JPH06154991A - Method for squeezing molten complex metal - Google Patents

Method for squeezing molten complex metal

Info

Publication number
JPH06154991A
JPH06154991A JP30549592A JP30549592A JPH06154991A JP H06154991 A JPH06154991 A JP H06154991A JP 30549592 A JP30549592 A JP 30549592A JP 30549592 A JP30549592 A JP 30549592A JP H06154991 A JPH06154991 A JP H06154991A
Authority
JP
Japan
Prior art keywords
hollow body
metal
metal body
hollow
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30549592A
Other languages
Japanese (ja)
Inventor
Masahiro Toda
正弘 戸田
Takeshi Miki
武司 三木
Osamu Kada
修 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30549592A priority Critical patent/JPH06154991A/en
Publication of JPH06154991A publication Critical patent/JPH06154991A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable high precise formation by inserting a metal body having shorter height than a hollow body in the hollow body beforehand formed into simpler shape than a product shape, heating the hollow body after drawing the hollow part and pressurize-forming in the die. CONSTITUTION:In the hollow body 1 having <=0.2 ratio of thickness/outermost diameter, the metal body 2 having the m.p. lower than m.p. of the steel material of the hollow body by 50 deg.C as the upper limit and the height shorter than the hollow body, is inserted. The part 3 of the hollow body is drawn. Successively, these materials are heated by high frequency induction in non-oxidizing atmosphere in the high frequency induction heating coil 4 to the higher temp. either of the liquidus temp. -45 deg.C of the metal body or 500 deg.C as the lower limit, and only the inserted metal body is semi-melted or melted and the hollow body is kept to the shape. Successively, by using a die 5 and punch 6 preheated to >=300 deg.C by heating device 7, the pressurize-forming is executed. By this the formation of the product having different materials between the outer surface and the inner part can easily be executed with high die service life.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属の溶湯鍛造法に係わ
り、特に自動車、産業機械などの部品製造のような量産
を目的とした加工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal forging method, and more particularly to a working method for mass production such as manufacturing parts for automobiles, industrial machines and the like.

【0002】[0002]

【従来の技術】溶湯鍛造法は溶湯から直接機械部品を製
造する技術として、主として自動車部品の生産に用途が
拡大している。この技術は、従来法の鋳造に比べて微視
的組織が微細であることによって機械的性能が優れてい
るとともに、内部に空隙ができないこと、外径精度が高
いなどの利点を有する。現在は、自動車部品のホイール
を初めとして、主として足廻りの部品のほか、神戸製鋼
技報Vol.21,No. 3,57ページに記載されているよ
うにピストンなどにも適用されている。しかしながら溶
湯鍛造法では、溶融した金属を直接金型内に注入するた
め、金型に融着をおこし、製品の離型および金型寿命が
問題となっている。これを解決すべく特開昭53−13
0229号公報では、金属の中空体内に溶融した金属を
注入し、その後加圧成形する方法が開示されている。ま
た本発明者らは特願平03−140275号において、
鋼材からなる中空体内に中空体より融点の低い金属体を
挿入しておき、これらを加熱して金属体のみを溶解させ
る複合溶湯鍛造方法を提案した。
2. Description of the Related Art The molten metal forging method is a technique for producing mechanical parts directly from molten metal, and its application is expanding mainly to the production of automobile parts. This technique has advantages in that the microscopic structure is finer than that in the conventional method, so that the mechanical performance is excellent, voids are not formed inside, and the outer diameter accuracy is high. At present, it is mainly applied to the parts of the undercarriage such as wheels of automobile parts, and also to pistons as described in Kobe Steel Technical Report Vol. 21, No. 3, 57. However, in the molten metal forging method, since molten metal is directly injected into the mold, it causes fusion to the mold, resulting in problems of product release and mold life. To solve this, JP-A-53-13
Japanese Patent No. 0229 discloses a method of injecting a molten metal into a hollow metal body and thereafter performing pressure molding. In addition, the present inventors in Japanese Patent Application No. 03-140275,
We proposed a method for forging a molten metal in which a metal body having a melting point lower than that of the hollow body is inserted into a hollow body made of steel, and these are heated to melt only the metal body.

【0003】[0003]

【発明が解決しようとする課題】特開昭53−1302
29号公報の方法は金属の中空体が冷間ままであること
から、加工時の成形性が悪く、溶湯鍛造の利点である複
雑形状の部品成形が困難であるという問題点を有してい
た。とくに鋼材からなる中空体を用いた場合はそれが顕
著であり、適用できる部品形状が制限されている。また
溶湯を中空体内に注入するために、注入する溶湯量の管
理が難しく製品の重量バラツキが大きいこと、また溶湯
注入ノズルがつまりその交換を頻繁に行なわなくてはな
らないという問題も有していた。特願平03−1402
75号記載の方法では、中空体も加熱されるため変形抵
抗が低減でき、特開昭53−130229号公報の方法
に比べ複雑形状部品の成形が可能となった。さらに金属
体を溶湯として注入しないため、重量バラツキが少なく
かつ注入ノズルに関する問題も解消した。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 29 has a problem that since the metal hollow body remains cold, the formability during processing is poor and it is difficult to form a complex-shaped part, which is an advantage of molten metal forging. . This is particularly noticeable when a hollow body made of steel is used, and the applicable component shapes are limited. Further, since the molten metal is injected into the hollow body, there is a problem that it is difficult to control the amount of the molten metal to be injected and the weight variation of the product is large, and the molten metal injection nozzle needs to be replaced frequently. . Japanese Patent Application No. 03-1402
According to the method described in Japanese Patent No. 75, the hollow body is also heated, so that the deformation resistance can be reduced, and it becomes possible to mold a part having a complicated shape as compared with the method disclosed in Japanese Patent Laid-Open No. 53-130229. Further, since the metal body is not poured as a molten metal, there is little variation in weight and the problem with the injection nozzle is solved.

【0004】しかし特開昭53−130229号および
特願平03−140275号記載の発明とも、素材を押
し込み金型であるパンチ側では金属体は中空体で覆われ
ておらずパンチには溶融した金属体が溶着するため、製
品離脱およびパンチ寿命が問題であった。またこれらの
発明では、金属体全面を中空体でカバーすることが必要
な製品の加工ができない。
However, in both the inventions described in Japanese Patent Application Laid-Open No. 53-130229 and Japanese Patent Application No. 03-140275, the metal body is not covered with the hollow body on the punch side, which is a metal mold, and is melted in the punch. Since the metal body is welded, product detachment and punch life are problems. Further, in these inventions, it is impossible to process a product which requires covering the entire surface of the metal body with a hollow body.

【0005】そこで本発明は前記問題点を解決すること
を目的に、加工時の成形性が良好で複雑形状の高精度な
部品成形が可能で、金属体が金型に溶着すること無く高
い金型寿命及びパンチ寿命を実現する複合溶湯鍛造方法
を提供する。
In order to solve the above-mentioned problems, the present invention is capable of forming a highly precise part having a good formability during processing and having a complicated shape, and a metal body having a high moldability without being welded to the mold. Provided is a composite molten metal forging method that realizes die life and punch life.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題を解
決するために、金属体よりも高さが高い中空体を用い
て、金属体が充満していない中空体の部分に絞り加工を
行うことにより、加圧成形時に金属体は絞り加工された
中空体部によって覆われ、パンチに金属体が溶融するこ
となく複雑形状部品の成形を実現するものである。即ち
本発明の要旨とするところは、重量%で0.1%以上、
1%未満の炭素量を含有する鋼材を用いて、あらかじめ
製品形状より単純な形状に成形され、かつその肉厚/最
外径比が0.2以内の中空体内に、融点が500℃以上
で中空体の鋼材の融点より50℃下を上限とし、その高
さが中空体より低い金属体を挿入し、前記金属体が充填
されていない中空体部を絞り加工等の鍛造加工を行った
後、前記金属体が挿入された中空体を無酸化雰囲気中で
中空体の平均加熱速度5℃/秒以上、20℃/秒以下
で、金属体の平衡状態図における液相線温度−45℃ま
たは500℃のいずれか高い方を下限として高周波によ
り加熱し、挿入された金属体が溶融または半溶融状態の
うちに300℃以上にあらかじめ予加熱された金型中に
て加圧し、成形一体化することを特徴とする複合溶湯鍛
造方法にある。
In order to solve the above problems, the present invention uses a hollow body having a height higher than that of a metal body, and draws a hollow body portion not filled with the metal body. As a result, the metal body is covered with the hollow body portion that has been drawn during the pressure molding, and the molding of a complex shaped part is realized without melting the metal body in the punch. That is, the gist of the present invention is 0.1% or more by weight%,
Using a steel material containing less than 1% of carbon, a hollow body that is previously formed into a simpler shape than the product shape and has a wall thickness / outermost diameter ratio of 0.2 or less and a melting point of 500 ° C or more. After the upper limit is 50 ° C. below the melting point of the steel material of the hollow body, the height of the metal body is lower than that of the hollow body, and the hollow body portion not filled with the metal body is subjected to forging such as drawing. A liquidus temperature of -45 ° C in an equilibrium diagram of the metal body at an average heating rate of the hollow body of 5 ° C / sec or more and 20 ° C / sec or less in a non-oxidizing atmosphere. It is heated by high frequency with 500 ℃ whichever is higher as the lower limit, and while the inserted metal body is in a molten or semi-molten state, it is pressurized in a mold preheated to 300 ℃ or more in advance and integrated with molding. This is a composite molten metal forging method.

【0007】ここで融点とは、金属体および中空体の鋼
材とも平衡状態図における液相線温度のことを指す。
Here, the melting point refers to the liquidus temperature in the equilibrium diagram for both metal and hollow steel materials.

【0008】[0008]

【作用】図1は本発明に係わる溶湯鍛造法の一態様を示
すものである。図1(a)に示す様に、製品形状より単
純な形状に成形された鋼材からなりその肉厚/最外径比
が0.2以内の中空体1内に、融点が中空体の鋼材の融
点より50℃下を上限とし、その高さが中空体より低い
金属体2を予め挿入しておく。そして図1(b)に示す
様に、金属体が充填されていない中空体の部分3を絞り
加工する。この時、以降の鍛造に影響が無ければ金属の
一部が加工されてもよい。また絞り加工後に図1
(b′)に示すように中空体の部分3が金属体上端面と
接触するまで圧縮加工を加えてもよく、これによりカッ
プ状部品成形において金属体全面が中空体素材で覆われ
た製品の成形が可能となる。その後、図1(c)に示す
様に高周波加熱コイル4内でこれらを金属体の平衡状態
図における液相線温度−45℃または500℃のいずれ
か高い方を下限として加熱することにより、挿入した金
属体のみが半溶融または溶融化し中空体はその形状を保
持することができる。加熱終了後同図(d)に示す様、
これらを加熱装置7により300℃以上に予加熱された
ダイス5とパンチ6を用いて加圧成形を行なうことによ
り製品ができる。
FIG. 1 shows one embodiment of the molten metal forging method according to the present invention. As shown in FIG. 1 (a), a hollow body 1 made of a steel material formed into a shape simpler than the product shape and having a wall thickness / outermost diameter ratio within 0.2 has a melting point of a hollow steel body. The metal body 2 whose upper limit is 50 ° C. below the melting point and whose height is lower than that of the hollow body is inserted in advance. Then, as shown in FIG. 1B, the hollow body portion 3 not filled with the metal body is drawn. At this time, a part of the metal may be processed if it does not affect the subsequent forging. In addition, after drawing,
As shown in (b '), compression processing may be applied until the hollow body portion 3 comes into contact with the upper end surface of the metal body, which results in a product in which the entire metal body is covered with the hollow body material in the molding of cup-shaped parts. Molding becomes possible. After that, as shown in FIG. 1 (c), these are inserted in the high-frequency heating coil 4 by heating them with the liquidus temperature in the equilibrium diagram of the metal body being −45 ° C. or 500 ° C., whichever is higher, as the lower limit. Only the formed metal body is semi-melted or melted and the hollow body can retain its shape. After heating, as shown in FIG.
A product can be obtained by press-molding these using the die 5 and the punch 6 preheated to 300 ° C. or more by the heating device 7.

【0009】本発明では、特願平03−140275号
の発明に比べてパンチ側も中空体によって金属体が覆わ
れているために、パンチへの金属体の溶着を避けること
ができる。さらに金属体全面を中空体でカバーした複合
製品の成形が可能となる。中空体に用いる鋼材の炭素量
を重量%で0.1%以上、1%未満とするのは、0.1
%未満では冷間での変形抵抗が低いため中空体を加熱し
て変形抵抗を低減する効果がないからであり、1%以上
では靱性が低くなり自動車等の重要な部分に適用できな
くなるためである。また中空体の肉厚/最大直径比を
0.2以内とするのは、これを越えた肉厚/最外径比を
有する中空体ではその後の加圧成形時に中空体が金型に
充満しにくく、製品形状に成形できないからである。中
空体内に挿入しておく金属体の融点を500℃以上とす
るのは、本発明法では中空体の鋼材を軟質化する必要か
ら中空体は500℃以上の加熱を必要とし、これよりも
低い温度では加熱による中空体の軟質化があまりみられ
ないからである。挿入する金属体の融点を中空体の鋼材
の融点より50℃下を上限とするのは、これよりも融点
の高い金属体では、金属体を半溶融或いは溶融させた時
中空体も熔け落ち、金属体が流出する可能性あるからで
ある。金属体の種類は、その融点が500℃以上で中空
体の鋼材の融点−50℃以下という条件を満足すれば何
でもよく、例えばアルミ合金、チタン合金、銅合金、ま
た鋼も含まれる。
In the present invention, compared with the invention of Japanese Patent Application No. 03-140275, since the metal body is covered with the hollow body on the punch side as well, welding of the metal body to the punch can be avoided. Further, it becomes possible to form a composite product in which the entire surface of the metal body is covered with a hollow body. When the carbon content of the steel material used for the hollow body is 0.1% or more and less than 1% by weight, it is 0.1
If it is less than 1%, the cold deformation resistance is low, so there is no effect of heating the hollow body to reduce the deformation resistance, and if it is 1% or more, the toughness becomes low and it cannot be applied to important parts such as automobiles. is there. In addition, the wall thickness / maximum diameter ratio of the hollow body is set to be within 0.2, in the case of a hollow body having a wall thickness / outermost diameter ratio exceeding this, the hollow body fills the mold during the subsequent pressure molding. This is because it is difficult and cannot be molded into a product shape. The melting point of the metal body to be inserted into the hollow body is 500 ° C. or higher because the method of the present invention requires the steel material of the hollow body to be softened, and thus the hollow body needs to be heated to 500 ° C. or higher, which is lower than this. This is because the softening of the hollow body due to heating does not occur so much at temperature. The upper limit of the melting point of the metal body to be inserted is 50 ° C. below the melting point of the steel material of the hollow body. With a metal body having a melting point higher than this, the hollow body also melts down when the metal body is semi-melted or melted, This is because the metal body may flow out. Any type of metal body may be used as long as it satisfies the condition that the melting point is 500 ° C. or higher and the melting point of the hollow steel material is −50 ° C. or lower, and examples thereof include aluminum alloy, titanium alloy, copper alloy, and steel.

【0010】中空体の加熱温度を金属体の平衡状態図に
おける液相線温度−45℃または500℃のいずれか高
い方を下限とするのは、これより低い温度ではその後の
鍛造において金属体および中空体の流動性が悪くなり、
成形性が低下するからである。その際アルゴン、窒素等
の無酸化雰囲気で高周波加熱等の急速加熱法を用いて中
空体の平均加熱速度を5℃/秒以上、20℃/秒以下と
する。これは加熱時の酸化膜生成を極力抑制することに
よって精度向上を図るためである。この平均加熱速度が
5℃/秒未満では酸化膜生成の抑制が期待できないから
であり、20℃/秒を超えた平均加熱速度では中空体の
内部温度が不均一となって局部的に熔け落ちるからであ
る。さらに注入金属体が溶融または半溶融状態のうちに
加圧成形を行なうのは、金属体が固化してしまうと金属
体の流動性が悪くなり、成形性が低下するからである。
金型を予め300℃以上に予加熱するのは、加圧成形時
に金型と接触する中空体が温度低下することによる中空
体の流動性低下を防ぐためであり、これより低い温度で
はその効果が低いからである。
The lower limit of the heating temperature of the hollow body is the liquidus temperature of −45 ° C. or 500 ° C. in the equilibrium diagram of the metal body, whichever is higher. The fluidity of the hollow body deteriorates,
This is because the moldability is reduced. At that time, the average heating rate of the hollow body is set to 5 ° C./sec or more and 20 ° C./sec or less by using a rapid heating method such as high frequency heating in a non-oxidizing atmosphere such as argon or nitrogen. This is to improve the accuracy by suppressing the oxide film formation during heating as much as possible. This is because if the average heating rate is less than 5 ° C./second, suppression of oxide film formation cannot be expected, and if the average heating rate exceeds 20 ° C./second, the internal temperature of the hollow body becomes uneven and melts down locally. Because. Further, the reason why the pressure molding is performed while the injected metal body is in a molten or semi-molten state is that if the metal body is solidified, the fluidity of the metal body deteriorates and the moldability deteriorates.
The reason why the mold is preheated to 300 ° C. or more in advance is to prevent the flowability of the hollow body from being lowered due to the temperature drop of the hollow body that comes into contact with the mold during pressure molding. Is low.

【0011】[0011]

【実施例】本発明法の実施例として、図1に示す工程に
よる成形を実施した。表1に示す成分を有する鋼種A
(厚さ2mm,6mm,8mm,15mm)にて円筒容器状(内
径φ40mm、高さ78mm及び60mm)の中空体を成形
し、その中に表1に示す成分を有する鋼種Bの金属体
(外径39.8mm、高さ60mm)を挿入した。金属体が
充満していない中空体部を冷間にてダイス半角20°に
て絞り加工を行った後、高周波により1〜20℃/秒の
加熱速度で所定の温度に加熱を行なった。加熱直後にこ
れらを図1(d)に示すように100〜350℃の予加
熱を行ったパンチとダイスにて最大20tonfとなるまで
圧縮成形を行った。
EXAMPLES As an example of the method of the present invention, molding was carried out by the steps shown in FIG. Steel type A having the components shown in Table 1
(Thickness 2 mm, 6 mm, 8 mm, 15 mm) was used to form a cylindrical container-shaped (inner diameter φ40 mm, height 78 mm and 60 mm) hollow body, in which the metal body of steel type B having the components shown in Table 1 (outer (Diameter 39.8 mm, height 60 mm) was inserted. The hollow body portion not filled with the metal body was cold drawn and drawn at a die half angle of 20 °, and then heated to a predetermined temperature by a high frequency at a heating rate of 1 to 20 ° C / sec. Immediately after heating, these were compression-molded with a punch and a die preheated at 100 to 350 ° C. to a maximum of 20 tonf as shown in FIG.

【0012】[0012]

【表1】 [Table 1]

【0013】表2には、成形後に得られた製品において
素材軸に直角方向の断面積の拡大率(α)と金属体のパ
ンチへの溶着状況、及び鍛造後の製品表面での酸化膜厚
みの測定結果を示す。なお面積拡大率及び酸化膜厚みは
各条件とも20個の鍛造品の平均値である。表2に示す
平均加熱速度の設定は、熱電対を中空体表面と中空体中
心部に埋め込んだ試料を用いて両者の平均温度を中空体
の温度とし、中空体の平均加熱速度が所定の値になるよ
うに高周波加熱条件を求めておき、実施例ではその条件
を基に加熱を行った。なお加熱温度の金属体内分布状況
は設定温度+10℃以内であった。
Table 2 shows the enlargement ratio (α) of the cross-sectional area in the direction perpendicular to the material axis, the welding state of the metal body to the punch, and the oxide film thickness on the product surface after forging in the product obtained after molding. The measurement result of is shown. The area enlargement ratio and the oxide film thickness are average values of 20 forged products under each condition. The setting of the average heating rate shown in Table 2 is performed by using a sample in which a thermocouple is embedded in the surface of the hollow body and the center of the hollow body, and the average temperature of the two is set as the temperature of the hollow body, and the average heating rate of the hollow body is a predetermined value. The high frequency heating conditions were determined so that the above condition was satisfied, and heating was performed based on the conditions in the examples. The distribution of the heating temperature in the metal was within the set temperature + 10 ° C.

【0014】[0014]

【表2】 [Table 2]

【0015】表2より、本発明法1〜8では加工性を表
す面積拡大率αはいずれも4.0以上となっているが、
中空体の肉厚が大きい比較法1、加熱温度が低い比較法
3及び比較法7、金型予加熱温度が低い比較法4ではい
ずれもαは3.1以下となっており、本発明法により高
い加工性を付与することができることがわかる。またパ
ンチへの金属体の溶着の有無を調査した結果、中空体の
高さが金属体のそれと同じである比較法5,6の場合に
おいて金属体が溶融していた。これにより比較法5,6
の方法では所定の形状に成形できないことになり、パン
チ寿命に達したことになる。さらに鍛造後の酸化膜厚み
は、本発明法ではいずれも40μm未満であるのに対
し、加熱速度が遅い比較法2では124μmにもなり、
加熱時の雰囲気を空気中で行った比較法8では200μ
m以上にも達していた。
From Table 2, the area enlargement ratio α representing the workability is 4.0 or more in all of the methods 1 to 8 of the present invention.
In Comparative method 1 in which the wall thickness of the hollow body is large, Comparative method 3 and Comparative method 7 in which the heating temperature is low, and Comparative method 4 in which the mold preheating temperature is low, α is 3.1 or less, and the method of the present invention is used. It can be seen that higher workability can be imparted by Further, as a result of investigating whether or not the metal body was welded to the punch, the metal body was melted in the cases of Comparative methods 5 and 6 in which the height of the hollow body was the same as that of the metal body. As a result, the comparison methods 5, 6
With the method (2), the punch cannot be formed into a predetermined shape, and the punch life has been reached. Further, the oxide film thickness after forging is less than 40 μm in each of the methods of the present invention, and is 124 μm in Comparative method 2 in which the heating rate is slow,
200 μm in Comparative Method 8 in which the heating atmosphere was air.
It was over m.

【0016】表2における本発明法9は、本発明法6に
おいて中空体の絞り加工を行った後、中空体に圧縮加工
を行って図1(b′)に示すよう試料上面を平坦にし、
その後加熱、鍛造を行った場合である。この場合も、面
積拡大率、パンチへの金属体の溶着、および製品の酸化
膜厚みは本発明法1〜8と同様に成形できることがわか
った。
According to the method 9 of the present invention in Table 2, after the hollow body was drawn in the method 6 of the present invention, the hollow body was subjected to compression processing to flatten the upper surface of the sample as shown in FIG. 1 (b ').
This is the case when heating and forging are performed thereafter. Also in this case, it was found that the area expansion ratio, the welding of the metal body to the punch, and the thickness of the oxide film of the product can be formed in the same manner as in the methods 1 to 8 of the present invention.

【0017】[0017]

【発明の効果】本発明を用いれば、溶湯鍛造の特徴であ
る複雑形状部品の成形性をそこなうことなく高精度で行
うことができるとともに、金属体が金型に溶着すること
無く高い金型寿命で加工できる他、外面と内部とで材質
の異なる製品の成形を容易に行なうことが可能となる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to perform the molding of a complex-shaped part, which is a feature of molten metal forging, with high accuracy without impairing the mold forging, and to have a long mold life without the metal body welding to the mold. In addition to being processed, it becomes possible to easily form a product having different materials on the outer surface and the inner portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の態様と本発明実施例に用いた溶湯鍛造
法を示す図である。
FIG. 1 is a diagram showing an aspect of the present invention and a molten metal forging method used in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1…中空体 2…金属体 3…絞り加工部 4…高周波加熱コイル 5…金型 6…パンチ 7…金型加熱装置 DESCRIPTION OF SYMBOLS 1 ... Hollow body 2 ... Metal body 3 ... Drawing process part 4 ... High frequency heating coil 5 ... Mold 6 ... Punch 7 ... Mold heating device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で0.1%以上、1%未満の炭素
量を含有する鋼材を用いて、あらかじめ製品形状より単
純な形状に成形され、かつその肉厚/最外径比が0.2
以内の中空体内に、融点が500℃以上で中空体の鋼材
の融点より50℃下を上限とし、その高さが中空体より
低い金属体を挿入し、前記金属体が充填されていない中
空体部を絞り加工等の鍛造加工を行った後、前記金属体
が挿入された中空体を無酸化雰囲気中で中空体の平均加
熱速度5℃/秒以上、20℃/秒以下で、金属体の平衡
状態図における液相線温度−45℃または500℃のい
ずれか高い方を下限として高周波により加熱し、挿入さ
れた金属体が溶融または半溶融状態のうちに300℃以
上にあらかじめ予加熱された金型中にて加圧し、成形一
体化することを特徴とする複合溶湯鍛造法。
1. A steel material containing a carbon content of 0.1% or more and less than 1% in weight% is previously formed into a shape simpler than the product shape, and the wall thickness / outermost diameter ratio is 0. .2
A hollow body in which a metal body having a melting point of 500 ° C. or more and 50 ° C. or less below the melting point of the steel material of the hollow body, the height of which is lower than that of the hollow body, is not filled in the hollow body After performing a forging process such as drawing, the hollow body in which the metal body is inserted is heated in an non-oxidizing atmosphere at an average heating rate of 5 ° C./sec or more and 20 ° C./sec or less. The liquidus temperature in the equilibrium diagram was heated by high frequency with the higher one of -45 ° C and 500 ° C as the lower limit, and the inserted metal body was preheated to 300 ° C or higher in the molten or semi-molten state. A composite molten metal forging method characterized by pressurizing in a mold to integrally mold.
JP30549592A 1992-11-16 1992-11-16 Method for squeezing molten complex metal Withdrawn JPH06154991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30549592A JPH06154991A (en) 1992-11-16 1992-11-16 Method for squeezing molten complex metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30549592A JPH06154991A (en) 1992-11-16 1992-11-16 Method for squeezing molten complex metal

Publications (1)

Publication Number Publication Date
JPH06154991A true JPH06154991A (en) 1994-06-03

Family

ID=17945855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30549592A Withdrawn JPH06154991A (en) 1992-11-16 1992-11-16 Method for squeezing molten complex metal

Country Status (1)

Country Link
JP (1) JPH06154991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153128A (en) * 1990-03-16 1992-10-06 Suntory Limited Heat-resistant β-galactosyltransferase, its production process and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153128A (en) * 1990-03-16 1992-10-06 Suntory Limited Heat-resistant β-galactosyltransferase, its production process and its use

Similar Documents

Publication Publication Date Title
EP0733421A1 (en) Die casting method
JP2001321871A (en) Press-forming method of aluminum-based composite discoid component
JPH06154991A (en) Method for squeezing molten complex metal
US5376462A (en) Thixoformable layered materials and articles made from them
US5860313A (en) Method of manufacturing press-formed product
JPH0794062B2 (en) Compound molten metal forging method
EP1297915A1 (en) Method for manufacturing forged product, and apparatus for manufacturing forged product
CN113600631B (en) High-yield titanium alloy profile extrusion method
JPS5837362B2 (en) Manufacturing method for glass molding molds
JP2887802B2 (en) Aluminum alloy forming method
JPH05131260A (en) Method for forging molten complex metal
JP3387426B2 (en) Forming method of semi-molten metal
JPH08287B2 (en) Compound molten metal forging method
JPS61127836A (en) Manufacture of potassium titanate fiber reinforced metal material
JP2820355B2 (en) Manufacturing method of forged parts with excellent vibration damping
JP2001321870A (en) Manufacturing method of aluminum-based composite material-made component
JP2003103356A (en) Apparatus and method for casting forged material
JP2634293B2 (en) Plastic working method of whisker reinforced metal composite
JPH04182054A (en) Method for forging molten metal
JPH06190535A (en) Method for squeezing composite molten metal
JPH05228602A (en) Formation of metal material
JP5775353B2 (en) Molded cup for pressure vessel and method for producing the same
JPS60114532A (en) Production of alloy
JP3837472B2 (en) Solidification molding method of Dalai powder
JPS61147917A (en) Working method of fiber reinforced metallic material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201