにより図1に示した製品
が得られ、使用される。
When a sheet-shaped molding material obtained by heating, pressurizing and cooling the non-woven material is used instead of the non-woven material,
Similarly, expansion due to springback of the reinforcing fibers occurs, and the plate material for a mold of the present invention can be obtained. However, in this case, the entire process becomes long due to the forming process of the sheet-shaped forming material, which is not efficient. Since the form plate material formed by this method has an unstable peripheral shape, the product shown in FIG. 1 is actually obtained and used by trimming the periphery of the formed product.

【0019】不織材料の膨張は、強化繊維のスプリング
バックによって生じるため、強化繊維の種類(剛性)、
その含有量によって変化する。型枠用板材としての多孔
質の度合は、繊維強化熱可塑性樹脂層の膨張の程度に依
存するが、全体の見かけ密度を0.3〜1g/cm3 の範囲
の中から、用途によって決定する。
Since the expansion of the nonwoven material is caused by the springback of the reinforcing fibers, the type of the reinforcing fibers (rigidity),
It changes depending on its content. The degree of porosity as a plate material for the form depends on the degree of expansion of the fiber-reinforced thermoplastic resin layer, but the overall apparent density is determined from the range of 0.3 to 1 g / cm 3 depending on the application. .

【0020】不織材料の原料となる強化繊維としては、
ガラス繊維、炭素繊維、金属繊維のほかに無機繊維、有
機繊維、用途によってはこれらの混合物が用いられる。
強化繊維の形状は、直径が取り扱いの容易さと経済的な
観点により3μm以上で、十分な強度を発現させるため
に30μm以下にすることが好ましく、繊維長は強度発
現の観点から3mm以上で、均一な分散が可能な50mm以
下にすることが望ましい。また強化繊維は、水中での良
好な分散を目的として親水性を向上するために水溶性高
分子、湿潤剤で、強度発現を目的として熱可塑性樹脂と
の接着性を向上するためにシランカプリング剤等で、表
面処理を行うことが望ましい。
The reinforcing fibers used as the raw material for the non-woven material include:
In addition to glass fibers, carbon fibers, and metal fibers, inorganic fibers, organic fibers, and a mixture thereof may be used depending on the application.
The shape of the reinforcing fiber is preferably 3 μm or more from the viewpoint of easy handling and economical, and 30 μm or less in order to express sufficient strength, and the fiber length is 3 mm or more from the viewpoint of strength development, and is uniform. It is desirable to set the thickness to 50 mm or less, which allows various dispersion. The reinforcing fiber is a water-soluble polymer for improving hydrophilicity for the purpose of good dispersion in water, a wetting agent, and a silane coupling agent for improving adhesiveness with the thermoplastic resin for expressing strength. For example, it is desirable to perform surface treatment.

【0021】熱可塑性樹脂は、ポリエチレン、ポリプロ
ピレン、ポリスチレン、スチレン−ブタジェン−アクリ
ロニトリル共重合体、スチレン−アクリロニトリル共重
合体、ポリアミド、ポリカーボネート、ポリアセター
ル、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリフェニレンオキシド、ポリスルホン、ポ
リフェニレンスルフィド等の樹脂であり、またこれらの
2種類またはそれ以上の混合物をも含み、これらに一般
的に用いられる可塑剤、熱安定剤、光安定剤、充填材、
洗顔料、耐衝撃剤、増量材、核剤、加工助剤等を添加す
ることもできる。熱可塑性樹脂の形状は、ペレット、パ
ウダー、フレーク、繊維状のものを適宜選択して使用す
る。
The thermoplastic resin is polyethylene, polypropylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polysulfone, polyphenylene sulfide. Such as a plasticizer, a heat stabilizer, a light stabilizer, a filler, and the like, which also include a mixture of two or more of these resins.
A face wash, an impact resistance agent, a filler, a nucleating agent, a processing aid and the like can be added. The shape of the thermoplastic resin is appropriately selected from pellets, powders, flakes, and fibrous shapes.

【0022】強化繊維の含有量は、スプリングバックに
よる安定した膨張が生じる10体積%以上で、強化繊維
と熱可塑性樹脂との接着が可能で機械的性質を十分発現
する40体積%以下とすることが望ましい。
The content of the reinforcing fiber is 10% by volume or more at which stable expansion by springback occurs, and 40% by volume or less at which the reinforcing fiber and the thermoplastic resin can be bonded and mechanical properties are sufficiently exhibited. Is desirable.

【0023】不織材料の片面または両面に積層する熱可
塑性樹脂フィルムは、繊維強化熱可塑性樹脂層と融着し
て型枠用板材を形成する必要性から、一般的には不織材
料において用いられた樹脂と同じものを使用する。但
し、表層部にコンクリートとの離型性、耐熱性、表面硬
度、耐摩耗性等の向上を必要とする場合は、目的に応じ
た熱可塑性樹脂、異なる樹脂との混合物、異なる樹脂フ
ィルムからなる積層フィルムを、不織材料の熱可塑性樹
脂の融点、相溶性等を考慮して用いてもよい。熱可塑性
樹脂フィルムの厚みは、用途により0.2〜2mmの範囲
で適宜選択する。
The thermoplastic resin film laminated on one side or both sides of the non-woven material is generally used in non-woven materials because it is necessary to fuse with the fiber reinforced thermoplastic resin layer to form a form plate material. Use the same resin used. However, if it is necessary to improve the mold releasability with concrete, heat resistance, surface hardness, wear resistance, etc., the surface layer part will consist of a thermoplastic resin, a mixture with different resins, or a different resin film depending on the purpose. The laminated film may be used in consideration of the melting point, compatibility, etc. of the thermoplastic resin of the non-woven material. The thickness of the thermoplastic resin film is appropriately selected within the range of 0.2 to 2 mm depending on the application.

【0024】さらに無機フィラーを添加した熱可塑性樹
脂フィルムを使用することもできる。添加する無機フィ
ラーとしては、炭酸カルシウム、タルク等の微粒子状フ
ィラー、マイカ等のフレーク状フィラー、チョップドガ
ラス繊維、ロックウール繊維等の繊維状フィラーを用い
る。無機フィラーは、熱可塑性樹脂との接着性を向上す
るために、シランカプリング剤等で表面処理を行うこと
が望ましい。無機フィラーは、用途に応じて適宜選択す
る。また上記の無機フィラーの2種類以上の混合物を添
加してもよい。無機フィラーの添加量は、熱可塑性樹脂
の溶融粘土を向上させ、表層部を強化する目的から3体
積%以上に、安定したフィルム成形が可能な30体積%
以下とする。但し、無機フィラーはコンクリートと付着
し易い性質があるため、コンクリートとの離型性を維持
するために、最外表面には熱可塑性樹脂フィルムを積層
することができる。無機フィラー含有熱可塑性樹脂フィ
ルムは0.1〜2mmの範囲で、熱可塑性樹脂フィルムの
厚みは、0.01〜1mmの範囲で用途により適宜選択す
る。
It is also possible to use a thermoplastic resin film to which an inorganic filler is added. As the inorganic filler to be added, particulate fillers such as calcium carbonate and talc, flaky fillers such as mica, fibrous fillers such as chopped glass fibers and rock wool fibers are used. The inorganic filler is preferably surface-treated with a silane coupling agent or the like in order to improve the adhesiveness with the thermoplastic resin. The inorganic filler is appropriately selected according to the application. Further, a mixture of two or more kinds of the above inorganic fillers may be added. The amount of the inorganic filler added is 3% by volume or more for the purpose of improving the molten clay of the thermoplastic resin and strengthening the surface layer portion, and 30% by volume that enables stable film formation.
Below. However, since the inorganic filler has a property of easily adhering to concrete, a thermoplastic resin film can be laminated on the outermost surface in order to maintain releasability from concrete. The thermoplastic resin film containing an inorganic filler is in the range of 0.1 to 2 mm, and the thickness of the thermoplastic resin film is in the range of 0.01 to 1 mm, and is appropriately selected depending on the application.

【0025】板状体としては、シート状成形素材の製造
工程と同様のものを使用する。シート状成形素材は、不
織材料の両面に平滑面を有する板状体を積層し、熱可塑
性樹脂の融点または軟化点以上に加熱した後、加圧する
ことにより強化繊維の間に熱可塑性樹脂を含浸させ、さ
らに冷却して製造される。板状体の材質は、加熱温度に
耐えうるものであれば良く金属、無機物、樹脂製のもの
が挙げられる。これらの板状体は、熱可塑性樹脂が溶融
状態では密着するが、非溶融状態では接着しない性質を
有する必要があり、シート状成形素材の離型性を考慮し
てテフロン樹脂等のコーティングを施したり、シリコン
等の離型剤処理が行われる場合もある。
As the plate-like member, the same one as in the manufacturing process of the sheet-shaped forming material is used. The sheet-shaped molding material is obtained by laminating plate-shaped bodies having smooth surfaces on both sides of a non-woven material, heating the thermoplastic resin to a temperature equal to or higher than the melting point or softening point, and then pressing the thermoplastic resin between the reinforcing fibers. It is manufactured by impregnation and further cooling. The material of the plate-shaped body may be any material as long as it can withstand the heating temperature, and examples thereof include metal, inorganic material and resin. These plate-like bodies must have a property that the thermoplastic resin adheres in the molten state but does not adhere in the non-melted state, and is coated with Teflon resin or the like in consideration of the releasability of the sheet-shaped molding material. Alternatively, a release agent treatment such as silicon may be performed.

【0026】不織材料および熱可塑性樹脂フィルムの加
熱は、熱可塑性樹脂が固化している状態でも強化繊維が
破損しない非常に小さな加圧下で、温度調節された加熱
プレス盤の接触加熱で行われる。不織材料の熱可塑性樹
脂は外側から徐々に溶融するが、それに従って板状体間
の距離(不織材料の厚み)は低下し、均一加熱が実施さ
れ、熱可塑性樹脂の劣化も発生しない。結果として、従
来の多孔質成形品の成形で見られたシート状成形素材の
加熱膨張による悪影響を避けることができ、繊維強化熱
可塑性樹脂層の厚肉化が可能になる。
The heating of the non-woven material and the thermoplastic resin film is carried out by contact heating of a temperature-controlled heating press machine under a very small pressure which does not damage the reinforcing fibers even when the thermoplastic resin is solidified. . The thermoplastic resin of the non-woven material gradually melts from the outside, but the distance between the plate-like bodies (thickness of the non-woven material) decreases accordingly, uniform heating is performed, and the thermoplastic resin does not deteriorate. As a result, it is possible to avoid the adverse effect of heat expansion of the sheet-shaped molding material, which has been observed in the conventional molding of porous molded articles, and it is possible to increase the thickness of the fiber-reinforced thermoplastic resin layer.

【0027】つづいて、不織材料の熱可塑性樹脂が溶融
した状態で、強化繊維の間に熱可塑性樹脂を含浸するた
め、繊維破損が生じない圧力で加圧を行う。さらに、熱
可塑性樹脂が溶融している状態で、加圧を除去する。不
織材料は、強化繊維のスプリングバックにより膨張す
る。抄造法で製造される不織材料は、強化繊維がモノフ
ィラメント(単一の繊維)の状態で分散しているため、
スプリングバックにより大きく膨張する。また、不織材
料は均一加熱されているため、均一な膨張が得られる。
この膨張した不織材料と熱可塑性樹脂フィルムおよび板
状体を重ね合わせた状態で冷却プレス盤内に挿入し、目
的とする膨張倍率を得るクリアランス設定を行い、加
圧、冷却成形し、繊維強化熱可塑性樹脂層の膨張状態を
凍結して本発明の型枠用板材を成形する。
Subsequently, since the thermoplastic resin is impregnated between the reinforcing fibers in the molten state of the thermoplastic resin of the non-woven material, pressurization is performed at a pressure that does not cause fiber breakage. Further, the pressure is removed while the thermoplastic resin is molten. The nonwoven material expands due to the springback of the reinforcing fibers. Nonwoven materials produced by the papermaking method have reinforcing fibers dispersed in the form of monofilaments (single fibers).
Large expansion due to springback. Also, since the nonwoven material is heated uniformly, a uniform expansion is obtained.
Insert the expanded non-woven material, thermoplastic resin film, and plate into the cooling press board in the state of overlapping, set the clearance to obtain the desired expansion ratio, pressurize, cool mold, and fiber reinforced. The expanded state of the thermoplastic resin layer is frozen to mold the form plate material of the present invention.

【0028】本発明の型枠用板材は、曲げ強さ、剛性の
必要性から、従来の多孔質成形品では問題となる坪量4
500 g/m2 以上で成形される。但し、坪量4500 g
/m2以下においても、従来の多孔質成形品に比べて機械
的性質、外観の優れた成形品を得ることができる。
The form plate material of the present invention requires bending strength and rigidity, and therefore has a basis weight of 4 which is a problem in conventional porous molded articles.
It is molded at 500 g / m 2 or more. However, basis weight 4500 g
Even when it is / m 2 or less, it is possible to obtain a molded product having excellent mechanical properties and appearance as compared with the conventional porous molded product.

【0029】不織材料の加圧含浸により、強化繊維と熱
可塑性樹脂の漏れ性が向上するため、繊維強化熱可塑性
樹脂層の均一な膨張において、強化繊維の交差部分が熱
可塑性樹脂で効率よく接着され、型枠用板材の機械的性
質が改善される。不織材料中の熱可塑性樹脂は、加圧時
に強化繊維の間に含浸するが、それと同時に板状体との
界面に浸み出し、界面に存在していたフィルムの溶融樹
脂と相まって、安定した樹脂リッチ層を形成し、両者を
強固に融着する。不織材料の表面が、板状体表面に拘束
された状態で膨張するため、型枠用板材内部の繊維強化
熱可塑性樹脂層の強化繊維と、気泡が表面の樹脂リッチ
層によって覆われる。
The pressure impregnation of the non-woven material improves the leakability of the reinforcing fibers and the thermoplastic resin. Therefore, when the fiber-reinforced thermoplastic resin layer is uniformly expanded, the intersecting portions of the reinforcing fibers are efficiently made of the thermoplastic resin. Adhered and the mechanical properties of the formwork plate are improved. The thermoplastic resin in the non-woven material is impregnated between the reinforcing fibers at the time of pressurization, but at the same time, it is leached at the interface with the plate-like material and is stable in combination with the molten resin of the film existing at the interface. A resin rich layer is formed and both are firmly fused. Since the surface of the non-woven material expands in a state of being constrained by the surface of the plate-shaped body, the reinforcing fibers of the fiber-reinforced thermoplastic resin layer inside the form plate material and bubbles are covered by the resin-rich layer on the surface.

【0030】熱可塑性樹脂フィルムの積層は、不織材料
の強化繊維が30体積%以上の高含有量の場合、浸み出
してくる熱可塑性樹脂量が少なくなるため、安定した樹
脂リッチ層を形成する効果を発揮する。さらに、この拘
束膨張により板状体表面が型枠用板材の表面に転写さ
れ、良好な平滑表面が得られる。同様に、化粧模様の凹
凸加工(シボ加工)を施した板状体を拘束膨張下で使用
した場合は、型枠用板材の表面に化粧模様を容易に転写
することができる。
In the lamination of the thermoplastic resin film, when the content of the reinforcing fiber of the non-woven material is 30% by volume or more, the amount of the thermoplastic resin that oozes out is small, so that a stable resin-rich layer is formed. Exert the effect of. Further, due to this restraint expansion, the surface of the plate-like body is transferred to the surface of the plate material for formwork, and a good smooth surface is obtained. Similarly, when the plate-shaped body on which the decorative pattern has been subjected to concavo-convex processing (texture processing) is used under constrained expansion, the decorative pattern can be easily transferred to the surface of the plate material for formwork.

【0031】結果として、型枠用板材として要求される
コンクリート施工時の大荷重に耐えうる曲げ強さ、剛性
と、施工されたコンクリートの表面性状に関わる表面平
滑性、離型性の性能が達成される。本発明の型枠用板材
は、良好な機械的性質と外観を有しているため、優れた
木材代替品となり、従来木材が使用されている産業用資
材に広く適用することができる。
As a result, flexural strength and rigidity capable of withstanding a large load at the time of concrete construction, which is required as a plate material for formwork, and surface smoothness and releasability relating to the surface properties of the constructed concrete are achieved. To be done. INDUSTRIAL APPLICABILITY The form plate material of the present invention has excellent mechanical properties and appearance, and thus is an excellent substitute for wood and can be widely applied to industrial materials in which wood has been conventionally used.

【0032】[0032]

【実施例】以下実施例を挙げて、本発明を詳細に説明す
る。 実施例1 強化繊維として直径10μm、長さ13mmのガラス繊維
と、熱可塑性樹脂として、直径3mmの球状ペレットを機
械粉砕し、その粉砕品をふるい分けにより70mesh(開
口径0.212mm)から10mesh(開口径1.7mm)ま
でに分級したポリプロピレン樹脂粉末を用いて、抄造法
によりガラス繊維含有量45重量%(22.3体積%)
とポリプロピレン樹脂55重量%(77.7体積%)の
組成で、目付け量が1100 g/m2 の不織材料を製造し
た。
The present invention will be described in detail with reference to the following examples. Example 1 A glass fiber having a diameter of 10 μm and a length of 13 mm as a reinforcing fiber and a spherical pellet having a diameter of 3 mm as a thermoplastic resin were mechanically crushed, and the crushed product was sieved to from 70 mesh (opening diameter 0.212 mm) to 10 mesh (opening diameter). Glass fiber content of 45% by weight (22.3% by volume) by a papermaking method using polypropylene resin powder classified to a diameter of 1.7 mm)
A non-woven material having a composition of 55% by weight (77.7% by volume) of polypropylene resin and a basis weight of 1100 g / m 2 was produced.

【0033】不織材料を600×2000mmに切断して
6枚積層し、その片面にポリプロピレン樹脂フィルム
(厚み:0.5mm) を1枚積層した。さらに、この積層
体の両面に板状体として平滑表面を有するステンレス鋼
製鏡板を重ね合わせて、図2に示した成形方法で本発明
の型枠用板材を成形した。積層体を、210℃に温度設
定された加熱プレス盤内に挿入し、圧力2kgf/cm2 の加
圧下で不織材料の中心部温度が190℃以上に昇温する
まで、約7分間予熱した。この温度で、ポリプロピレン
樹脂は十分溶融していた。つづいて、圧力5kgf/cm
2 で、1分間加圧し、さらに積層体を冷却プレス盤に挿
入し、プレス盤のクリアランスをスペーサーにより設定
して、圧力5kgf/cm2 で約5分間、加圧、冷却成形し、
成形後鏡板を取り外して、板厚12mmの型枠用板材を得
た。
The nonwoven material was cut into pieces of 600 × 2000 mm and laminated on six sheets, and one polypropylene resin film (thickness: 0.5 mm) was laminated on one side thereof. Further, a stainless steel end plate having a smooth surface as a plate-like body was superposed on both surfaces of this laminated body, and the plate material for a mold of the present invention was molded by the molding method shown in FIG. The laminated body was inserted into a heating press platen whose temperature was set to 210 ° C., and preheated under a pressure of 2 kgf / cm 2 for about 7 minutes until the temperature of the central part of the nonwoven material increased to 190 ° C. or higher. . At this temperature, the polypropylene resin was sufficiently molten. Next, pressure 5kgf / cm
2, 1 minute pressurized to further insert the stack to the cooling press platen, the clearance press platen set by a spacer, for about 5 minutes at a pressure 5 kgf / cm 2, pressure, and cooling molding,
After molding, the end plate was removed to obtain a plate material for a frame having a plate thickness of 12 mm.

【0034】加熱加圧後の積層体は、加熱盤から冷却盤
に移動される短時間で、強化繊維のスプリングバックに
より直ちに膨張した。また、加熱加圧後の不織材料と鏡
板は非常に強固に密着しており、不織材料の表面が鏡板
の表面に拘束された状態で膨張していることが確認され
た。
After heating and pressurizing, the laminate immediately expanded due to the springback of the reinforcing fibers in a short time when it was moved from the heating plate to the cooling plate. In addition, it was confirmed that the nonwoven material after heating and pressing was in close contact with the end plate very firmly, and that the surface of the non-woven material was expanded while being constrained by the surface of the end plate.

【0035】型枠用板材のポリプロピレン樹脂フィルム
が積層された表面は、安定した樹脂リッチ層が形成さ
れ、ガラス繊維の露出がなく、鏡板の平滑面が転写され
た良好な外観を呈していた。樹脂フィルムが積層されて
いない表面は、同様に樹脂リッチ層が形成され、鏡板の
平滑面が転写された外観を示していたが、ごく僅かなが
らガラス繊維の露出が観察された。
A stable resin-rich layer was formed on the surface of the form plate material on which the polypropylene resin film was laminated, the glass fiber was not exposed, and the smooth surface of the end plate was transferred to give a good appearance. On the surface on which the resin film was not laminated, a resin-rich layer was formed in the same manner, and the smooth surface of the mirror plate was transferred, showing the appearance, but a slight exposure of glass fiber was observed.

【0036】また、光学顕微鏡、走査電子顕微鏡観察に
より、繊維強化熱可塑性樹脂層中のガラス繊維の交差部
分がポリプロピレン樹脂で効率よく接着され、均一な膨
張が実施されていることが確認された。フィルム積層が
行われたポリプロピレン樹脂層の厚みは約0.3mmで、
内部の繊維強化熱可塑性樹脂層と良好に接着しているこ
とが確認された。樹脂層の厚みが積層されたフィルム厚
みよりも薄くなった理由は、溶融樹脂が膨張した繊維強
化熱可塑性樹脂層の気泡内部に吸収されたためである。
Further, by observation with an optical microscope and a scanning electron microscope, it was confirmed that the crossing portions of the glass fibers in the fiber reinforced thermoplastic resin layer were efficiently adhered by the polypropylene resin and uniform expansion was carried out. The thickness of the polypropylene resin layer on which the film is laminated is about 0.3 mm,
It was confirmed that the fiber-reinforced thermoplastic resin layer inside was well bonded. The reason why the thickness of the resin layer is smaller than the thickness of the laminated film is that the molten resin is absorbed inside the bubbles of the expanded fiber-reinforced thermoplastic resin layer.

【0037】この型枠用板材から幅70mm、長さ200
mmの試験片を採取し、スパン150mmの3点曲げ試験を
行った。さらに、この型枠用板材を使用して、木材型枠
用板材の従来の施工方法で、コンクリート壁の施工実験
を行った。コンクリートとの接触面は、ポリプロピレン
樹脂フィルムが積層された樹脂リッチ表面であり、施工
した壁の厚みは150mm、高さは3.5mである。結果
を、表1に示した。
A width of 70 mm and a length of 200
mm test pieces were sampled and a 3-point bending test with a span of 150 mm was performed. Further, using this form plate material, a concrete wall construction experiment was conducted by a conventional construction method of a wood form plate material. The contact surface with concrete is a resin-rich surface on which polypropylene resin films are laminated, and the thickness of the constructed wall is 150 mm and the height is 3.5 m. The results are shown in Table 1.

【0038】実施例2 実施例1の不織材料を600×2000mmに切断して6
枚積層し、その両面にタルク含有ポリプロピレン樹脂フ
ィルムとポリプロピレン樹脂フィルムからなる複合フィ
ルムを、ポリプロピレン樹脂フィルム側が外側になるよ
うに1枚積層した。複合フィルムは、直径2μmの微粒
子状無機フィラーであるタルクが40重量%添加された
ポリプロピレン樹脂フィルム(厚み:0.3mm)とポリ
プロピレン樹脂フィルム(厚み:0.1mm)で構成され
ていた。この積層体の両面に板状体としてステンレス鋼
製鏡板を重ね合わせて、実施例1と同様に板厚12mmの
型枠用板材を成形した。
Example 2 The nonwoven material of Example 1 was cut into pieces of 600 × 2000 mm and 6
One sheet was laminated, and one composite film composed of a talc-containing polypropylene resin film and a polypropylene resin film was laminated on both sides so that the polypropylene resin film side was on the outside. The composite film was composed of a polypropylene resin film (thickness: 0.3 mm) and a polypropylene resin film (thickness: 0.1 mm) to which 40% by weight of talc, which is a fine-particle inorganic filler having a diameter of 2 μm, was added. A stainless steel end plate as a plate-like body was superposed on both sides of this laminate, and a plate material for a frame having a plate thickness of 12 mm was formed in the same manner as in Example 1.

【0039】型枠用板材の表面は、安定した樹脂リッチ
層が形成され、ガラス繊維の露出がなく、鏡板の平滑面
が転写された良好な外観を呈していた。また、光学顕微
鏡、走査電子顕微鏡観察により、繊維強化熱可塑性樹脂
層中のガラス繊維の交差部分がポリプロピレン樹脂で効
率よく接着され、均一な膨張が実施されていることが確
認された。表面の複合樹脂層は、積層された複合フィル
ムと同様に、最外表層は厚み0.1mmのポリプロピレン
樹脂層で、次に厚み0.3mmのタルク含有ポリプロピレ
ン樹脂層が存在していることが確認された。また、この
複合樹脂層と内部の繊維強化熱可塑性樹脂層が、良好に
接着していることが確認された。無機フィラーを添加し
た熱可塑性樹脂は、溶融粘度が上昇し、膨張した繊維強
化熱可塑性樹脂層中の気泡内部への吸収が抑えられるた
めに、安定した樹脂リッチ層の形成に役立つ。
On the surface of the form plate material, a stable resin-rich layer was formed, the glass fiber was not exposed, and the smooth surface of the end plate was transferred to give a good appearance. Further, it was confirmed by observation with an optical microscope and a scanning electron microscope that the crossing portions of the glass fibers in the fiber-reinforced thermoplastic resin layer were efficiently adhered by the polypropylene resin and uniform expansion was performed. It was confirmed that the outermost surface layer of the composite resin layer was a polypropylene resin layer with a thickness of 0.1 mm, and then the talc-containing polypropylene resin layer with a thickness of 0.3 mm was present, similar to the laminated composite film. Was done. It was also confirmed that this composite resin layer and the fiber-reinforced thermoplastic resin layer inside were well bonded. The thermoplastic resin to which the inorganic filler is added has an increased melt viscosity and is suppressed from being absorbed into the air bubbles in the expanded fiber-reinforced thermoplastic resin layer, which is useful for forming a stable resin-rich layer.

【0040】この型枠用板材から幅70mm、長さ200
mmの試験片を採取し、スパン150mmの3点曲げ試験を
行った。さらに、この型枠用板材を使用して、実施例1
と同様にコンクリート施工実験を行った。結果を、表1
に示した。
A width of 70 mm and a length of 200 from this form plate material.
mm test pieces were sampled and a 3-point bending test with a span of 150 mm was performed. Furthermore, using this plate material for formwork, Example 1
A concrete construction experiment was conducted in the same manner as in. The results are shown in Table 1.
It was shown to.

【0041】実施例3 実施例2の不織材料と複合フィルムの積層体の片面に板
状体としてステンレス鋼製鏡板を、他方には木目模様の
シボ加工が施されたスチール製板状体を重ね合わせて、
実施例1と同様に板厚12mmの型枠用板材を成形した。
木目模様のシボ加工は、その最大凹凸深さが3mmであっ
た。
Example 3 A laminate of the nonwoven material and the composite film of Example 2 was provided with a stainless steel end plate as a plate on one side and a steel plate with a grain pattern on the other side. Overlap,
In the same manner as in Example 1, a plate material having a plate thickness of 12 mm was molded.
The grained surface of the grain pattern had a maximum unevenness depth of 3 mm.

【0042】型枠用板材の表面は、安定した樹脂リッチ
層が形成され、ガラス繊維の露出がなく、鏡板側の表面
ではその平滑面が転写され、シボ加工板状体側の表面で
は木目模様が転写されており、良好な外観を呈してい
た。また、光学顕微鏡、走査電子顕微鏡観察により、繊
維強化熱可塑性樹脂層中のガラス繊維の交差部分がポリ
プロピレン樹脂で効率よく接着され、均一な膨張が実施
されていることが確認された。表面の複合樹脂層の形態
は、実施例2と同様で、この複合樹脂層と内部の繊維強
化熱可塑性樹脂層が、良好に接着していることが確認さ
れた。
A stable resin-rich layer is formed on the surface of the form plate material, the glass fibers are not exposed, the smooth surface is transferred on the surface of the end plate side, and the wood pattern is formed on the surface of the textured plate body. It was transferred and had a good appearance. Further, it was confirmed by observation with an optical microscope and a scanning electron microscope that the crossing portions of the glass fibers in the fiber-reinforced thermoplastic resin layer were efficiently adhered by the polypropylene resin and uniform expansion was performed. The form of the composite resin layer on the surface was the same as in Example 2, and it was confirmed that this composite resin layer and the fiber-reinforced thermoplastic resin layer inside were well bonded.

【0043】この型枠用板材から幅70mm、長さ200
mmの試験片を採取し、スパン150mmの3点曲げ試験を
行った。さらに、この型枠用板材を使用して、実施例1
と同様にコンクリート施工実験を行った。実験は、木目
模様が転写された表面をコンクリートとの接触面として
実施した。結果を、表1に示した。
From this plate material for formwork, width 70 mm, length 200
mm test pieces were sampled and a 3-point bending test with a span of 150 mm was performed. Furthermore, using this plate material for formwork, Example 1
A concrete construction experiment was conducted in the same manner as in. The experiment was carried out by using the surface on which the grain pattern was transferred as the contact surface with the concrete. The results are shown in Table 1.

【0044】比較例1 実施例1の不織材料を600×2000mmに切断して7
枚積層し、その両面に板状体としてステンレス鋼製鏡板
を重ね合わせて、空隙を除去した板状成形品を成形し
た。積層体を、210℃に温度設定された加熱プレス盤
内に挿入し、圧力2kgf/cm2 の加圧下で不織材料の中心
部温度が190℃以上に昇温するまで、約7分間予熱し
た。つづいて、圧力5kgf/cm2 で、1分間加圧し、さら
にこの積層体を冷却プレス盤に挿入し、圧力5kgf/cm2
で約5分間、加圧、冷却することにより板状成形品を成
形した。この場合は、プレス盤のクリアランス設定は行
わず、加熱加圧と同様に、不織材料が直接加圧された状
態で冷却成形した。冷却後、鏡板を取り外し板厚6.1
mmの板状成形品を得た。
Comparative Example 1 The nonwoven material of Example 1 was cut into pieces of 600 × 2000 mm and cut into 7 pieces.
Sheets were laminated, and stainless steel end plates as plate-like bodies were superposed on both sides thereof to form a plate-like molded product with voids removed. The laminated body was inserted into a heating press platen whose temperature was set to 210 ° C., and preheated under a pressure of 2 kgf / cm 2 for about 7 minutes until the temperature of the central part of the nonwoven material increased to 190 ° C. or higher. . Then, pressurize at a pressure of 5 kgf / cm 2 for 1 minute, and then insert the laminated body into a cooling press machine, and press at a pressure of 5 kgf / cm 2.
A plate-shaped molded product was molded by pressing and cooling for about 5 minutes. In this case, the clearance of the press platen was not set, and the non-woven material was cooled and molded in the state of being directly pressed, as in the heating and pressing. After cooling, the end plate is removed and the plate thickness is 6.1.
A plate-shaped molded product of mm was obtained.

【0045】板状成形品は、表面が樹脂リッチでしわ、
強化繊維の露出がほとんどなく、良好な外観を呈してい
た。また、光学顕微鏡、走査電子顕微鏡観察により、成
形品内部の強化繊維が均一に分散しており、その間には
熱可塑性樹脂が十分含浸していることが確認された。こ
の成形品から幅70mm、長さ200mmの試験片を採取
し、スパン150mmの3点曲げ試験を行った。さらに、
この成形品を使用して、実施例1と同様にコンクリート
施工実験を行った。結果を、表1に示した。
The surface of the plate-shaped molded product is resin-rich and wrinkles,
The reinforcing fibers were barely exposed and had a good appearance. Further, by observation with an optical microscope and a scanning electron microscope, it was confirmed that the reinforcing fibers inside the molded product were uniformly dispersed, and the thermoplastic resin was sufficiently impregnated between them. A test piece having a width of 70 mm and a length of 200 mm was sampled from this molded product and subjected to a three-point bending test with a span of 150 mm. further,
Using this molded product, a concrete construction experiment was conducted in the same manner as in Example 1. The results are shown in Table 1.

【0046】比較例2 比較例1で成形された板状成形品を成形素材として、図
2に示した従来の方法により多孔質成形品を成形した。
成形素材を、遠赤外線加熱炉により表面温度が210℃
に昇温するまで約7分間加熱した。この際、成形素材は
表面付近が大きく膨張し、内部は十分加熱されていない
状態であった。また、表面部には凹凸が発生し、ガラス
繊維がスプリングバックにより露出していることが確認
された。加熱された成形素材を冷却プレス盤に挿入し、
プレス盤のクリアランスをスペーサーにより設定して、
圧力5kgf/cm2 で約5分間、加圧、冷却成形し、板厚1
2mmの多孔質成形品を得た。
Comparative Example 2 Using the plate-shaped molded product molded in Comparative Example 1 as a molding material, a porous molded product was molded by the conventional method shown in FIG.
Surface temperature of the molding material is 210 ° C in a far infrared heating furnace.
It heated for about 7 minutes until it heated up. At this time, the molding material was greatly expanded in the vicinity of the surface, and the inside was not sufficiently heated. Further, it was confirmed that unevenness was generated on the surface portion and the glass fiber was exposed by spring back. Insert the heated molding material into the cooling press machine,
Set the clearance of the press board with a spacer,
About 5 minutes at a pressure of 5 kgf / cm 2, pressure, and cooling molding, thickness 1
A 2 mm porous molded product was obtained.

【0047】この多孔質成形品の外観は、加熱された成
形素材の外観を受け継ぐため、表面凹凸によるしわ、強
化繊維の露出による外観低下が生じていた。また、光学
顕微鏡、走査電子顕微鏡観察により、多孔質成形品内部
の膨張状態は表面付近が非常に大きく膨張し、中心部は
もとの成形素材同様ほとんど膨張していないことが確認
された。この中心層は、成形素材の初期厚みの約50%
で、3.2mmの厚みを有していた。この多孔質成形品か
ら幅70mm、長さ200mmの試験片を採取し、スパン1
50mmの3点曲げ試験を行った。さらに、この多孔質成
形品を使用して、実施例1と同様にコンクリート施工実
験を行った。結果を、表1に示した。
Since the appearance of this porous molded article inherits that of the heated molding material, wrinkles due to surface irregularities and deterioration of the external appearance due to the exposure of the reinforcing fibers occur. Further, by observation with an optical microscope and a scanning electron microscope, it was confirmed that the inside of the porous molded product expanded greatly near the surface and the central part did not expand much like the original molding material. This center layer is approximately 50% of the initial thickness of the molding material.
And had a thickness of 3.2 mm. A test piece with a width of 70 mm and a length of 200 mm was sampled from this porous molded product and span 1
A 50 mm 3-point bending test was performed. Further, using this porous molded article, a concrete construction experiment was conducted in the same manner as in Example 1. The results are shown in Table 1.

【0048】比較例3 従来から使用されている木材型枠用板材の評価を実施し
た。木材型枠用板材は、厚み12mm、坪量7700 g/m
2 で、片面にウレタン塗装が施されていた。この木材型
枠用板材から幅70mm、長さ200mmの試験片を採取
し、スパン150mmの3点曲げ試験を行った。さらに、
実施例1と同様にコンクリート施工実験を行った。実験
は、ウレタン塗装面をコンクリートとの接触面として実
施した。結果を、表1に示した。
Comparative Example 3 A wood form board material which has been conventionally used was evaluated. The plate material for wood formwork has a thickness of 12 mm and a basis weight of 7700 g / m.
In 2 , urethane coating was applied on one side. A test piece having a width of 70 mm and a length of 200 mm was sampled from the wood form plate material and subjected to a three-point bending test with a span of 150 mm. further,
A concrete construction experiment was conducted in the same manner as in Example 1. The experiment was carried out with the urethane coated surface as the contact surface with concrete. The results are shown in Table 1.

【0049】実施例の型枠用板材は、繊維強化熱可塑性
樹脂層の均一な膨張が実施され、ガラス繊維がポリプロ
ピレン樹脂で効率よく接着されているため、良好な機械
的性質を示した。面積当りでの強度、弾性率は比較例1
の膨張していない成形品に比べて低下しているが、製品
としての曲げ強さ(曲げ荷重)、曲げ剛性(弾性勾配)
は改善されている。曲げ勾配とは、3点曲げ試験におい
て、試験片のたわみ量が2.5mmの時の荷重であり、型
枠用板材の剛性の指標となる。実施例と比較例1は、坪
量(単位面積当りの重量)はほぼ同じであるが、実施例
の板厚は繊維強化熱可塑性樹脂層の膨張により、比較例
1に比べて約2倍に厚くなっている。この結果は、曲げ
強さが製品板厚の2乗、曲げ剛性が板厚の3乗に比例す
ることによるもので、特に剛性の向上が著しいことが確
認された。
The mold plate materials of the examples showed good mechanical properties because the fiber-reinforced thermoplastic resin layer was subjected to uniform expansion and the glass fibers were efficiently bonded with the polypropylene resin. The strength and elastic modulus per area are comparative example 1.
Although it is lower than the non-expanded molded product, the bending strength (bending load), bending rigidity (elastic gradient) of the product
Has been improved. The bending gradient is a load when the bending amount of the test piece is 2.5 mm in the three-point bending test, and is an index of the rigidity of the form plate material. The example and the comparative example 1 have almost the same basis weight (weight per unit area), but the plate thickness of the example is about twice as large as that of the comparative example 1 due to the expansion of the fiber reinforced thermoplastic resin layer. It's getting thicker. This result is because the bending strength is proportional to the square of the product plate thickness, and the bending rigidity is proportional to the cube of the plate thickness, and it was confirmed that the rigidity is remarkably improved.

【0050】比較例2は、実施例、比較例1に比べて機
械的性質が低下していることが確認された。比較例2の
多孔質成形品では、表面付近の膨張が非常に大きく、中
心部はほとんど膨張していない構造を示していた。その
ため、製品が曲げられる場合に引張り、圧縮の荷重が加
わる表面部が、機械的に弱い構造になり機械的性質が低
下する。
It was confirmed that the mechanical properties of Comparative Example 2 were lower than those of Examples and Comparative Example 1. In the porous molded article of Comparative Example 2, the expansion in the vicinity of the surface was very large, and the central portion showed a structure in which it was hardly expanded. Therefore, when the product is bent, the surface portion to which a tensile or compressive load is applied has a mechanically weak structure and mechanical properties are deteriorated.

【0051】実施例の型枠用板材を使用したコンクリー
ト施工実験では、良好な結果が得られた。型枠用板材
は、機械的性質の改善により、コンクリート施工時の大
荷重下でたわみが発生せず、施工表面には型枠用板材の
平滑面または化粧模様が転写され、良好な外観が得られ
た。また、コンクリートの離型性も良好であった。
In a concrete construction experiment using the formwork plate material of the example, good results were obtained. Due to the improved mechanical properties, the formwork plate material does not sag under heavy load during concrete construction, and the smooth surface or makeup pattern of the formwork plate material is transferred to the construction surface, giving a good appearance. Was given. Further, the releasability of concrete was also good.

【0052】比較例1の場合は、剛性不足のために、コ
ンクリート施工時の大荷重下で型枠がたわみ、施工表面
に波うちの凹凸が発生した。コンクリートの離型性は、
ほぼ良好であったが、ごく僅かながら表面に露出してい
るガラス繊維にコンクリートが付着していた。
In the case of Comparative Example 1, due to insufficient rigidity, the mold was bent under a heavy load during concrete construction, and wavy unevenness was generated on the construction surface. The releasability of concrete is
Although it was almost good, the concrete adhered to the glass fiber exposed on the surface though it was very slight.

【0053】比較例2の場合は、コンクリート施工表面
の性状、離型性とも不良であった。多孔質成形品内部の
気泡中にコンクリートが浸入し、ガラス繊維が付着した
ため、コンクリート施工表面には大量のガラス繊維およ
びポリプロピレン樹脂が残留していた。また、剛性不足
のために、コンクリート施工時の大荷重下で型枠がたわ
み、施工表面に波うちの凹凸も発生した。
In the case of Comparative Example 2, the properties of the concrete construction surface and the releasability were poor. Since concrete penetrated into the air bubbles inside the porous molded product and glass fiber adhered, a large amount of glass fiber and polypropylene resin remained on the surface of the concrete construction. In addition, due to insufficient rigidity, the formwork was bent under heavy load during concrete construction, and waviness was generated on the construction surface.

【0054】実施例の型枠用板材では、機械的性質、外
観の改善により、比較例3の従来から使用されている木
材型枠用板材と同レベルの軽量化、コンクリート施工性
能が発現していることが確認された。実施例3の化粧模
様の転写性能は、化粧型枠としての用途に結び付く。
The formwork plate materials of the examples show the same level of weight reduction and concrete construction performance as those of the conventional wood formwork plate materials of Comparative Example 3 by improving the mechanical properties and appearance. Was confirmed. The transfer performance of the makeup pattern of Example 3 leads to the use as a makeup form.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明の型枠用板材は、機械的性質、外
観が優れており、従来から使用されている木材型枠用板
材と同レベルの軽量化、コンクリート施工性能を示す。
また、従来の多孔質成形品に比べて製品厚みの許容範囲
が広がるため、優れた木材代替品となり、産業用資材に
広く適用することができる。
EFFECT OF THE INVENTION The plate material for formwork of the present invention is excellent in mechanical properties and appearance, and exhibits the same level of weight reduction and concrete construction performance as the plate material for wood formwork used conventionally.
Further, since the allowable range of product thickness is widened as compared with the conventional porous molded product, it becomes an excellent wood substitute and can be widely applied to industrial materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の型枠用板材を示す概略図。FIG. 1 is a schematic view showing a form plate material of the present invention.

【図2】本発明の型枠用板材の成形方法の一例を示す概
略図。
FIG. 2 is a schematic view showing an example of a method of forming a plate material for a mold of the present invention.

【図3】従来の多孔質成形品の成形方法の一例を示す概
略図。
FIG. 3 is a schematic view showing an example of a conventional method for molding a porous molded article.

【符号の説明】[Explanation of symbols]

1 本発明の型枠用板材 2 繊維強化
熱可塑性樹脂層 3 熱可塑性樹脂層 4 強化繊維 5 熱可塑性樹脂 6 不織材料 7 熱可塑性樹脂フィルム 8 板状体 9 加熱プレス盤 10 熱可塑性樹脂が溶融した状態で加圧された
不織材料 11 強化繊維のスプリングバックにより均一に
膨張した不織材料 12 冷却プレス盤 13 シート
状成形素材 14 遠赤外線加熱炉 15 膨張し
た層 16 ほとんど膨張していない層 17 シート表面部の凹凸 18 強化繊維のスプリングバックによる露出 19 多孔質成形品 20 成形品
表面のしわ
1 Plate Material for Formwork of the Present Invention 2 Fiber Reinforced Thermoplastic Resin Layer 3 Thermoplastic Resin Layer 4 Reinforcing Fiber 5 Thermoplastic Resin 6 Nonwoven Material 7 Thermoplastic Resin Film 8 Plate-like Body 9 Heating Press Board 10 Thermoplastic Resin Melts The non-woven material which is pressed in the state 11 The non-woven material which is uniformly expanded by the springback of the reinforcing fiber 12 The cooling press plate 13 The sheet-shaped forming material 14 The far infrared heating furnace 15 The expanded layer 16 The layer which is hardly expanded 17 Unevenness of sheet surface 18 Exposure of reinforcing fiber by springback 19 Porous molded product 20 Wrinkled surface of molded product

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月22日[Submission date] February 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】図2の成形方法では、加熱、加圧工程と加
圧、冷却工程を別々の専用プレス機で実施したが、一台
のプレス機により加熱、加圧、減圧、冷却成形を実施す
ることもできる。また、加熱プレス盤での不織材料の加
熱時間を短縮することを目的として、不織材料を予熱す
ることは成形サイクルの短縮につながり好ましい。不織
材料の予熱には、不織材料の通気性を利用して熱風を通
過させ短時間に加熱する方法やオーブンによる加熱が行
われる。
In the molding method of FIG. 2, the heating, pressurizing step and the pressurizing, cooling step are carried out by separate dedicated press machines, but the heating, pressurizing, depressurizing and cooling molding are carried out by one press machine. You can also In addition, preheating the non-woven material for the purpose of shortening the heating time of the non-woven material on the hot press machine is preferable because it shortens the molding cycle. For the preheating of the non-woven material, there is used a method of passing hot air for heating in a short time by utilizing air permeability of the non-woven material, or heating by an oven.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】不織材料の代わりに、不織材料を加熱、加
圧、冷却成形したシート状成形素材を使用した場合も、
同様に強化繊維のスプリングバックによる膨張が発生
し、本発明の型枠用板材を得ることができる。但し、こ
の場合はシート状成形素材の成形工程により、全工程
長くなるため効率的ではない。この方法で成形された型
枠用板材は、周囲の形状が不安定なため、実際には成形
品の周囲をトリミングすることにより図1に示した製品
が得られ、使用される。
When a sheet-shaped molding material obtained by heating, pressurizing and cooling the non-woven material is used instead of the non-woven material,
Similarly, expansion due to springback of the reinforcing fibers occurs, and the plate material for a mold of the present invention can be obtained. However, in this case, the entire process becomes long due to the forming process of the sheet-shaped forming material, which is not efficient. Since the form plate material formed by this method has an unstable peripheral shape, the product shown in FIG. 1 is actually obtained and used by trimming the periphery of the formed product.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】さらに無機フィラーを添加した熱可塑性樹
脂フィルムを使用することもできる。添加する無機フィ
ラーとしては、炭酸カルシウム、タルク等の微粒子状フ
ィラー、マイカ等のフレーク状フィラー、チョップドガ
ラス繊維、ロックウール繊維等の繊維状フィラーを用い
る。無機フィラーは、熱可塑性樹脂との接着性を向上す
るために、シランカプリング剤等で表面処理を行うこと
が望ましい。無機フィラーは、用途に応じて適宜選択す
る。また上記の無機フィラーの2種類以上の混合物を添
加してもよい。無機フィラーの添加量は、熱可塑性樹脂
溶融粘度を向上させ、表層部を強化する目的から3体
積%以上に、安定したフィルム成形が可能な30体積%
以下とする。但し、無機フィラーはコンクリートと付着
し易い性質があるため、コンクリートとの離型性を維持
するために、最外表面には熱可塑性樹脂フィルムを積層
することができる。無機フィラー含有熱可塑性樹脂フィ
ルムは0.1〜2mmの範囲で、熱可塑性樹脂フィルムの
厚みは、0.01〜1mmの範囲で用途により適宜選択す
る。
It is also possible to use a thermoplastic resin film to which an inorganic filler is added. As the inorganic filler to be added, particulate fillers such as calcium carbonate and talc, flaky fillers such as mica, fibrous fillers such as chopped glass fibers and rock wool fibers are used. The inorganic filler is preferably surface-treated with a silane coupling agent or the like in order to improve the adhesiveness with the thermoplastic resin. The inorganic filler is appropriately selected according to the application. Further, a mixture of two or more kinds of the above inorganic fillers may be added. The amount of the inorganic filler added is 3% by volume or more for the purpose of improving the melt viscosity of the thermoplastic resin and strengthening the surface layer portion, and 30% by volume that enables stable film formation.
Below. However, since the inorganic filler has a property of easily adhering to concrete, a thermoplastic resin film can be laminated on the outermost surface in order to maintain releasability from concrete. The thermoplastic resin film containing an inorganic filler is in the range of 0.1 to 2 mm, and the thickness of the thermoplastic resin film is in the range of 0.01 to 1 mm, and is appropriately selected depending on the application.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 隆夫 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Kimura 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Co., Ltd. Yokkaichi Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 抄造法による不織材料を用いてなる多孔
質の繊維強化熱可塑性樹脂層とその片面または両面に積
層された厚み0.2〜2mmの熱可塑性樹脂層からなり、
前記繊維強化熱可塑性樹脂層の強化繊維と気泡が、前記
熱可塑性樹脂層の積層面により覆われており、全体の見
かけ密度が0.3〜1g/cm3 で、坪量が4500 g/m2
以上のコンクリート型枠用板材。
1. A porous fiber-reinforced thermoplastic resin layer made of a non-woven material produced by a papermaking method, and a thermoplastic resin layer having a thickness of 0.2 to 2 mm laminated on one side or both sides thereof,
The reinforcing fibers and bubbles of the fiber-reinforced thermoplastic resin layer are covered by the laminated surface of the thermoplastic resin layer, the overall apparent density is 0.3 to 1 g / cm 3 , and the basis weight is 4500 g / m 2. 2
The above plate materials for concrete formwork.
【請求項2】 繊維強化熱可塑性樹脂層の強化繊維含有
量が10体積%以上である請求項1記載のコンクリート
型枠用板材。
2. The plate material for concrete formwork according to claim 1, wherein the reinforcing fiber content of the fiber-reinforced thermoplastic resin layer is 10% by volume or more.
【請求項3】 熱可塑性樹脂層が、無機フィラー含有熱
可塑性樹脂層と、その更に外側に配置した厚み0.01
〜1mmの熱可塑性樹脂層からなる請求項1または2記載
のコンクリート型枠用板材。
3. The thermoplastic resin layer comprises an inorganic filler-containing thermoplastic resin layer and a thickness of 0.01, which is arranged further outside.
The plate material for concrete formwork according to claim 1 or 2, comprising a thermoplastic resin layer having a thickness of 1 mm.
【請求項4】 片側または両側の表面に、化粧模様の凹
凸加工(シボ加工)が施されている請求項1〜3のいず
れか一つに記載のコンクリート型枠用板材。
4. The plate material for concrete formwork according to claim 1, wherein the surface of one side or both sides of the surface is provided with a concavo-convex process (texture process) of a decorative pattern.
JP4318174A 1992-11-27 1992-11-27 Plate for concrete formwork Expired - Lifetime JP3012416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318174A JP3012416B2 (en) 1992-11-27 1992-11-27 Plate for concrete formwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318174A JP3012416B2 (en) 1992-11-27 1992-11-27 Plate for concrete formwork

Publications (2)

Publication Number Publication Date
JPH06155433A true JPH06155433A (en) 1994-06-03
JP3012416B2 JP3012416B2 (en) 2000-02-21

Family

ID=18096296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318174A Expired - Lifetime JP3012416B2 (en) 1992-11-27 1992-11-27 Plate for concrete formwork

Country Status (1)

Country Link
JP (1) JP3012416B2 (en)

Also Published As

Publication number Publication date
JP3012416B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
CA1299480C (en) Method of making laminated reinforced thermoplastic sheets and articlesmade therefrom
KR920002332B1 (en) Fibre reinforced compostics material
Jayaraman Manufacturing sisal–polypropylene composites with minimum fibre degradation
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
EP1737650B1 (en) Multilayer product made out of a substrate and on either side at least one cover layer; process for the manufacture of a multilayer product and painted multilayer product and process for painting a multilayer product
JPH04163109A (en) Manufacture of fiber-reinforced thermoplastic resin molding material
JPH06320655A (en) Porous molded product made of fiber reinforced thermoplastic resin and molding method thereof
JP3032584B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
KR20200132876A (en) Manufacturing method of molded article
JPH07103244B2 (en) Stamping molding material
JP3056610B2 (en) Laminated molded article and molding method
JPH06155433A (en) Board material for concrete form
JP3110162B2 (en) Molding method of fiber-reinforced thermoplastic resin porous molded article
JPS63170423A (en) Molding of multilayer composite panel having mirror surface
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
JP3110207B2 (en) Recycle molding method of fiber-reinforced thermoplastic resin porous molded product
NL1020640C2 (en) Method for manufacturing a three-dimensional object with a sandwich structure.
JPH06210782A (en) Porous molded product of fiber-reinforced thermally plastic resin and its production
JPH06134876A (en) Molding of fiber reinforced thermoplastic resin porous molded object
JP2879111B2 (en) Heat resistant fiber aggregate
JP3545053B2 (en) Manufacturing method of lightweight stampable sheet
JPH04331137A (en) Laminated product and method for forming the same
JPH06234129A (en) Preparation of composite
JPH06246742A (en) Platelike glass fiber-reinforced thermoplastic resin with excellent moldability
JP3254409B2 (en) Manufacturing method of molded interior material for automobile