JPH06152021A - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JPH06152021A
JPH06152021A JP30141692A JP30141692A JPH06152021A JP H06152021 A JPH06152021 A JP H06152021A JP 30141692 A JP30141692 A JP 30141692A JP 30141692 A JP30141692 A JP 30141692A JP H06152021 A JPH06152021 A JP H06152021A
Authority
JP
Japan
Prior art keywords
wavelength
light
short
wavelength light
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30141692A
Other languages
Japanese (ja)
Inventor
Shisei Tanio
至誠 谷生
Fumio Matsuzaka
文夫 松坂
Koichiro Wazumi
光一郎 和住
Akihiro Nishimi
昭浩 西見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP30141692A priority Critical patent/JPH06152021A/en
Publication of JPH06152021A publication Critical patent/JPH06152021A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve a beam quality by suppressing lens effects by absorbing short wavelength component which does not contribute to the excitation and preventing the reflection of long wavelength component. CONSTITUTION:A solid-state laser device is provided with a rod part 1, which outputs laser light beams when it is excited, a lamp part 2, which projects exciting light, a short wavelength light absorbing part 3 arranged to surround the rod part 1 and the lamp part 2 and a wavelength selecting/reflecting part 11, which is arranged around the short wavelength light absorbing part 3 so as to permit harmful long wavelength light component to pass through and permit other exciting light beams to reflect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体レーザー装置に係
り、特に、ロッド間の熱レンズ効果を抑えてビーム品質
を向上させる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser device, and more particularly to a technique for suppressing the thermal lens effect between rods to improve beam quality.

【0002】[0002]

【従来の技術】図4は、Nd・YAG等のロッドタイプ
の固体レーザー装置の従来構造例を示している。図4に
おいて、符号1はロッド部(レーザー光発生用ロッ
ド)、2はランプ部(励起ランプ)、3は短波長光吸収
部、4はケーシング、5は反射面、6はロッド冷却流
路、7はランプ冷却流路、8は反射筒である。
2. Description of the Related Art FIG. 4 shows an example of a conventional structure of a rod type solid-state laser device such as Nd.YAG. In FIG. 4, reference numeral 1 is a rod portion (laser light generating rod), 2 is a lamp portion (excitation lamp), 3 is a short wavelength light absorbing portion, 4 is a casing, 5 is a reflecting surface, 6 is a rod cooling flow path, Reference numeral 7 is a lamp cooling flow path, and 8 is a reflecting cylinder.

【0003】ロッド部1に、ランプ部2からの励起光を
当てることによってレーザー光を発生させるとともに、
一対のミラーの間で往復させて発振状態とするものであ
り、この場合に、励起光のうち300nmないし400
nm以下の励起に寄与しない短波長成分を、Sm(サマ
リウム)ドープガラスからなる短波長光吸収部3で吸収
することにより、ロッド部1の温度上昇を制限すること
ができる。
Laser light is generated by applying excitation light from the lamp section 2 to the rod section 1, and
In this case, an oscillation state is obtained by reciprocating between a pair of mirrors. In this case, 300 nm to 400 nm of the excitation light is used.
By absorbing the short-wavelength component of not more than nm that does not contribute to the excitation by the short-wavelength light absorber 3 made of Sm (samarium) -doped glass, the temperature rise of the rod portion 1 can be limited.

【0004】[0004]

【発明が解決しようとする課題】しかし、励起光の中に
は、例えば820nm以上の長波長である励起に寄与し
ない有害波長成分が含まれており、反射面5で反射して
ロッド部1等に吸収される現象がともなう。ロッド部1
に吸収された有害波長成分は、熱エネルギーとなってロ
ッド部1の温度を上昇させ、熱膨張差の発生や内部応力
による屈折率の変化等に基づいて、光学的に凸レンズの
性質を持つ熱レンズ効果と呼ばれる現象を起こし、レー
ザー光のパスが光軸線から外れてビーム品質を低下させ
るおそれがある。
However, the pumping light contains a harmful wavelength component having a long wavelength of, for example, 820 nm or more that does not contribute to the pumping, and is reflected by the reflecting surface 5 to cause rod portion 1 and the like. Accompanying the phenomenon of being absorbed by. Rod part 1
The harmful wavelength component absorbed by the heat energy increases the temperature of the rod portion 1 due to heat energy, and the heat having the property of an optically convex lens is generated based on the occurrence of a difference in thermal expansion and the change in the refractive index due to internal stress. There is a possibility that a phenomenon called a lens effect will occur, and the path of the laser light will be deviated from the optical axis to deteriorate the beam quality.

【0005】本発明は、これらの事情に鑑みてなされた
もので、励起に寄与しない短波長成分の吸収と長波長成
分の反射防止とによって、熱レンズ効果の発生を抑制し
てビーム品質を向上させることを目的としている。
The present invention has been made in view of these circumstances, and suppresses generation of a thermal lens effect and improves beam quality by absorbing short wavelength components that do not contribute to excitation and preventing reflection of long wavelength components. The purpose is to let.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
各手段を提案している。請求項1に係る固体レーザー装
置は、励起時にレーザー光を出力するロッド部と、該ロ
ッド部の側部に配され励起光を照射するランプ部と、こ
れらロッド部及びランプ部を囲んだ状態に配され励起光
の中の有害な短波長光成分を吸収する短波長光吸収部
と、該短波長光吸収部の回りに配され有害な長波長光成
分を通過させその他の励起光を反射させる波長選択反射
部とを具備する構成を採用している。請求項2に係る固
体レーザー装置は、波長選択反射部が、短波長光吸収部
の外周面に一体に形成される誘電体コーティング層であ
り、該誘電体コーティング層が交互に重ね合わせた高屈
折率層と低屈折率層とからなる構成を、請求項1のレー
ザー装置に付加するようにしている。請求項3に係る固
体レーザー装置は、波長選択反射部の回りに通過した長
波長光成分を吸収する長波長光吸収部が配される構成
を、請求項1または請求項2のレーザー装置に付加する
ようにしている。
[Means for Solving the Problems] Various means for solving these problems are proposed. The solid-state laser device according to claim 1 has a rod portion that outputs laser light during excitation, a lamp portion that is disposed on a side portion of the rod portion and that emits excitation light, and a state in which the rod portion and the lamp portion are surrounded. A short-wavelength light absorption section that is arranged to absorb harmful short-wavelength light components in the excitation light and a short-wavelength light absorption section that is arranged around the short-wavelength light absorption section to pass harmful long-wavelength light components and reflect other excitation light. A configuration including a wavelength selective reflection section is adopted. In the solid-state laser device according to claim 2, the wavelength selective reflection part is a dielectric coating layer integrally formed on the outer peripheral surface of the short wavelength light absorption part, and the high refractive index in which the dielectric coating layers are alternately stacked. A structure including a refractive index layer and a low refractive index layer is added to the laser device according to claim 1. The solid-state laser device according to claim 3 has a configuration in which a long-wavelength light absorbing portion that absorbs a long-wavelength light component that has passed around the wavelength selective reflection portion is arranged in the laser device according to claim 1 or 2. I am trying to do it.

【0007】[0007]

【作用】請求項1に係る固体レーザー装置では、ランプ
部で発生させた励起光が、短波長光吸収部を通過するこ
とによって有害な短波長光成分が吸収除去され、励起光
が波長選択反射部に達すると、有害な長波長光成分がこ
れを通過することによって除去され、その他の励起光が
反射によって戻されることにより、繰り返し励起が行な
われる。請求項2に係る固体レーザー装置では、請求項
1による作用に加えて、励起に有効な成分の励起光のみ
が短波長光吸収部の外周面の誘電体コーティング層の各
境界で反射され、反射面が誘電体コーティング層によっ
て覆われた状態を保持する。請求項3に係る固体レーザ
ー装置では、請求項2による作用に加えて、波長選択反
射部を一度通過した長波長光成分が、長波長光吸収部で
吸収されて反射等によって内方に戻ることが防止され
る。
In the solid-state laser device according to the first aspect, the pumping light generated in the lamp section passes through the short-wavelength light absorbing section to absorb and remove harmful short-wavelength light components, and the pumping light is wavelength-selectively reflected. When reaching the area, harmful long-wavelength light components are removed by passing therethrough, and other excitation light is returned by reflection, whereby repeated excitation is performed. In the solid-state laser device according to claim 2, in addition to the function according to claim 1, only the excitation light of the component effective for excitation is reflected at each boundary of the dielectric coating layer on the outer peripheral surface of the short-wavelength light absorption portion and reflected. Keep the surface covered by the dielectric coating layer. In the solid-state laser device according to claim 3, in addition to the function according to claim 2, the long-wavelength light component that has once passed through the wavelength selective reflection part is absorbed by the long-wavelength light absorption part and returns to the inside by reflection or the like. Is prevented.

【0008】[0008]

【実施例】以下、本発明に係る固体レーザー装置の一実
施例について、図1ないし図3を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a solid-state laser device according to the present invention will be described below with reference to FIGS.

【0009】該一実施例では、図1に示すように、ロッ
ド部1及びランプ部2を囲んだ状態に配される短波長光
吸収部3が、円筒状外周を持つように形成され、該短波
長光吸収部3の回りに、有害な長波長光成分を通過させ
てその他の励起光を反射させる波長選択反射部11が配
される。
In the embodiment, as shown in FIG. 1, the short wavelength light absorbing portion 3 arranged so as to surround the rod portion 1 and the lamp portion 2 is formed to have a cylindrical outer periphery. Around the short-wavelength light absorption unit 3, a wavelength selection reflection unit 11 that allows harmful long-wavelength light components to pass and reflects other excitation light is arranged.

【0010】そして、波長選択反射部11は、短波長光
吸収部3の円筒状の外周面に、一体に形成される誘電体
コーティング層とされ、さらに詳しくは、該誘電体コー
ティング層が、例えばMgF2 等の誘電体を含む高屈折
率層と低屈折率層とを交互に重ね合わせて形成され、両
屈折層の厚さが反射させようとする400nm以上で8
50nm未満の波長範囲の1/4波長光学厚さに設定さ
れる。
The wavelength selective reflection part 11 is a dielectric coating layer integrally formed on the cylindrical outer peripheral surface of the short wavelength light absorption part 3. More specifically, the dielectric coating layer is, for example, It is formed by alternately stacking high refractive index layers and low refractive index layers containing a dielectric such as MgF 2, and the thickness of both refractive layers is 8 nm at 400 nm or more to be reflected.
It is set to a quarter wavelength optical thickness in the wavelength range of less than 50 nm.

【0011】また、ケーシング4の内面には、長波長光
成分を吸収するための長波長吸収部12が配される。該
長波長吸収部12は、例えば、黒色塗装した金属面や黒
色のセラミックス面等、赤外光(長波長光)を吸収し易
い材料によって形成される。そして、波長選択反射部1
1と長波長吸収部12との間に、外側冷却流路13が形
成される。
On the inner surface of the casing 4, a long wavelength absorbing portion 12 for absorbing a long wavelength light component is arranged. The long-wavelength absorbing portion 12 is formed of a material that easily absorbs infrared light (long-wavelength light), such as a black-painted metal surface or a black ceramic surface. And the wavelength selective reflection part 1
An outer cooling flow path 13 is formed between 1 and the long wavelength absorption portion 12.

【0012】このような構造の固体レーザー装置にあっ
て、ランプ部2で発生させた励起光を、ロッド部1に照
射することによってレーザー光を発生させる場合につい
て、以下説明する。
In the solid-state laser device having such a structure, a case where laser light is generated by irradiating the rod portion 1 with the excitation light generated in the lamp portion 2 will be described below.

【0013】ランプ部2が、例えばキセノンフラッシュ
ランプである場合には、図2に示すようなスペクトル分
布を持っているため、これらのスペクトル分布とロッド
部1における励起光吸収特性との整合性が重要になる。
ロッド部1が、例えばNdを1%ドープしたものである
と、図3に示すように、590nm,750nm,80
9nmの波長近傍で透過率が低くなって吸収性が高ま
り、Ndイオンに吸収されることによってレーザー光の
放出に寄与する。
When the lamp unit 2 is, for example, a xenon flash lamp, it has a spectral distribution as shown in FIG. 2, and therefore, the spectral distribution and the excitation light absorption characteristic of the rod unit 1 are consistent with each other. Becomes important.
If the rod portion 1 is, for example, one that is Nd-doped at 1%, as shown in FIG.
In the vicinity of the wavelength of 9 nm, the transmittance is lowered and the absorptivity is increased, and the Nd ions are absorbed to contribute to the emission of laser light.

【0014】したがって、ランプ部2で発生させた励起
光が短波長吸収部3を経由すると、励起光中に含まれて
いる300nmないし400nm以下の短波長分が吸収
された状態となって、ロッド部1または波長選択反射部
11に到達する。
Therefore, when the excitation light generated in the lamp unit 2 passes through the short wavelength absorption unit 3, the short wavelength component of 300 nm to 400 nm or less contained in the excitation light is absorbed, and the rod. It reaches the section 1 or the wavelength selective reflection section 11.

【0015】ロッド部1に到達した励起光にあってはレ
ーザー光の励起を行なうことになり、一方、波長選択反
射部11に到達した励起光にあっては、850nm以下
の波長成分が、短波長光吸収部3との境界で反射して再
び短波長光吸収部3を経由して、ロッド部1を繰り返し
照射することによってレーザー発振に寄与するものとな
るとともに、850nm以上の波長成分が波長選択反射
部11を通過して、長波長吸収部12に到達して吸収さ
れることになる。
The excitation light reaching the rod portion 1 excites the laser light, while the excitation light reaching the wavelength selective reflection portion 11 has a short wavelength component of 850 nm or less. The light is reflected at the boundary with the wavelength absorption section 3 and again contributes to laser oscillation by repeatedly irradiating the rod section 1 via the short wavelength absorption section 3 and a wavelength component of 850 nm or more is emitted. After passing through the selective reflection section 11, it reaches the long wavelength absorption section 12 and is absorbed.

【0016】ランプ部2で発生させた励起光を吸収する
ことによって高温状態となったロッド部1、ランプ部
2、短波長光吸収部3、長波長吸収部12、あるいは、
850nm以上の波長成分を吸収することによって高温
状態となった波長選択反射部11は、ロッド冷却流路
6、ランプ冷却流路7及び外側冷却流路13に冷却水を
挿通させること等によって冷却される。
The rod portion 1, the lamp portion 2, the short wavelength light absorbing portion 3, the long wavelength absorbing portion 12, or the long wavelength absorbing portion 12, which has become a high temperature by absorbing the excitation light generated in the lamp portion 2, or
The wavelength selective reflection part 11 which has become a high temperature state by absorbing the wavelength component of 850 nm or more is cooled by inserting cooling water into the rod cooling flow path 6, the lamp cooling flow path 7 and the outer cooling flow path 13, etc. It

【0017】[0017]

【発明の効果】本発明に係る固体レーザー装置によれ
ば、以下の優れた効果を奏する。 (1) 励起時にレーザー光を出力するロッド部と、そ
の側部に配されるランプ部と、ロッド部及びランプ部を
囲む短波長光吸収部と、その回りに配される波長選択反
射部とを具備することによって、短波長光成分及び長波
長光成分が除去された状態の励起光がロッド部に繰り返
し照射されて、レーザー光が励起されるとともに、レー
ザー光の発生時に、有害な短波長光成分及び長波長光成
分によるロッド部の加熱量を低減させて、ロッド部のレ
ンズ効果の発生を抑制して、ビーム品質を向上させるこ
とができる。 (2) 波長選択反射部が、短波長光吸収部の外周面に
一体に形成されることにより、これらの境界に反射面を
形成して、励起光を効率よく反射させてロッド部の励起
効果を向上させるとともに、反射面をコーティング層で
覆ってその保護を行ない、励起光の反射を安定させるこ
とができる。 (3) 波長選択反射部の回りに長波長光吸収部が配さ
れることによって、波長選択反射部を透過した長波長光
を吸収して、長波長光が再び波長選択反射部や短波長光
吸収部に戻される現象の発生を抑制し、励起光の有効成
分を活用してレーザーの励起を行なうことができる。
The solid-state laser device according to the present invention has the following excellent effects. (1) A rod portion that outputs laser light when excited, a lamp portion that is arranged on the side portion thereof, a short wavelength light absorbing portion that surrounds the rod portion and the lamp portion, and a wavelength selective reflection portion that is arranged around the rod portion and the lamp portion. By including the excitation light in a state where the short-wavelength light component and the long-wavelength light component are removed, the rod portion is repeatedly irradiated, the laser light is excited, and the harmful short-wavelength light is generated when the laser light is generated. It is possible to reduce the heating amount of the rod portion due to the light component and the long-wavelength light component, suppress the occurrence of the lens effect of the rod portion, and improve the beam quality. (2) The wavelength selective reflection part is integrally formed on the outer peripheral surface of the short wavelength light absorption part, so that a reflection surface is formed at these boundaries to efficiently reflect the excitation light and the excitation effect of the rod part. It is also possible to stabilize the reflection of the excitation light by improving the reflection resistance and covering the reflection surface with a coating layer to protect the reflection surface. (3) By disposing the long-wavelength light absorbing section around the wavelength-selective reflection section, the long-wavelength light that has passed through the wavelength-selective reflection section is absorbed, and the long-wavelength light is again converted into the wavelength-selective reflection section or the short-wavelength light. It is possible to suppress the occurrence of the phenomenon of returning to the absorption section and utilize the effective component of the excitation light to excite the laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体レーザー装置の一実施例を示
す横断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a solid-state laser device according to the present invention.

【図2】励起光の波長と正規化スペクトル出力との関係
曲線図である。
FIG. 2 is a relationship curve diagram between a wavelength of excitation light and a normalized spectrum output.

【図3】レーザー光発生用ロッドにおける励起光波長と
透過率との関係曲線図である。
FIG. 3 is a relationship curve diagram between an excitation light wavelength and a transmittance in a laser light generating rod.

【図4】固体レーザー装置の従来例を示す横断面図であ
る。
FIG. 4 is a cross-sectional view showing a conventional example of a solid-state laser device.

【符号の説明】[Explanation of symbols]

1 ロッド部(レーザー光発生用ロッド) 2 ランプ部(励起ランプ) 3 短波長光吸収部 4 ケーシング 5 反射面 6 ロッド冷却流路 7 ランプ冷却流路 11 波長選択反射部(誘電体コーティング層) 12 長波長吸収部 13 外側冷却流路 1 Rod Part (Rod Light Generation Rod) 2 Lamp Part (Excitation Lamp) 3 Short Wavelength Light Absorbing Part 4 Casing 5 Reflecting Surface 6 Rod Cooling Flow Path 7 Lamp Cooling Flow Path 11 Wavelength Selective Reflecting Part (Dielectric Coating Layer) 12 Long wavelength absorption part 13 Outside cooling flow path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和住 光一郎 東京都江東区豊州三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 (72)発明者 西見 昭浩 東京都江東区豊州三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichiro Wazumi 3-15-1, Hoshu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. Toji Technical Center (72) Inventor Akihiro Nishimi Koto-ku, Tokyo Hoshu 3-chome 1-15 Ishikawajima Harima Heavy Industries Co., Ltd. Toji Technical Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 励起時にレーザー光を出力するロッド部
と、該ロッド部の側部に配され励起光を照射するランプ
部と、これらロッド部及びランプ部を囲んだ状態に配さ
れ励起光の中の有害な短波長光成分を吸収する短波長光
吸収部と、該短波長光吸収部の回りに配され有害な長波
長光成分を通過させその他の励起光を反射させる波長選
択反射部とを具備することを特徴とする固体レーザー装
置。
1. A rod portion that outputs laser light during excitation, a lamp portion that is disposed on a side portion of the rod portion and that emits excitation light, and a rod portion that surrounds the rod portion and the lamp portion. A short-wavelength light-absorbing portion that absorbs harmful short-wavelength light components therein, and a wavelength-selective reflector that is disposed around the short-wavelength light-absorbing portions and that passes harmful long-wavelength light components and reflects other excitation light. A solid-state laser device comprising:
【請求項2】 波長選択反射部が、短波長光吸収部の外
周面に一体に形成される誘電体コーティング層であり、
該誘電体コーティング層が交互に重ね合わせた高屈折率
層と低屈折率層とからなることを特徴とする請求項1記
載の固体レーザー装置。
2. The wavelength selective reflection part is a dielectric coating layer integrally formed on the outer peripheral surface of the short wavelength light absorption part,
2. The solid-state laser device according to claim 1, wherein the dielectric coating layer is composed of a high refractive index layer and a low refractive index layer which are alternately laminated.
【請求項3】 波長選択反射部の回りに通過した長波長
光成分を吸収する長波長光吸収部が配されることを特徴
とする請求項1または2記載の固体レーザー装置。
3. The solid-state laser device according to claim 1, further comprising a long-wavelength light absorbing portion that absorbs a long-wavelength light component that has passed around the wavelength selective reflection portion.
JP30141692A 1992-11-11 1992-11-11 Solid-state laser device Withdrawn JPH06152021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30141692A JPH06152021A (en) 1992-11-11 1992-11-11 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30141692A JPH06152021A (en) 1992-11-11 1992-11-11 Solid-state laser device

Publications (1)

Publication Number Publication Date
JPH06152021A true JPH06152021A (en) 1994-05-31

Family

ID=17896616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30141692A Withdrawn JPH06152021A (en) 1992-11-11 1992-11-11 Solid-state laser device

Country Status (1)

Country Link
JP (1) JPH06152021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757033C2 (en) * 2017-11-27 2021-10-11 Булат Малихович Абдрашитов Laser cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757033C2 (en) * 2017-11-27 2021-10-11 Булат Малихович Абдрашитов Laser cooling system

Similar Documents

Publication Publication Date Title
EP1454386A2 (en) Laser containing a distributed gain medium
Erhard et al. Pumping schemes for multi-kW thin disk lasers
US4839902A (en) Laser with controlled geometry fluorescent converter
JPH07235714A (en) Solid laser apparatus
JPH06152021A (en) Solid-state laser device
JP2007531918A (en) Aperture stop assembly for high power laser beams
JPH06350171A (en) Solid-state laser device and integral sphere
JPH0475393A (en) Laser device
EP0443751A2 (en) Solid lasers
JP2595010B2 (en) Optically pumped laser device
US4168473A (en) Internal arrester beam clipper
JPH0254588A (en) Solid-state laser device
JP2003158325A (en) Passive q switch laser
JPH08111551A (en) Aperture for laser and laser oscillator using it
JPH04302186A (en) Solid-state laser oscillator, solid-state laser medium, laser resonator, and laser exposure device
JPH04316381A (en) Solid-state laser
JP3067313B2 (en) Solid-state laser device
JP7341673B2 (en) laser equipment
JPH0423479A (en) Laser device
JPH0265283A (en) Solid-state laser
JPH08330648A (en) Solid-state laser oscillator
JP2691773B2 (en) Solid-state laser device
JPH09270552A (en) Solid-state laser device
JPH04322480A (en) Solid-state laser device
JPH04316382A (en) Solid-state laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201