JP2820355B2 - Manufacturing method of forged parts with excellent vibration damping - Google Patents

Manufacturing method of forged parts with excellent vibration damping

Info

Publication number
JP2820355B2
JP2820355B2 JP7428493A JP7428493A JP2820355B2 JP 2820355 B2 JP2820355 B2 JP 2820355B2 JP 7428493 A JP7428493 A JP 7428493A JP 7428493 A JP7428493 A JP 7428493A JP 2820355 B2 JP2820355 B2 JP 2820355B2
Authority
JP
Japan
Prior art keywords
hollow body
less
forging
vibration damping
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7428493A
Other languages
Japanese (ja)
Other versions
JPH06277821A (en
Inventor
修 加田
正弘 戸田
武司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7428493A priority Critical patent/JP2820355B2/en
Publication of JPH06277821A publication Critical patent/JPH06277821A/en
Application granted granted Critical
Publication of JP2820355B2 publication Critical patent/JP2820355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高い強度・制振性が要求
される鍛造部品の製造方法に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a forged part requiring high strength and vibration damping.

【0002】[0002]

【従来の技術】最近、自動車部品の多くに対し、疲労や
摩耗に耐え得る強度や靱性に加えて制振性という付加価
値が要求されてきている。すなわち、高級車化が進むに
つれ、エンジン稼働による振動・騒音あるいは走行時の
路面の凹凸による振動などを低減させ、快適な走行を実
現する、高強度・高制振性を持つ部品に対するニーズが
強い。
2. Description of the Related Art In recent years, many automotive parts have been required to have an added value of vibration damping in addition to strength and toughness that can withstand fatigue and wear. In other words, as luxury vehicles become more advanced, there is a strong need for high-strength, high-damping components that reduce vibration and noise due to engine operation or vibration due to uneven road surfaces during driving and realize comfortable driving. .

【0003】上記背景に鑑み、歯車を球状黒鉛鋳鉄から
なる外部と片状黒鉛鋳鉄からなる内部の二層に分割し、
嵌合・一体化する製造法が特開平2−107721号公
報に、また歯車素材の外周と円環状の歯部材の内周との
間に防振金属体を圧入または鋳ぐるみにより挿入した後
に押圧する製造法が特公昭59−39217号公報に明
らかにされている。
In view of the above background, the gear is divided into two layers, an outer part made of spheroidal graphite cast iron and an inner part made of flaky graphite cast iron.
Japanese Patent Laid-Open Publication No. 2-107721 discloses a manufacturing method for fitting and integrating, and a method of press-fitting after inserting an anti-vibration metal body between the outer periphery of the gear material and the inner periphery of the annular tooth member by press-fitting or casting. The production method is disclosed in JP-B-59-39217.

【0004】また、本発明者らは、特願平03−140
275号において、鋼材からなる中空体に該中空体より
融点の低い金属体を挿入しておき、これらを加熱して金
属体のみを溶融させる複合溶湯鍛造法を提案している。
Further, the present inventors have disclosed in Japanese Patent Application No. 03-140.
No. 275 proposes a composite molten forging method in which a metal body having a lower melting point than a hollow body made of a steel material is inserted into a hollow body made of steel, and these are heated to melt only the metal body.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれらの
方法はいずれも次のような問題があった。即ち、特開平
2−107721号公報は工数の増加によるコストアッ
プや嵌合部の信頼性の問題を有し、特公昭59−392
17号公報は工数の増加によるコストアップの問題を有
しており、いずれの方法も歯車以外の部品の製造には利
用できないものである。また特願平03−140275
号は制振性を考慮したものではない。本発明はこのよう
な現状に鑑み、外層で強度を確保し、内層で制振性を確
保した部品を一回の鍛造で精度良く成形する方法を提供
するものである。
However, all of these methods have the following problems. That is, Japanese Patent Application Laid-Open No. 2-107721 has problems of cost increase and reliability of the fitting portion due to an increase in man-hours.
No. 17 has a problem of cost increase due to an increase in man-hours, and none of these methods can be used for manufacturing parts other than gears. Japanese Patent Application No. 03-140275
The issue does not take damping properties into account. The present invention has been made in view of the above circumstances, and provides a method of accurately forming a part having a sufficient strength in an outer layer and a sufficient damping property in an inner layer by a single forging.

【0006】[0006]

【課題を解決するための手段】本発明はかかる問題を解
決するため、中空体内に制振性の優れた黒鉛鋳鉄あるい
は合金鋳鉄を挿入し、金属体の融点−50℃を下限と
し、中空体の融点−20℃を上限として高周波加熱を行
った後、中空体表層部の酸化膜除去を行い、その後予加
熱された金型内で成形し、一体化する。これにより、表
層が高い強度を有し、内部が優れた制振性を有すると共
に、従来の加工性を確保し、中空体表面の酸化膜生成を
抑制し、優れた表面性状を有した複合鍛造部品が実現で
きる。即ち本発明の要旨とするところは、 (1)重量%で0.1%以上、2%未満の炭素量を含有
する鋼材からなる、あらかじめ製品形状より単純な形状
に成形され、かつその肉厚/量外径比が0.20以内の
中空体内に、制振性に優れた黒鉛鋳鉄、ねずみ鋳鉄ある
いは合金鋳鉄を挿入した後、挿入された金属体の融点−
50℃を下限とし、中空体の融点−20℃を上限とした
温度範囲に、5℃/秒以上、20℃/秒以下の平均加熱
速度で高周波加熱した後に、酸化膜を除去し、挿入され
た金属体が溶融または半溶融状態にある間に、200℃
以上にあらかじめ加熱された金型中にて平均200mm/
秒以上の加工速度で加圧し、製品形状に成形一体化して
固化させることを特徴とする制振性に優れた鍛造部品の
製造方法。 (2)主たる成形を行った後、鍛造時の下死点におい
て、中空体表面温度が800℃以下となるまで鍛造時の
最高荷重の30%以上の荷重を保持する前記(1)の製
造方法にある。
According to the present invention, a graphite cast iron or alloy cast iron having excellent vibration damping properties is inserted into a hollow body, and the melting point of the metal body is set at -50 ° C. as a lower limit. After performing high-frequency heating with the melting point of −20 ° C. as the upper limit, the oxide film on the surface of the hollow body is removed, and then molded and integrated in a preheated mold. As a result, the surface forging has high strength, the inside has excellent vibration damping properties, the conventional workability is secured, the formation of an oxide film on the surface of the hollow body is suppressed, and the composite forging has excellent surface properties. Parts can be realized. That is, the gist of the present invention is as follows: (1) A steel material having a carbon content of 0.1% or more and less than 2% by weight is formed in advance into a simpler shape than the product shape, and its thickness is After inserting graphite cast iron, gray cast iron or alloy cast iron having excellent vibration damping properties into a hollow body having an outer diameter ratio of 0.20 or less, the melting point of the inserted metal body −
After high-frequency heating at an average heating rate of 5 ° C./sec or more and 20 ° C./sec or less in a temperature range having a lower limit of 50 ° C. and an upper limit of the melting point of the hollow body −20 ° C., the oxide film is removed and inserted. 200 ° C while the metal body is in a molten or semi-molten state
The above average 200 mm /
A method for producing a forged part having excellent vibration damping characteristics, wherein the forged part is formed by pressurizing at a processing speed of not less than a second, forming the product into a product shape, and solidifying the product. (2) The method of the above (1), wherein after the main forming, at the bottom dead center at the time of forging, a load of 30% or more of the maximum load at the time of forging is maintained until the surface temperature of the hollow body becomes 800 ° C. or less. It is in.

【0007】[0007]

【作用】図1は本発明に係わる鍛造方法の一態様を示す
ものである。同図(a)では、製品形状より単純な形状
に成形された2%未満の炭素量を含有する鋼材からな
り、その肉厚/最外径比が0.20以内の中空体1内
に、制振性に優れた金属体2をあらかじめ挿入してお
き、高周波加熱コイル3内で金属体の融点−50℃を下
限とし、中空体の融点−20℃を上限として加熱する。
これにより挿入された金属体のみが溶融し、中空体はそ
の形状を保持することができるとともに従来の熱間鍛造
を同等の加工性を確保する。その後同図(b)に示すよ
うに、酸化膜除去装置4により中空体表層部の酸化膜を
除去する。その後、これらを金型5に挿入し、同図
(c)に示すように高周波加熱などの加熱装置8により
200℃以上に予加熱された金型内でパンチ6により平
均速度200mm/秒以上で成形を行なう。これにより、
空隙部7に中空体および溶融した金属体が充満し、製品
9が完成する。
FIG. 1 shows an embodiment of a forging method according to the present invention. In FIG. 1A, a hollow body 1 made of a steel material having a carbon content of less than 2% and having a wall thickness / outermost diameter ratio of 0.20 or less is formed into a simpler shape than the product shape. A metal body 2 having excellent vibration damping properties is inserted in advance, and heating is performed in the high-frequency heating coil 3 with the lower limit of the melting point of the metal body −50 ° C. and the upper limit of the melting point of the hollow body −20 ° C.
As a result, only the inserted metal body is melted, and the hollow body can maintain its shape and secure the same workability as that of the conventional hot forging. Thereafter, as shown in FIG. 1B, the oxide film on the surface layer of the hollow body is removed by the oxide film removing device 4. Thereafter, these are inserted into the mold 5 and, as shown in FIG. 3 (c), in a mold preheated to 200 ° C. or higher by a heating device 8 such as high-frequency heating, with a punch 6 at an average speed of 200 mm / sec or more. Perform molding. This allows
The void 7 is filled with the hollow body and the molten metal body, and the product 9 is completed.

【0008】中空体に用いる鋼材の炭素量を0.1%以
上、2%未満としたのは、0.1%未満では冷間での変
形抵抗が低いため、加熱して変形抵抗を軽減する効果が
無いからであり、2%以上の炭素量の有する鋼材では延
性が低く、加圧成形時に中空体が破損し、溶融した挿入
金属体が流出するからである。また中空体の肉厚/最大
直径比を0.20以内とするのは、これを越えた肉厚/
最外径比を有する中空体ではその後の加圧成形時に金型
内の空隙部6に充満しにくく、製品形状に成形できない
からである。
[0008] The reason why the carbon content of the steel material used for the hollow body is 0.1% or more and less than 2% is that if less than 0.1%, the deformation resistance during cold is low, so that the deformation resistance is reduced by heating. This is because there is no effect, and a steel material having a carbon content of 2% or more has low ductility, the hollow body is damaged at the time of press forming, and the molten inserted metal body flows out. The reason why the thickness / maximum diameter ratio of the hollow body is set to 0.20 or less is that the thickness / maximum thickness exceeds this.
This is because the hollow body having the outermost diameter ratio is less likely to fill the void 6 in the mold during the subsequent pressure molding, and cannot be molded into a product shape.

【0009】中空体に挿入する金属体を黒鉛鋳鉄、ねず
み鋳鉄あるいは合金鋳鉄とするのはこれらの金属が優れ
た制振性を有しているためである。加熱温度を金属体の
融点−50℃を下限とするのは、これよりも低い温度で
は挿入金属体が溶融しないためである。加熱温度を中空
体の融点−20℃を上限とするのは、これよりも高い温
度では中空体が溶融し鍛造できない可能性が生じるため
である。
The metal body to be inserted into the hollow body is graphite cast iron, gray cast iron or alloy cast iron because these metals have excellent vibration damping properties. The lower limit of the heating temperature is the melting point of the metal body −50 ° C. because the inserted metal body does not melt at a lower temperature. The upper limit of the heating temperature is the melting point of the hollow body −20 ° C., because at a temperature higher than this, the hollow body may melt and may not be forged.

【0010】加熱時の酸化による肌あれを少なくするた
め高周波加熱とし、その際の加熱速度を5℃/秒以上と
するのは、中空体の均熱加熱及び酸化膜生成を抑制する
ためである。また加熱速度を20℃/秒以下とするの
は、これを超えると中空体の内部温度が不均一となって
局部的に溶け落ちる可能性が生じるからである。なお酸
化スケールを防止するためにアルゴン、窒素などの不活
性ガス雰囲気内での加熱も可能である。
The reason why high-frequency heating is used to reduce skin roughness due to oxidation during heating, and the heating rate at that time is set to 5 ° C./sec or more, is to suppress uniform heating of the hollow body and generation of an oxide film. . The reason why the heating rate is set to 20 ° C./sec or less is that if the heating rate is exceeded, the internal temperature of the hollow body becomes non-uniform, and there is a possibility that the hollow body will melt off locally. Note that heating in an atmosphere of an inert gas such as argon or nitrogen is also possible to prevent oxidation scale.

【0011】金属体の加熱後に酸化膜を除去するのは、
成形後の製品性状を向上させるためである。なお酸化膜
除去には高圧の空気、窒素などの気体のみならず、水分
などの液体、あるいは固体を用いてもよい。さらに挿入
した金属体が溶融または半溶融状態のうちに加圧成形を
行なうのは、金属体が固化してしまうと金属体の流動性
が悪くなり、空隙部6に金属体が充満しなくなるためで
ある。
The reason for removing the oxide film after heating the metal body is as follows.
This is for improving the properties of the product after molding. For removing the oxide film, not only gas such as high-pressure air and nitrogen, but also liquid such as moisture or solid may be used. Further, the reason why the pressure molding is performed while the inserted metal body is in a molten or semi-molten state is that if the metal body solidifies, the fluidity of the metal body deteriorates, and the metal body does not fill the gap 6. It is.

【0012】また金型を予め200℃以上に予加熱する
のは、加圧成形時における中空体の温度低下による中空
体の流動性低下を防ぐためであり、これより低い温度で
はその効果が低いからである。また加工速度を平均20
0mm/秒以上とするのは、加圧成形時における中空体の
温度低下による中空体の流動性低下を防ぐためであり、
これより低い温度ではその効果が低いからである。
The reason why the mold is pre-heated to 200 ° C. or higher in order to prevent a decrease in the fluidity of the hollow body due to a decrease in the temperature of the hollow body during pressure molding. The effect is lower at a lower temperature. Because. In addition, the processing speed is 20
The reason for setting it to 0 mm / sec or more is to prevent a decrease in the fluidity of the hollow body due to a decrease in the temperature of the hollow body during pressure molding.
This is because the effect is low at lower temperatures.

【0013】また主たる成形を行った時、必要に応じて
鍛造機の下死点において中空体の表面温度が800℃以
下となるまで鍛造時の最高荷重の30%以上の荷重を保
持するのは、金属体内部での空孔の生成を抑制するため
である。中空体の表面温度を800℃以下とするのは、
この条件では空孔の生成が抑制されるからである。また
保持荷重が鍛造時の最高荷重の30%未満では、空孔の
抑制が不十分となる。
When the main forming is performed, if necessary, a load of 30% or more of the maximum load during forging is maintained at the bottom dead center of the forging machine until the surface temperature of the hollow body becomes 800 ° C. or less. This is because the generation of voids inside the metal body is suppressed. The reason why the surface temperature of the hollow body is set to 800 ° C. or less is as follows.
This is because the generation of holes is suppressed under this condition. If the holding load is less than 30% of the maximum load at the time of forging, the suppression of vacancies becomes insufficient.

【0014】[0014]

【実施例】以下に本発明の実施例について説明する。 実施例1 本発明法の実施例として、図1(a),(b),(c)
に示す工程による成形を実施した。表1に示すA鋼の鋼
板にて円筒容器状(外径φ40mm、高さ60mm)の中空
体1を成形し、中空体内部にBの金属体2を挿入し、高
周波加熱により5〜20℃/秒の加熱速度で1250℃
に加熱を行なった。加熱条件は中空体の肉厚中心部に埋
め込んだ熱電対により制御した。
Embodiments of the present invention will be described below. Example 1 As an example of the method of the present invention, FIGS. 1 (a), (b) and (c)
The molding was performed according to the steps shown in FIG. A hollow cylindrical body 1 (outer diameter φ40 mm, height 60 mm) is formed from a steel sheet A of steel shown in Table 1 and a metal body B of B is inserted into the hollow body, and is heated to 5 to 20 ° C. by high frequency heating. 1250 ° C at a heating rate of / sec
Was heated. The heating conditions were controlled by a thermocouple embedded in the center of the thickness of the hollow body.

【0015】[0015]

【表1】 [Table 1]

【0016】また表層部の温度も熱電対により同時に測
定した。表2に示す加熱温度は、この時の中空体の肉厚
中心部温度と表層温度の平均値である。
The temperature of the surface layer was also measured simultaneously with a thermocouple. The heating temperature shown in Table 2 is an average value of the temperature at the center of the thickness of the hollow body and the surface layer temperature at this time.

【0017】[0017]

【表2】 [Table 2]

【0018】その後、高周波により予加熱された図1
(c)の形状の金型内で成形後の高さが20mmになるま
で加圧した。また比較のために鋼種A及びBの中実状
(外径φ40mm、高さ60mm)を用いて単一材料の成形
も行った(比較法1,2)。表2より、加工荷重につい
ては、本発明法ではいずれも50.0tonf以下となって
いる。これに対し、中空体の肉厚が厚い比較法3、加熱
温度が低い比較法5、金型予加熱温度が低い比較法6、
鍛造時の加工速度が遅い比較法7では、いずれも加工荷
重は50.0tonfより大きくなっており、成形性におい
て顕著な差があることが分かる。また比較法2は金属体
が飛散し、成形が出来なかった。
Thereafter, FIG. 1 preheated by high frequency
Pressure was applied in the mold having the shape shown in FIG. For comparison, a single material was molded using solid shapes of steel types A and B (outer diameter φ40 mm, height 60 mm) (Comparative methods 1 and 2). From Table 2, the processing load is 50.0 tonf or less in all of the methods of the present invention. On the other hand, the comparative method 3 in which the thickness of the hollow body is thick, the comparative method 5 in which the heating temperature is low, the comparative method 6 in which the mold preheating temperature is low,
In Comparative Method 7 in which the processing speed during forging is slow, the processing load is larger than 50.0 tonf in each case, and it can be seen that there is a remarkable difference in the formability. In Comparative method 2, the metal body was scattered and molding was not possible.

【0019】また、損失係数(鋼板の制振特性を測定す
る際の減衰係数)については、本発明法ではいずれも
0.024以上となっており、比較法1の合金鋼中実材
の場合に比較して著しく大きくなっていることが分か
る。さらに鍛造後の酸化膜厚さを比較すると、本発明法
ではいずれも38μm以下となっているのに対し、加熱
速度が遅い比較法4では酸化膜厚さは71μmにも達し
た。
Further, the loss coefficient (damping coefficient when measuring the vibration damping characteristics of the steel sheet) is 0.024 or more in each of the methods of the present invention. It can be seen that it is significantly larger than that of FIG. Further, when comparing the thickness of the oxide film after forging, the thickness of the oxide film reached 38 μm or less in the method of the present invention, whereas the thickness of the oxide film reached 71 μm in Comparative method 4 in which the heating rate was low.

【0020】実施例2 表3には鍛造後、鍛造時最高荷重の50%まで荷重保持
を行った後の、製品精度の検討結果を示す。
Example 2 Table 3 shows the results of an examination of the product accuracy after forging and holding the load to 50% of the maximum load during forging.

【0021】[0021]

【表3】 [Table 3]

【0022】表3は、鋼種、加熱条件、鍛造条件がいず
れの場合も実施例1本発明法4と同様であり、鍛造時の
荷重が35tonfとなるまで加圧した場合の結果である。
各条件において20個を鍛造し、冷却後、内部の空孔の
生成を観察した。表3より、本発明法ではいずれの場合
も空孔の生成は見られなかったのに対し、比較法では空
孔が生成しており、本発明法により空孔の生成を抑制が
可能であることが分かる。
Table 3 shows the results in the case where the steel type, the heating conditions and the forging conditions were all the same as in Example 1 of the present invention 4 and the forging load was 35 tonf.
Under each condition, 20 pieces were forged, and after cooling, formation of internal pores was observed. Table 3 shows that no voids were found in any of the cases in the method of the present invention, whereas voids were generated in the comparative method, and the voids could be suppressed by the method of the present invention. You can see that.

【0023】[0023]

【発明の効果】本発明を用いれば、浴湯鍛造の特徴であ
る複雑形状部品成形において、外面に高強度材を用い、
内部に優れた制振性を有した金属体を用いた製品の成形
を容易に行なうことが可能となる。
According to the present invention, a high-strength material is used for the outer surface in forming a complex-shaped part which is a characteristic of bath forging.
It is possible to easily form a product using a metal body having excellent vibration damping properties inside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の態様と本発明実施例に用いた複合浴湯
鍛造法を示す図である。
FIG. 1 is a view showing a composite bath forging method used in an embodiment of the present invention and an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…中空体 2…金属体 3…高周波加熱コイル 4…酸化膜除去装置 5…ダイス 6…パンチ 7…空隙部 8…加熱装置 9…製品 DESCRIPTION OF SYMBOLS 1 ... Hollow body 2 ... Metal body 3 ... High frequency heating coil 4 ... Oxide film removal device 5 ... Dice 6 ... Punch 7 ... Void portion 8 ... Heating device 9 ... Product

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−339557(JP,A) 特開 平4−367362(JP,A) 特開 平6−190535(JP,A) 特開 平5−131260(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 19/00 B22D 18/02──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-339557 (JP, A) JP-A-4-367362 (JP, A) JP-A-6-190535 (JP, A) JP-A-5-190535 131260 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B22D 19/00 B22D 18/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で0.1%以上、2%未満の炭素
量を含有する鋼材からなる、あらかじめ製品形状より単
純な形状に成形され、かつその肉厚/量外径比が0.2
0以内の中空体内に、制振性に優れた黒鉛鋳鉄、ねずみ
鋳鉄あるいは合金鋳鉄を挿入した後、挿入された金属体
の融点−50℃を下限とし、中空体の融点−20℃を上
限とした温度範囲に、5℃/秒以上、20℃/秒以下の
平均加熱速度で高周波加熱した後に、酸化膜を除去し、
挿入された金属体が溶融または半溶融状態にある間に、
200℃以上にあらかじめ加熱された金型中にて平均2
00mm/秒以上の加工速度で加圧し、製品形状に成形一
体化して固化させることを特徴とする制振性に優れた鍛
造部品の製造方法。
1. A steel material having a carbon content of 0.1% or more and less than 2% by weight% is formed in advance into a simpler shape than the product shape, and its thickness / mass outer diameter ratio is 0.1%. 2
After inserting graphite cast iron, gray cast iron or alloy cast iron excellent in vibration damping properties into the hollow body within 0, the melting point of the inserted metal body -50 ° C is the lower limit, and the melting point of the hollow body -20 ° C is the upper limit. After high-frequency heating at an average heating rate of 5 ° C./second or more and 20 ° C./second or less in the temperature range, the oxide film was removed,
While the inserted metal body is in a molten or semi-molten state,
Average 2 in a mold preheated to 200 ° C or higher
A method for producing a forged part having excellent vibration damping characteristics, comprising applying pressure at a processing speed of at least 00 mm / sec, molding into a product shape, and solidifying.
【請求項2】 主たる成形を行った後、鍛造時の下死点
において、中空体表面温度が800℃以下となるまで鍛
造時の最高荷重の30%以上の荷重を保持する請求項1
記載の製造方法。
2. After the main forming, at the bottom dead center at the time of forging, a load of 30% or more of the maximum load at the time of forging is maintained until the surface temperature of the hollow body becomes 800 ° C. or less.
The manufacturing method as described.
JP7428493A 1993-03-31 1993-03-31 Manufacturing method of forged parts with excellent vibration damping Expired - Lifetime JP2820355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7428493A JP2820355B2 (en) 1993-03-31 1993-03-31 Manufacturing method of forged parts with excellent vibration damping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7428493A JP2820355B2 (en) 1993-03-31 1993-03-31 Manufacturing method of forged parts with excellent vibration damping

Publications (2)

Publication Number Publication Date
JPH06277821A JPH06277821A (en) 1994-10-04
JP2820355B2 true JP2820355B2 (en) 1998-11-05

Family

ID=13542674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7428493A Expired - Lifetime JP2820355B2 (en) 1993-03-31 1993-03-31 Manufacturing method of forged parts with excellent vibration damping

Country Status (1)

Country Link
JP (1) JP2820355B2 (en)

Also Published As

Publication number Publication date
JPH06277821A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US5368629A (en) Rotor for oil pump made of aluminum alloy and method of manufacturing the same
JP5548578B2 (en) High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
US4244738A (en) Method of and apparatus for hot pressing particulates
JP5948124B2 (en) Magnesium alloy member and manufacturing method thereof
JP2820355B2 (en) Manufacturing method of forged parts with excellent vibration damping
JP4065349B2 (en) Method of forming a forging for a cam surface in a one-way clutch race
JP2000355726A (en) Alloy steel powder compacting stock and alloy steel powder worked body
JPH0230790B2 (en)
JP2000233271A (en) Manufacture of cylinder block
JP3059958B2 (en) Manufacturing method of sintered alloy member
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JPS6233730A (en) Wear resistant composite material
EP0659509B1 (en) Powder forging process
JP2001294975A (en) Composite roll for rolling treatment
JP2002539357A (en) Method of manufacturing a piston for an internal combustion engine
JP3281004B2 (en) Manufacturing method of Mg alloy member
JPH05131260A (en) Method for forging molten complex metal
JP2832662B2 (en) Manufacturing method of high strength structural member
JPH11244914A (en) Roll for rolling hot strip and manufacture thereof
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JP3226421B2 (en) Aluminum-based composite disk rotor
JPH1177214A (en) Magnesium alloy forged thin-walled parts, and its manufacture
JPH06190535A (en) Method for squeezing composite molten metal
JPH0525591A (en) Wire for piston ring and its manufacture
JP2887802B2 (en) Aluminum alloy forming method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980721