JPS61127836A - Manufacture of potassium titanate fiber reinforced metal material - Google Patents

Manufacture of potassium titanate fiber reinforced metal material

Info

Publication number
JPS61127836A
JPS61127836A JP24989384A JP24989384A JPS61127836A JP S61127836 A JPS61127836 A JP S61127836A JP 24989384 A JP24989384 A JP 24989384A JP 24989384 A JP24989384 A JP 24989384A JP S61127836 A JPS61127836 A JP S61127836A
Authority
JP
Japan
Prior art keywords
potassium titanate
fiber
binder
fibers
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24989384A
Other languages
Japanese (ja)
Inventor
Hideo Otsu
大津 日出男
Jun Hasegawa
順 長谷川
Kenichi Akutagawa
芥川 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24989384A priority Critical patent/JPS61127836A/en
Publication of JPS61127836A publication Critical patent/JPS61127836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture preformed compact having high fiber content, by dispersing a specified quantity of inorganic binder into reinforcing material contg. potassium titanate, pressing and heating them in mold to solidify inorganic binder. CONSTITUTION:Aqueous soln. of inorganic binder (sodium silicate, etc.) is coated on potassium titanate fibers, so that binder weight becomes 1-5wt% against fiber weight. Said fibers 1 are fed in a preforming mold 2, and pressed by an upper punch 3 at a prescribed pressure. Next, said fibers are heated by a heater 4 provided surrounding the mold 2 to solidifying temp. of binder while being pressed, to vaporize water and solidify the binder. By this way, preform contg. about 50vol% fiber is obtd. The preform is heated in mold, to heat, press, permeate metal material to be matrix, thereby, reinforced metal material having smooth surface free from cracks and breaks is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維、ウィスカ等の強化材をマトリックス金
属中に含んでいる複合金属材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a composite metal material containing reinforcing materials such as fibers and whiskers in a matrix metal.

〔従来の技術〕[Conventional technology]

複合材料の一つとして、高強度、高弾性を育する繊維を
強化材とし、アルミニウムの如き金属または合金をマト
リ・7クスとする繊維強化金属材料(FRM)が知られ
ており、かかる繊維強化金属材料の製造方法は従来より
種々提案されている。
As a type of composite material, fiber reinforced metal materials (FRM) are known, in which fibers that develop high strength and high elasticity are used as reinforcing materials, and metals such as aluminum or alloys are used as a matrix. Various methods for producing metal materials have been proposed in the past.

これら従来の繊維強化金属材料の製造方法のひとつとし
て、鋳造型内に繊維強化材を充填した後、 ・該鋳造型
内に更に溶融マトリックス金属を導入し、該鋳造型に係
合するプランジャ要素によって溶融マトリックス金属を
鋳造型内にて加圧しつつM固させる溶湯鍛造法が知られ
ている。
One of the methods for manufacturing these conventional fiber-reinforced metal materials includes filling a casting mold with fiber reinforcement, and then introducing further molten matrix metal into the casting mold by means of a plunger element that engages the casting mold. A molten metal forging method is known in which molten matrix metal is solidified while being pressurized in a casting mold.

この溶湯鍛造法に於いては、複合材料よりなる製品に所
望の性能を与えるためには鋳造中伸化材を所定の形状、
密度、配向状態に保持して強化材とマトリックス金属と
を複合化する必要がある。
In this molten metal forging method, in order to give desired performance to products made of composite materials, the elongated material must be shaped into a predetermined shape during casting.
It is necessary to composite the reinforcing material and the matrix metal while maintaining the density and orientation.

このため強化繊維を予め加圧成形、あるいは水等の溶媒
に混合させた後沈澱又は濾過させることによって繊維予
成形体(プリフォーム)を製作する方法が知られている
For this reason, methods are known in which a fiber preform is produced by press-molding reinforcing fibers in advance, or by mixing the reinforcing fibers with a solvent such as water, followed by precipitation or filtration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記プリフォームを繊維含有率の大きい繊維強化金属材
料とするために加圧成形で製作するためには、炭化ケイ
素(SiC)、窒化ケイ素(S i 3N4)に代表さ
れるウィスカの場合は、アスペクト比が100近くある
ため繊維同志のからみ合いが強く加圧成形すればその形
状を保持できる。しかしながら上述した繊維は高価であ
り、安価な繊維強化材料用には不向きである。これに対
して安価な繊維としてはチタン酸カリウム繊維が知られ
ているが、チタン酸カリウム繊維のプリフォームを加圧
成形で得ようとするとアスペクト比が30程度と小さい
ため、−見所定の形状を保持しているが、繊維のスプリ
ングバ・ツクにより無数の小さな亀裂及び層状のひび割
れ等が発生し、これにマトリックス金属としてアルミニ
ウムを含浸して得られた繊維強化金属材料には第5図の
ようなカケ、層状のひび割れ、第6図のような連続した
繊維密度の小さい部分が欠陥として残るという不具合が
生じてしまう。
In order to manufacture the preform by pressure molding to make it a fiber-reinforced metal material with a high fiber content, in the case of whiskers represented by silicon carbide (SiC) and silicon nitride (S i 3N4), the aspect ratio Since the ratio is close to 100, the fibers are strongly intertwined with each other and can maintain their shape if pressure molded. However, the above-mentioned fibers are expensive and are not suitable for use in inexpensive fiber-reinforced materials. On the other hand, potassium titanate fiber is known as a cheap fiber, but when trying to obtain a preform of potassium titanate fiber by pressure molding, the aspect ratio is as small as about 30, so it is difficult to obtain a desired shape. However, due to the springback of the fibers, countless small cracks and layered cracks occur, and the fiber-reinforced metal material obtained by impregnating these with aluminum as a matrix metal has the following properties as shown in Figure 5. Problems such as chips, layered cracks, and continuous areas with low fiber density as shown in FIG. 6 remain as defects.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、上記問題点を解決すべくチタン酸カリ
ウム繊維を強化材として含む繊維強化金属材料の製造法
において、前記チタン酸カリウム繊維を含む強化材に前
記強化材に対して1〜5wt%の無機バインダを分散さ
せ、これを金型内で加圧保持しながらバインダ固化温度
に加熱することによって繊維強化金泥前駆体となるプリ
フォームを製作する方法を採用する。
Therefore, in order to solve the above-mentioned problems, the present invention provides a method for producing a fiber-reinforced metal material containing potassium titanate fibers as a reinforcing material, in which the reinforcing material contains potassium titanate fibers in an amount of 1 to 5 wt% based on the reinforcing material. A method is adopted in which a preform that becomes a fiber-reinforced gold mud precursor is produced by dispersing an inorganic binder and heating it to the binder solidification temperature while pressurizing and holding it in a mold.

〔作用〕[Effect]

本発明による方法において無機バインダを繊維に対して
1〜5 w t%添加したチタン酸カリウム繊維は、所
定の金型内で加熱加圧して固化させることにより、アス
ペクト比比が小さいにもかかわらず、前記無機バインダ
のはたらきによって繊維同志の効果的な接合が行われ前
述したような圧力開放後のスプリングバックを効果的に
防止することが可能となる。
In the method according to the present invention, potassium titanate fibers to which 1 to 5 wt% of an inorganic binder is added to the fibers are solidified by heating and pressurizing them in a predetermined mold, so that despite having a small aspect ratio, The action of the inorganic binder effectively bonds the fibers together, making it possible to effectively prevent the aforementioned springback after the pressure is released.

[実施例] 以下本発明の実施例を図に従って説明する チタン酸カ
リウム繊維に 無機バインダとしてケイ酸ソーダ(水ガラス)を選んで
、繊維重量に対してバインダ重量(水を除く)が5%に
なるように水で希釈した溶液をスプレー等で塗布した。
[Example] Examples of the present invention will be described below with reference to the drawings. Sodium silicate (water glass) was selected as an inorganic binder for potassium titanate fibers, and the binder weight (excluding water) was 5% of the fiber weight. A solution diluted with water was applied by spraying or the like.

ここで溶液の繊維に対する総重量は10%以下では、か
さ密度の大きい繊維に対して少ない溶液を均一に塗布す
るのは困難となり、また30%を超えると水分が多すぎ
て加圧成形の際に金型のクリアランスから溶液がしぼり
出されてしまい目的とする欠陥のないプリフォームを得
にくくなる。
If the total weight of the solution to the fibers is less than 10%, it will be difficult to uniformly apply a small amount of solution to the fibers with a large bulk density, and if it exceeds 30%, there will be too much water, which will cause pressure molding. The solution is squeezed out from the mold clearance, making it difficult to obtain the desired defect-free preform.

次に所定量のバインダを塗布したチタン酸カリウム繊維
の必要量を第1図に示すプリフォーム成形用金型2内に
入れ、上バンチ3にて加圧する。
Next, a required amount of potassium titanate fibers coated with a predetermined amount of binder are put into a preform molding die 2 shown in FIG. 1, and pressed by an upper bunch 3.

加圧力は所望の繊維含有率により異なるが、例えば繊維
含有率3Qvo1%のものを製作する時の加圧力は10
0kg/cm2である。次に加圧を行いながら金型2の
周囲に設置したヒータ4によりバインダの固化温度(2
00−300℃)に加熱し水分を蒸発させバインダを固
化させる。固化に要する時間は成形プリフォーム形状、
バインダ種類、濃度によっても異なるが通常15〜30
分である。この方法によって繊維含有率50 vo1%
にも及ぶ高含有率のプリフォームを生産性よく製造する
ことができる。
The pressing force varies depending on the desired fiber content, but for example, when manufacturing a fiber content of 3Qvo1%, the pressing force is 10
It is 0 kg/cm2. Next, while applying pressure, a heater 4 installed around the mold 2 is used to solidify the binder (2
00-300°C) to evaporate water and solidify the binder. The time required for solidification depends on the shape of the molded preform,
It varies depending on the binder type and concentration, but usually 15 to 30
It's a minute. By this method, the fiber content is 50 vol.
It is possible to manufacture preforms with a high content rate of up to 100% with high productivity.

次にこのようにして得られたプリフォームを約450℃
に予熱した金型内に入れプリフォームが充分に予熱され
た後日00〜850℃に加熱された熔解アルミニウム(
99,9%)を500k g / c m 2以上で加
圧含浸させた後、金型内で冷却固化させることによって
チタン酸カリウム繊維強化金属材料が製造できる。
Next, the preform obtained in this way was heated to about 450°C.
After the preform has been sufficiently preheated, the molten aluminum is heated to 00 to 850°C.
A potassium titanate fiber-reinforced metal material can be produced by impregnating the potassium titanate (99.9%) at 500 kg/cm 2 or more under pressure and then cooling and solidifying it in a mold.

本発明による方法においてチタン酸カリウム繊維にバイ
ンダ添加量を1.3,5,7.10%と変化させてプリ
フォームを製作し、これに繊維含量が3Qvol−%と
なるよう、99.9%アルミニウムを含浸させて得られ
た繊維強化金属材の3点曲げ試験による強度特性を測定
した結果を第1表に示す。なお、無機バインダとしてケ
イ酸リチウムを用い、ケイ酸ソーダの場合と全く同様に
製作したものについても併記した。また第2図はこれを
グラフ化したものである。
In the method according to the present invention, preforms are produced by varying the amount of binder added to potassium titanate fibers from 1.3, 5, and 7.10%, and 99.9% is added so that the fiber content is 3Qvol-%. Table 1 shows the results of measuring the strength characteristics of the fiber-reinforced metal material obtained by impregnating aluminum with a three-point bending test. In addition, a product manufactured using lithium silicate as an inorganic binder in exactly the same manner as in the case of sodium silicate is also described. Moreover, FIG. 2 is a graph of this.

第  1  表 第1表、第2図より明らかなようにバインダの量が5w
t%を超えるとバインダがケイ酸ソーダ、ケイ酸リチウ
ムいずれの場合も急激に曲げ強度が低下しはじめ本発明
の目的を充分達成しない。またバインダ量が1wt%以
下ではバインダを用いない場合と同様の欠陥を生じてし
まい本発明による効果があられれない。
Table 1 As is clear from Table 1 and Figure 2, the amount of binder is 5w.
If the binder exceeds t%, the bending strength will begin to decrease rapidly and the object of the present invention will not be achieved sufficiently, regardless of whether the binder is sodium silicate or lithium silicate. Furthermore, if the amount of binder is less than 1 wt%, defects similar to those in the case where no binder is used will occur, and the effects of the present invention cannot be obtained.

第3図は1wt%のケイ酸ソーダを添加して本発明によ
る方法を実施して得られたプリフォーム、また第4図は
これに99.9%アルミニウムを溶?km造法によって
含浸し製作したチタン酸カリウム繊維強化アルミニウム
材料を示す。第5図、第6図との比較によって明らかな
ように本発明を実施した場合、プリフォームの欠陥に起
因するカケやヒビ割れを解決できることが明瞭となる。
FIG. 3 shows a preform obtained by carrying out the method according to the present invention with the addition of 1 wt% sodium silicate, and FIG. 4 shows a preform obtained by adding 1 wt% of sodium silicate, and FIG. This figure shows a potassium titanate fiber-reinforced aluminum material impregnated and produced by the km method. As is clear from a comparison with FIGS. 5 and 6, it is clear that when the present invention is implemented, chips and cracks caused by defects in the preform can be solved.

本発明に用いることができる無機バインダーは第1の実
施例に示したものの他に、ケイ酸カルシウム、コロイダ
ルシリカ等であってもよく、これらの混合物であっても
よい。
In addition to those shown in the first embodiment, the inorganic binder that can be used in the present invention may be calcium silicate, colloidal silica, etc., or a mixture thereof.

また強化材として用いる繊維はチタン酸カリウム繊維と
他の繊維(炭化ケイ素、窒化ケイ系等のウィスカ、カー
ボン短繊維等)とのハイブリッド繊維についても応用可
能である。さらにマトリックスとして用いられる金属は
アルミニウム(99゜9%)の他すべてのアルミニウム
合金、マグネシウム、マグネシウム合金等の通常の溶湯
鍛造法に使用できるすべての金属を用いることができる
Further, the fibers used as the reinforcing material may be hybrid fibers of potassium titanate fibers and other fibers (silicon carbide, silicon nitride whiskers, short carbon fibers, etc.). Furthermore, the metal used as the matrix may be aluminum (99.9%), all aluminum alloys, magnesium, magnesium alloys, and other metals that can be used in ordinary molten metal forging methods.

また加圧成形法によって、繊維含有率が20VO1%以
下の繊維強化金属を製作するためには、繊維にあらかじ
めマトリックスとなる金属粉末を均一に混合させてプリ
フォームを製作するが、この時も本発明を応用すること
によって、粉体と繊維という様な形状が異なり欠陥や密
度のバラツキが出来やすい組合せのプリフォームを均一
でひび割れ等を発生させずに製作することができ、繊維
低含有率のプリフォームを沈澱法を用いずに生産性の高
い加圧成形法で製作することができる。また金属溶湯を
加圧含浸する際にもしっかりと固まっているため、沈澱
法によるプリフォームにおいて発生しやすい形状のくず
れも発生しない。
In addition, in order to produce fiber-reinforced metal with a fiber content of 20VO1% or less using the pressure molding method, a preform is produced by uniformly mixing the fibers with metal powder that will serve as a matrix in advance. By applying the invention, it is possible to manufacture preforms of combinations of powder and fibers, which have different shapes and are prone to defects and density variations, uniformly and without cracking, and with a low fiber content. Preforms can be manufactured by a highly productive pressure molding method without using a precipitation method. In addition, since the molten metal remains firmly solidified when impregnated under pressure, the shape of the preform does not deform, which tends to occur in preforms produced by the precipitation method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明においては、チタン酸カリウム
繊維を含む強化材に、前記強化材に対して1〜5wt%
の無機バインダを添加し、プリフォームを成形する方法
を用いることによって無機バインダを用いない場合に繊
維のスプリングパンクによって発生するプリフォームの
亀裂やぼ状のひび割れれをなくすことができ、これにマ
トリックス金属を溶湯鍛造法によって含浸させて得られ
る繊維強化金属の強度を大幅に向上させることができる
As described above, in the present invention, 1 to 5 wt% of the reinforcing material is added to the reinforcing material containing potassium titanate fibers.
By adding an inorganic binder and molding the preform, it is possible to eliminate the cracks and pot-shaped cracks that occur in the preform due to fiber spring puncture when no inorganic binder is used. The strength of fiber-reinforced metal obtained by impregnating metal with molten metal forging can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す断面図、第2図は、本
発明による方法でバインダ添加量を変化させたときの曲
げ強度をあられす特性図、第3図は、本発明の実施例に
開示する方法によって製作したプリフォームの表面状態
を示す写真、第4図は、上記プリフォームから製作した
チタン酸カリウム繊維強化アルミニウムの表面状態を示
す写真、第5図、第6図は、バインダを用いずにプリフ
ォ−ムを成形し、アルミニウムを含浸して得られたチタ
ン酸カリウム繊維強化アルミニウムの表面状態を示す写
真である。 1・・・バインダを分散させたチタン酸カリウム繊維、
2・・・プリフォーム成形金型、3・・・上パンチ、4
・・・加熱ヒータ。
Fig. 1 is a cross-sectional view showing an example of the present invention, Fig. 2 is a characteristic diagram showing the bending strength when the amount of binder added is changed by the method according to the present invention, and Fig. 3 is a characteristic diagram showing the bending strength according to the method according to the present invention. A photograph showing the surface condition of the preform manufactured by the method disclosed in the Examples, FIG. 4 is a photograph showing the surface condition of the potassium titanate fiber-reinforced aluminum manufactured from the above preform, and FIGS. , is a photograph showing the surface condition of potassium titanate fiber-reinforced aluminum obtained by molding a preform without using a binder and impregnating it with aluminum. 1... Potassium titanate fiber in which binder is dispersed,
2... Preform mold, 3... Upper punch, 4
...heater.

Claims (3)

【特許請求の範囲】[Claims] (1)チタン酸カリウム繊維を少なくとも一成分として
含む強化材にマトリックスとなる金属材料を加熱加圧含
浸させて得られる繊維強化金属材料の製造方法において
、前記チタン酸カリウム繊維を含む強化材に無機バイン
ダを前記強化材に対して1〜5wt%分散させ、これを
金型内で加圧保持しながら前記無機バインダ固化温度に
加熱することによって繊維強化金属前駆体となる繊維予
成形体を製作することを特徴とするチタン酸カリウム繊
維強化金属材料の製造方法。
(1) In a method for producing a fiber-reinforced metal material obtained by impregnating a reinforcing material containing potassium titanate fibers as at least one component with a metallic material serving as a matrix under heat and pressure, the reinforcing material containing potassium titanate fibers is inorganic. The binder is dispersed in the reinforcing material in an amount of 1 to 5 wt%, and this is heated to the inorganic binder solidification temperature while being pressurized in a mold to produce a fiber preform that becomes a fiber reinforced metal precursor. A method for producing a potassium titanate fiber-reinforced metal material, characterized in that:
(2)前記チタン酸カリウム繊維を含む強化材には、前
記マトリックス金属粉が混合されてなる強化材であるこ
とを特徴とする特許請求の範囲第1項記載のチタン酸カ
リウム繊維強化金属材料の製造方法。
(2) The potassium titanate fiber-reinforced metal material according to claim 1, wherein the reinforcing material containing the potassium titanate fibers is a reinforcing material mixed with the matrix metal powder. Production method.
(3)前記無機バインダは、ケイ酸ソーダ、ケイ酸リチ
ウム、けい酸カルシウム、コロイダルシリカであること
を特徴とする特許請求の範囲第1項記載のチタン酸カリ
ウム繊維強化金属材料の製造方法。
(3) The method for producing a potassium titanate fiber-reinforced metal material according to claim 1, wherein the inorganic binder is sodium silicate, lithium silicate, calcium silicate, or colloidal silica.
JP24989384A 1984-11-26 1984-11-26 Manufacture of potassium titanate fiber reinforced metal material Pending JPS61127836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24989384A JPS61127836A (en) 1984-11-26 1984-11-26 Manufacture of potassium titanate fiber reinforced metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24989384A JPS61127836A (en) 1984-11-26 1984-11-26 Manufacture of potassium titanate fiber reinforced metal material

Publications (1)

Publication Number Publication Date
JPS61127836A true JPS61127836A (en) 1986-06-16

Family

ID=17199779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24989384A Pending JPS61127836A (en) 1984-11-26 1984-11-26 Manufacture of potassium titanate fiber reinforced metal material

Country Status (1)

Country Link
JP (1) JPS61127836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238239A (en) * 1987-03-26 1988-10-04 Agency Of Ind Science & Technol Zn-22al superplastic material/potassium titanate composite material and its forming method
JPS63255333A (en) * 1987-04-10 1988-10-21 Agency Of Ind Science & Technol Aluminum alloy/potassium titanate whisker composite material by powder metallurgical method
JPH01116039A (en) * 1987-10-28 1989-05-09 Toyota Motor Corp Potassium titanate whisker reinforced metallic composite material
JPH0324240A (en) * 1989-06-22 1991-02-01 Osaka Gas Co Ltd Al-based fiber reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238239A (en) * 1987-03-26 1988-10-04 Agency Of Ind Science & Technol Zn-22al superplastic material/potassium titanate composite material and its forming method
JPS63255333A (en) * 1987-04-10 1988-10-21 Agency Of Ind Science & Technol Aluminum alloy/potassium titanate whisker composite material by powder metallurgical method
JPH0364578B2 (en) * 1987-04-10 1991-10-07 Kogyo Gijutsuin
JPH01116039A (en) * 1987-10-28 1989-05-09 Toyota Motor Corp Potassium titanate whisker reinforced metallic composite material
JPH0324240A (en) * 1989-06-22 1991-02-01 Osaka Gas Co Ltd Al-based fiber reinforced composite material

Similar Documents

Publication Publication Date Title
US5127461A (en) Water soluble cores, process for producing them and process for die casting metal using them
US5141683A (en) Method of producing reinforced materials
JPS61127836A (en) Manufacture of potassium titanate fiber reinforced metal material
JPH0881722A (en) Production of mg-base partially reinforced composite member
JPH01279721A (en) Manufacture of metal-based composite material
JP2909545B2 (en) Manufacturing method of metal matrix composite material
JPS6354056B2 (en)
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JP2579837B2 (en) Preforms for metal matrix composites
JPH0564692B2 (en)
JP2970268B2 (en) Preform molding method
JPH02259031A (en) Manufacture of reinforced metallic composite material
JPH01283330A (en) Manufacture of aluminum-based composite member
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JP3010714B2 (en) Method for producing particle-dispersed composite material
JPS63238968A (en) Manufacture of metal base composite material
JPS6267136A (en) Production of metallic composite material
JPS6349356A (en) Production of composite material
JPH0542356A (en) Production of fiber reinforced composite member
JPH0672274B2 (en) Method for producing fiber molded body and method for producing fiber reinforced composite material using the same
JPS6268670A (en) Manufacture of metallic base composite material
JPH05117007A (en) Composite member and its production
JPH0261012A (en) Production of compact of al-type material or al-type composite material
JPS61147824A (en) Manufacture of fiber-reinforced material
JPS63192801A (en) Method for solidifying and molding powder material