JP3837472B2 - Solidification molding method of Dalai powder - Google Patents
Solidification molding method of Dalai powder Download PDFInfo
- Publication number
- JP3837472B2 JP3837472B2 JP2001177016A JP2001177016A JP3837472B2 JP 3837472 B2 JP3837472 B2 JP 3837472B2 JP 2001177016 A JP2001177016 A JP 2001177016A JP 2001177016 A JP2001177016 A JP 2001177016A JP 3837472 B2 JP3837472 B2 JP 3837472B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- dalai powder
- solidification molding
- dalai
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Forging (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
この出願の発明は、金属加工により発生した切削屑を再利用することのできる棒材や板材として提供する固化成形方法に関する。より具体的には、本発明は、フライス等機械切削加工において発生するダライ粉を固化成形する方法に関し、ダライ粉を固化成形するだけで、切削加工前の素材に匹敵する性質を備えた金属材料を提供することを目的とする。
【0002】
この出願のダライ粉の固化成形方法によれば、ダライ粉を再熔解することなく、固化成形する加工のみによって、素材の機械的性質を損なうことなく、強度と伸びを有する金属材料を提供することができる。
【0003】
【発明が解決しようとする課題】
従来、機械切削加工時に発生するダライ粉は、金属スクラップとして扱われ、金属スクラップは熔解に回され、熔解した金属スクラップは機械的性質が著しく変化し、素材の持つ機械的性質とまるで違う鋳物等として再利用されている。
【0004】
これまで、必要な強度を備えた材料を確保することが求められてきたが、資源の乏しいわが国において、国内でその需要を満たすことは困難であり、外国からの輸入に依存しているのが現状である。このため、高価な材料の使用を余儀なくされてきた。
【0005】
かかる現状において、安価で高強度の金属材料を確保するため、金属廃材の有効活用の観点から、従来、金属スクラップとして単純に熔解に回され、機械的性質が著しく変化するものであった金属廃材を、その金属素材の持つ機械的性質を生かして有効活用することの可能性が求められてきた。
【0006】
この出願の発明は、従来の課題を解決するものとして、素材の機械的性質を損なうことなく、その強度と伸びを生かした金属素材として、廃材としてのダライ粉の有効利用を図ることを目的とする。
【0007】
【課題を解決するための手段】
この出願の発明によるダライ粉の固化成形方法を用いることにより、金属スクラップを再熔解しない方法でも、棒材、板材等の素材を再生することができる。
【0008】
この出願の発明は、SCM435鋼またはTi 6 Al 4 Vからなるダライ粉を加工原料としてシース材に充填し、シース材毎充填したダライ粉を孔型ロールを用いて、700〜900℃の温度範囲で、みかけ圧延率90〜93%で塑性加工し、所望の形状に固化成形することを特徴とするダライ粉の固化成形方法を提供する。
【0009】
また、この出願の発明は、固化成形を熱間加工又は冷間加工可能とするダライ粉の固化成形方法をも提供する。
【0010】
【発明の実施の形態】
固化成形に孔型ロール、平ロールを用いるのは、加工時に密閉されたシース缶内に静水圧圧下が加わることで組織の異常粒成長を抑制し、素材が有する組織を確保するためであり、また、塑性加工により、ダライ粉の新生面が現出することで、固形成形が容易になるためである。
【0011】
また、孔型ロール、平ロールを用いることで、成形体内部のポアが強度や伸びに影響のないレベルまで抑制される。これらの固化成形方法はオンラインできるため大量生産に有利である。微細結晶が必要な場合には固化成形温度(θ2)を900℃以下とするのが好ましく、これは、これ以上の温度で固化成形すると組織が異常粒成長し粗大化してしまい、素材が有する機械的性質の低下を引き起こすためである。そして、微細な組織を有する材料は、できる限り低温で成形することが望ましい。Al合金の場合は、シース缶に充填した後、真空脱気処理をしないで、室温で固化成形することができる。これによれば、真空脱気処理及び成形加熱処理も必要なくなり、Al合金固化成形が容易となる。
【0012】
【実施例】
図2は、ダライ粉(1)を充填したシース缶(2)を示す。ダライ粉(1)を充填後、通気口付きダミーブロック(2a)を介在させ、さらに脱気用パイプ(2c)付き密封材(2b)によってシース缶(2)の開口端を施蓋して閉鎖し周囲をテグ溶接する。加熱装置によりダライ粉に付着しているガスは、ダミーブロック(2a)の通気口、脱気用パイプ(2c)の内通路を通じて、排気され内部は真空脱気される。真空脱気処理後、脱気用パイプ(2c)は潰される。ダライ粉の固化成形工程の概要が、 図1のフロー図に示される。金属組成重量%で/0.353,Si/0.28,Mn/0.80,Cr/1.09,Mo/0,17(SCM435)の旋盤切削ダライ粉(1)を、S45C製の外径50mmφ、内径40mmφのシース缶(2)に充填し、ダライ粉充填後,真空装置(3b)と加熱装置(3a)により、シース缶を真空(10 ― 6 torr)状態で、加熱温度(θ1):480℃、加熱時間:1時間の条件下で、真空脱気を行う。その後温度を定温まで下げて封缶した後、孔型ロールを用いて、第2の加熱装置(4)により加熱温度(θ2)で:加熱し、第1表に示す条件で固化成形(塑性変形加工)を行い、14mm角×1800mmの固化成形体を得た。その後、この成形体から平行部直径3.5mm×24.5mmの引張試験片を採取し、引張試験を行った。
【0013】
【表 1】
【0014】
第1表は、旋盤切削ダライ粉から素材を作製する手法と、その棒材の引張り特性を示し、JIS規格製品との比較をも示している。これによれば、試料A,B,Cは、孔型ロール(溝ロール)を用いて、91%の見かけの圧延率で、塑性加工を施して作製した。また、引張り強さはそれぞれ、引張応力(TS)が865、972、1062MPaと温度に比例して増大することを示し、降伏応力(YS)が900、794、670と逆に、温度に反比例して減少することを示している。さらに、伸びについては、温度変化によっても変化は少なかった。なお、見かけの圧延率は90〜93%の強加工が好ましいものであった。この場合、圧延率とは、シース缶内径から固化成形材の外径の断面減少率を示しており、91%圧延率とは、100%相対密度の材料を外径口14.3迄圧延した場合の計算値である。この圧延率は材料の違い、充填率の違いにより異なる。また、シース缶にダライ粉を充填した時の充填率は32%であり、これを考慮に入れた真の圧延率は、約78%に相当するものであった。発明の実施例(表1、試料A、B、C)によれば、JIS規格の熱処理を施していないにも拘わらず、引張り強さ、引張応力(TS)=865〜1062MPa、降伏応力(YS)=670〜900MPa、全伸び16%以上、絞り値37〜63%を示し、本発明ものは、JIS規格に示されている比較例(表1、試料D)とは、機械的性質に劣らない特性を示すものであった。このように、固化成形温度を選択することによって、TS,YS及び絞り値等を、JIS規格に相当する材料を創製することが可能である。なお、実施例のSCM435鋼は、900℃以下の温度で固化成形し、成形温度の違いにより機械的性質は異なるものであったが、JIS規格に定められた熱処理を施すことにより、全ての試料は同じ機械的性質を示すものであった。また、SCM鋼のようなマルテンサイト鋼においては、成形温度は900℃以下とは限らず、成形し易い温度で成形した後、熱処理により所定の機械的性質の材料にすることができる。Ti6Al4Vの実施例においても、引張試験の結果はJIS規格に入っており、同効を奏するものであった。
【0015】
【発明の効果】
以上、この出願の発明によれば、ダライ粉を再熔解することなく、ダライ粉を直接塑性変形することによって固化成形し、素材の機械的特性を略維持したままの好ましい特性を持った棒材や板材を提供することができる。
また、ダライ粉を固化成形するための新たな設備を導入しなくても、既存の設備を利用して生産することができため、製作が容易である。
さらに、再熔解行程を省略できるので、生産コストを低く押えることができる。
【図面の簡単な説明】
【図1】ダライ粉を原料とする素材を得るための製作行程を示す概要図である。
【図2】シース缶の断面を示す図である。
【符号の説明】
1 ダライ粉
2 シース
2a ダミーブロック
2b 密封材
2c 脱気用パイプ
3a 加熱装置(ダライ粉脱ガス用)
3b 真空装置
4 第2の加熱装置(シース缶;固化成形用)
5 加工機
6 固化成形体[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a solidification forming method provided as a bar or plate that can reuse cutting waste generated by metal processing. More specifically, the present invention relates to a method for solidifying and molding Dalai powder generated in mechanical cutting such as milling, and a metal material having properties comparable to the material before cutting only by solidifying and molding Dalai powder. The purpose is to provide.
[0002]
According to the solidified molding method of the Dalai powder of this application, a metal material having strength and elongation can be provided by only solidifying and molding without remelting the Dalai powder without impairing the mechanical properties of the material. Can do.
[0003]
[Problems to be solved by the invention]
Conventionally, Dalai powder generated at the time of machining is handled as metal scrap, the metal scrap is turned to melting, the mechanical properties of the molten metal scrap change significantly, and castings that are completely different from the mechanical properties of the material, etc. As being reused.
[0004]
Until now, it has been required to secure materials with the necessary strength, but in Japan, where resources are scarce, it is difficult to meet domestic demand, and it is dependent on imports from abroad. Currently. For this reason, the use of expensive materials has been forced.
[0005]
Under such circumstances, in order to secure inexpensive and high-strength metal materials, from the viewpoint of effective use of metal waste materials, metal waste materials that have conventionally been simply melted as metal scrap and mechanical properties have changed significantly. Therefore, the possibility of effectively utilizing the mechanical properties of the metal materials has been demanded.
[0006]
The invention of this application is to solve the conventional problems, and aims at effective utilization of Dalai powder as a waste material as a metal material utilizing its strength and elongation without impairing the mechanical properties of the material. To do.
[0007]
[Means for Solving the Problems]
By using the Dalai powder solidification molding method according to the invention of this application, it is possible to regenerate materials such as bars and plates even in a method in which metal scrap is not remelted.
[0008]
In the invention of this application, a sheath material is filled with a dairy powder made of SCM435 steel or Ti 6 Al 4 V as a processing raw material, and the dairy powder filled with each sheath material is used in a temperature range of 700 to 900 ° C. Thus, the present invention provides a method for solidifying and forming a Dalai powder, characterized by performing plastic working at an apparent rolling ratio of 90 to 93% and solidifying and forming into a desired shape.
[0009]
The invention of this application also provides a solidified molding method of Dalai powder that enables solidification molding to be hot-worked or cold-worked.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Grooved rolls in solidifying and molding, to use a flat roll is by under hydrostatic-pressure is applied to suppress abnormal grain growth of tissue the sheath cans sealed during processing, be to ensure the tissue material has Moreover, it is because solid shaping | molding becomes easy because the new surface of Dalai powder appears by plastic working.
[0011]
Further, by using grooved roll, a flat roll, the pores of the molded body portion is suppressed to a level not affecting the strength and elongation. Since these solidification molding methods can be online, they are advantageous for mass production. When fine crystals are required, it is preferable to set the solidification molding temperature (θ2) to 900 ° C or lower, which means that when solidification molding is performed at a temperature higher than this, the structure grows abnormally and becomes coarse, and the machine has a material. This is to cause deterioration of the physical properties. And it is desirable to shape | mold the material which has a fine structure | tissue as low temperature as possible. In the case of an Al alloy, it can be solidified and formed at room temperature without filling with a sheath can and without vacuum degassing. This eliminates the need for vacuum degassing treatment and molding heat treatment, and facilitates Al alloy solidification molding.
[0012]
【Example】
FIG. 2 shows a sheath can (2) filled with Dalai powder (1). After filling with Dalai powder (1), a dummy block (2a) with a vent is interposed, and the opening end of the sheath can (2) is covered with a sealing material (2b) with a deaeration pipe (2c) and closed And Teg welding around. The gas adhering to the dairy powder by the heating device is exhausted through the vent of the dummy block (2a) and the inner passage of the deaeration pipe (2c), and the inside is evacuated. After the vacuum deaeration treatment, the deaeration pipe (2c) is crushed. An outline of the solidification molding process of Dalai powder is shown in the flow diagram of FIG. A lathe-cut daly powder (1) of metal composition weight% / 0.353, Si / 0.28, Mn / 0.80, Cr / 1.09, Mo / 0,17 (SCM435) diameter 50 mm [phi], was filled in the sheath can (2) having an inner diameter of 40 mm diameter, after Dalai powder filling, the vacuum device (3b) and the heating device (3a), the sheath cans vacuum - at (10 6 torr) conditions, the heating temperature (.theta.1 ): Vacuum deaeration is performed under the conditions of 480 ° C. and heating time: 1 hour. After that, the temperature was lowered to a constant temperature and sealed, then using a perforated roll, heated at the heating temperature (θ2) by the second heating device (4): solidified under the conditions shown in Table 1 (plastic deformation) Processing) to obtain a solidified molded body of 14 mm square × 1800 mm. Thereafter, a tensile test piece having a parallel part diameter of 3.5 mm × 24.5 mm was sampled from the molded body and subjected to a tensile test.
[0013]
[Table 1]
[0014]
Table 1 shows a method for producing a raw material from lathe-cut daly powder, the tensile properties of the bar, and also shows a comparison with a JIS standard product. According to this, Samples A, B, and C were produced by performing plastic working using a perforated roll (groove roll) at an apparent rolling rate of 91%. In addition, the tensile strength indicates that the tensile stress (TS) increases in proportion to the temperature, 865, 972, 1062 MPa, and the yield stress (YS) is inversely proportional to the temperature, contrary to 900, 794, 670. Shows a decrease. Further, the elongation was little changed by the temperature change. The apparent rolling rate was preferably 90 to 93% strong processing. In this case, the rolling rate indicates the cross-sectional reduction rate of the outer diameter of the solidified molded material from the inner diameter of the sheath can, and the 91% rolling rate is the value when the material having a 100% relative density is rolled to the outer diameter port 14.3. It is a calculated value. This rolling rate differs depending on the difference in material and filling rate. In addition, when the sheath can was filled with Dalai powder, the filling rate was 32%, and the true rolling rate taking this into consideration was equivalent to about 78%. According to the examples of the invention (Table 1, Samples A, B, and C), tensile strength, tensile stress (TS) = 865 to 1062 MPa, yield stress (YS), even though JIS standard heat treatment was not performed. ) = 670-900 MPa, total elongation 16% or more, and drawing value 37-63%. The present invention is inferior in mechanical properties to the comparative example (Table 1, Sample D) shown in the JIS standard. It showed no characteristics. Thus, by selecting the solidification molding temperature, it is possible to create a material corresponding to JIS standards for TS, YS, drawing value, and the like. In addition, SCM435 steel of the example was solidified and molded at a temperature of 900 ° C. or less, and the mechanical properties were different due to the difference in molding temperature, but all samples were subjected to heat treatment defined in JIS standards. Had the same mechanical properties. Further, in martensitic steel such as SCM steel, the forming temperature is not limited to 900 ° C. or less, and after forming at a temperature at which it can be easily formed, a material having a predetermined mechanical property can be obtained by heat treatment. Also in the example of Ti6Al4V, the result of the tensile test was in the JIS standard and had the same effect.
[0015]
【The invention's effect】
As described above, according to the invention of this application, a bar material having preferable characteristics that is solidified by directly plastically deforming the Dalai powder without remelting the Dalai powder and substantially maintaining the mechanical characteristics of the material. And board materials can be provided.
Moreover, since it can be produced using existing equipment without introducing new equipment for solidifying and molding Dalai powder, the production is easy.
Furthermore, since the remelting process can be omitted, the production cost can be kept low.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a production process for obtaining a raw material made from Dalai powder.
FIG. 2 is a view showing a cross section of a sheath can.
[Explanation of symbols]
1
3b Vacuum device 4 Second heating device (sheath can; for solidification molding)
5 Processing
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001177016A JP3837472B2 (en) | 2001-06-12 | 2001-06-12 | Solidification molding method of Dalai powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001177016A JP3837472B2 (en) | 2001-06-12 | 2001-06-12 | Solidification molding method of Dalai powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002363657A JP2002363657A (en) | 2002-12-18 |
JP3837472B2 true JP3837472B2 (en) | 2006-10-25 |
Family
ID=19017923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001177016A Expired - Lifetime JP3837472B2 (en) | 2001-06-12 | 2001-06-12 | Solidification molding method of Dalai powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3837472B2 (en) |
-
2001
- 2001-06-12 JP JP2001177016A patent/JP3837472B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002363657A (en) | 2002-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103443311B (en) | For the production of the method for titanium alloy welding wire | |
CN106191572B (en) | A kind of pressure casting method of auto parts machinery aluminium alloy and auto parts machinery | |
CN104561696A (en) | 5083 aluminum alloy plate for high-speed rail and production method thereof | |
CN106636741A (en) | Preparation method for TiAl alloy bar | |
CN104722687A (en) | Forging method for 55NiCrMoV7 die steel | |
CN112030077A (en) | Manganese-containing high-strength low-density steel and preparation method and application thereof | |
KR101636117B1 (en) | High-strength magnesium alloy wire and method for manufacturing same, high-strength magnesium alloy product, and high-strength magnesium alloy spring | |
CN104818424B (en) | High-quality H13 rare earth die steel and production method thereof | |
CN113423853B (en) | Aluminum alloy for structural high pressure vacuum die casting applications | |
KR101659199B1 (en) | Magnesium alloy member and method for manufacturing same | |
JP2001294966A (en) | Magnesium alloy sheet, manufacturing method thereof and molding using the same | |
WO2005068678A1 (en) | Heat treatment method for aluminum die-cast product | |
JP3837472B2 (en) | Solidification molding method of Dalai powder | |
JP3550259B2 (en) | Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same | |
JPH0466607A (en) | Production of highly corrosion resistant ni-base alloy tube | |
CN111575572A (en) | B-doped TiZrNb multi-principal-element alloy and preparation method thereof | |
JP2004300537A (en) | Aluminum alloy sheet for packaging container and its producing method | |
CN116287807A (en) | Preparation method of short-process alloy forging | |
JPH06264233A (en) | Sputtering target for producing tft | |
CN110484742B (en) | Method for preparing Fe-W intermediate alloy by electron beam melting and high purification | |
JPH10204571A (en) | Non-heat treated high strength seamless steel tube | |
CN107245589A (en) | A kind of high-strength aluminum alloy semisolid pressure casting method for auto-parts | |
JP4390425B2 (en) | Ultra-high temperature hot forging method | |
JPH06256918A (en) | Production of molybdenum or molybdenum alloy sheet | |
JP4175823B2 (en) | Manufacturing method of special steel for molds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060327 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060425 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3837472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |