JPH0265283A - Solid-state laser - Google Patents

Solid-state laser

Info

Publication number
JPH0265283A
JPH0265283A JP21762188A JP21762188A JPH0265283A JP H0265283 A JPH0265283 A JP H0265283A JP 21762188 A JP21762188 A JP 21762188A JP 21762188 A JP21762188 A JP 21762188A JP H0265283 A JPH0265283 A JP H0265283A
Authority
JP
Japan
Prior art keywords
laser medium
laser
light rays
solid
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21762188A
Other languages
Japanese (ja)
Other versions
JP2706098B2 (en
Inventor
Shigenori Yagi
重典 八木
Masaki Kuzumoto
昌樹 葛本
Kazuki Kuba
一樹 久場
Yasuto Nai
名井 康人
Toshitaka Aoyanagi
利隆 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63217621A priority Critical patent/JP2706098B2/en
Priority to GB8902856A priority patent/GB2215906B/en
Priority to US07/308,586 priority patent/US4924474A/en
Priority to DE3943722A priority patent/DE3943722C2/en
Priority to DE3904039A priority patent/DE3904039C2/en
Publication of JPH0265283A publication Critical patent/JPH0265283A/en
Priority to GB9202756A priority patent/GB2253515B/en
Application granted granted Critical
Publication of JP2706098B2 publication Critical patent/JP2706098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode

Abstract

PURPOSE:To enable a laser medium to efficiently absorb LD light rays so as to improve an oscillation energy efficiency by a method wherein an optical guide, which enables the light rays of a semiconductor laser to be obliquely incident on the laser medium, is provided. CONSTITUTION:An exciting light ray 12 for an LD1 is made to be obliquely incident on a laser medium 2. In result, the optical path inside the laser medium 2 becomes long, so that the light rays 12 are effectively absorbed in the laser medium. Furthermore, a part of the exciting light rays 12 reflected by the surface of the laser medium 2 is reflected again by a reflecting surface 71 of an optical guide 7 to make its traveling direction changed and made to be incident on the laser medium 2 again. As mentioned above, the exciting light rays 12 are almost absorbed in the laser medium 2 while they are reflected two or more times in a triangular space constituted with the surface of the laser medium and the reflecting surface 71. Therefore, the LD light ray has a little variation in wavelength and also in an absorbing coefficient, but the laser medium can be effectively excited. The heat generated in the laser medium is transmitted to a cooler 8 through a thin filler 61 and a holder 6 and finally radiated outside from a heat radiating fin 81.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体レーザ(LD)等の半導体素子の光
によって励起される固体レーザの励起構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an excitation structure of a solid-state laser that is excited by light from a semiconductor element such as a semiconductor laser (LD).

〔従来の技術〕[Conventional technology]

第7図は例えば米国特許3,624,545号(U、S
、Patent 3,624,545)に示された従来
のLD励起固体レーザの構造を示す図であり、図におい
て、1はLD、2はYAGの丸棒等のレーザ媒質、3,
4はレーザ媒質2の端面に形成された全反射膜と部分反
射膜、5は反射鏡である。
FIG. 7 shows, for example, U.S. Pat. No. 3,624,545 (U, S
, Patent 3,624,545), and in the figure, 1 is an LD, 2 is a laser medium such as a YAG round bar, 3,
4 is a total reflection film and a partial reflection film formed on the end face of the laser medium 2, and 5 is a reflecting mirror.

次に動作について説明する。Next, the operation will be explained.

LDIから出射された励起光はレーザ媒質2に入射し、
吸収される。吸収されずに通過した光は反射鏡5によっ
て反射され、再びレーザ媒質2に入射する。吸収された
光のエネルギーは部分反射膜4と全反射膜3に囲まれて
成る光共振器によって発振状態となり、一部がレーザ光
となり外部へ放出される。
The excitation light emitted from the LDI enters the laser medium 2,
Absorbed. The light that has passed through without being absorbed is reflected by the reflecting mirror 5 and enters the laser medium 2 again. The energy of the absorbed light becomes oscillated by the optical resonator surrounded by the partial reflection film 4 and the total reflection film 3, and part of it becomes laser light and is emitted to the outside.

LDIの光に対するレーザ媒質2の吸収係数は波長依存
性が大きく、例えば808.5nmに対しては0.75
n+m−’、 802nmに対しては0.lmm−’で
ある。こツタめレーザ媒質に有効に光を吸収させるため
にはLDIのスペクトルを精密にコントロールすること
が必要であった。
The absorption coefficient of the laser medium 2 for LDI light has a strong wavelength dependence, for example, 0.75 for 808.5 nm.
n+m-', 0.0 for 802 nm. lmm-'. In order to effectively absorb light into a compact laser medium, it was necessary to precisely control the spectrum of LDI.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の固体レーザは以上のように構成、されているので
、レーザ媒質にレーザダイオードの光を完全に吸収させ
るのが難しく、従ってレーザ発振のエネルギー効率が低
いという問題点があった。
Since conventional solid-state lasers are configured and implemented as described above, it is difficult to make the laser medium completely absorb the light from the laser diode, and therefore there is a problem that the energy efficiency of laser oscillation is low.

また、従来の固体レーザはレーザ媒質の放熱が不十分で
、出力の増大とともにビームの質が劣化するという問題
点もある。
Further, conventional solid-state lasers have the problem that heat dissipation from the laser medium is insufficient, and the quality of the beam deteriorates as the output increases.

この発明は上記のような問題点を解消するためになされ
たもので、LDの光を効率よく吸収でき、発振のエネル
ギー効率を向上できる固体レーザを得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and aims to provide a solid-state laser that can efficiently absorb LD light and improve the energy efficiency of oscillation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る固体レーザは、励起用半導体レーザの光
をレーザ媒質に対して斜めに入射させる光ガイドを備え
たものである。
The solid-state laser according to the present invention includes a light guide that allows light from a pumping semiconductor laser to enter the laser medium obliquely.

〔作用〕[Effect]

この発明においては、半導体レーザの光をレーザ媒質に
対して斜めに入射させる光ガイドを備えた構成としたか
ら、LD光が効率よ(レーザ媒質に吸収され、発振エネ
ルギー効率が向上する。
In this invention, since the configuration is provided with a light guide that allows the light of the semiconductor laser to enter the laser medium obliquely, the LD light is efficiently absorbed by the laser medium and the oscillation energy efficiency is improved.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による固体レーザを示す図で
あり、図において、1はLD、11はマウント、12は
励起光、2はレーザ媒質、21はAR(反射防止)膜、
30はPR(部分反射)ミラー、4はTR(全反射)膜
、6はホルダ、61は充填物、7は光ガイド、71は反
射面、8は冷却器、81は放熱フィン、9はレーザ出力
である。
FIG. 1 is a diagram showing a solid-state laser according to an embodiment of the present invention, in which 1 is an LD, 11 is a mount, 12 is an excitation light, 2 is a laser medium, 21 is an AR (anti-reflection) film,
30 is a PR (partial reflection) mirror, 4 is a TR (total reflection) film, 6 is a holder, 61 is a filler, 7 is a light guide, 71 is a reflective surface, 8 is a cooler, 81 is a radiation fin, 9 is a laser This is the output.

第2図は第1図の固体レーザを端面方向から見た図であ
り、この図に示すようにLDIは円周方向に複数個配置
されている。
FIG. 2 is a diagram of the solid-state laser of FIG. 1 viewed from the end face direction, and as shown in this diagram, a plurality of LDIs are arranged in the circumferential direction.

第3図は第1図の固体レーザにおける励起光12の動き
を従来の固体レーザの励起光の動きと対比して示した図
である。
FIG. 3 is a diagram showing the movement of the excitation light 12 in the solid-state laser of FIG. 1 in comparison with the movement of the excitation light in a conventional solid-state laser.

次に動作について説明する。Next, the operation will be explained.

LDIの励起光12は斜めにレーザ媒質2に入射する。Excitation light 12 of the LDI enters the laser medium 2 obliquely.

この結果、レーザ媒質内の光路が長くなり(図では従来
例の約1.4倍)、有効に吸収される。さらにレーザ媒
質の表面で一部(20%程度)反射された励起光12は
光ガイド7の反射面71で再び反射され方向を変えられ
てレーザ媒質2に再入射する。このようにレーザ媒質2
の表面と反射面71の成す三角形の空間で励起光12は
複数回反射を繰り返すうちに殆どレーザ媒質に吸収され
る。このためLD光の波長に多少のバラツキがあり、吸
収係数にバラツキがあっても、有効にレーザ媒質を励起
できる。第3図(a)、 (b)はそれぞれ本実施例の
固体レーザ、従来の固体レーザの励起光の動きを示して
いる。LDIの励起光は一般に直線偏光しているので、
第3図(alに示すようにP波となるようにLDIの取
り付けを行なえば、励起光はランダム偏光1円偏光、ま
たはS波の場合よりもさらに良くレーザ媒質に吸収され
る。
As a result, the optical path within the laser medium becomes longer (approximately 1.4 times that of the conventional example in the figure) and is effectively absorbed. Furthermore, the excitation light 12 that has been partially (approximately 20%) reflected by the surface of the laser medium is reflected again by the reflective surface 71 of the light guide 7, changed direction, and enters the laser medium 2 again. In this way, the laser medium 2
The excitation light 12 is reflected multiple times in the triangular space formed by the surface of the laser and the reflecting surface 71, and most of the excitation light 12 is absorbed by the laser medium. Therefore, even if there are some variations in the wavelength of the LD light and variations in the absorption coefficient, the laser medium can be effectively excited. FIGS. 3(a) and 3(b) show the movement of the excitation light of the solid-state laser of this embodiment and the conventional solid-state laser, respectively. Since the excitation light of LDI is generally linearly polarized,
If the LDI is installed so that the excitation light becomes a P wave as shown in FIG.

このようにしてレーザ媒質2に吸収されたエネルギーは
TR膜4とPRミラー30とで構成される共振器で発振
し、一部がレーザ出力9として取り出される。
The energy thus absorbed by the laser medium 2 is oscillated in a resonator made up of the TR film 4 and the PR mirror 30, and a portion is extracted as a laser output 9.

レーザ媒質2の熱は、薄い充填材61.ホルダ6を熱伝
導で通過して冷却器8へ流れ、最終的に放熱フィン81
から放出される。LDlの熱も、マウント11.ホルダ
6を介して同様に効率よく冷却されている。充填材61
を励起光に対して透明体とし、ホルダ6の内面を反射体
にすることで励起光の吸収効率はさらに向上する。
The heat of the laser medium 2 is transferred to the thin filler 61. The heat passes through the holder 6 by conduction, flows to the cooler 8, and finally reaches the heat dissipation fins 81.
released from. The heat of LDl is also mount 11. It is similarly efficiently cooled via the holder 6. Filler 61
By making the holder 6 transparent to the excitation light and making the inner surface of the holder 6 a reflector, the absorption efficiency of the excitation light is further improved.

このように本実施例では、LD光をレーザ媒質に対して
斜めに入射させるとともにレーザ媒質表面からの反射光
を再びレーザ媒質へ入射させるガイド面を備え、LDの
偏光面がレーザ媒質に対してP波となるようにLDの取
り付は角を設定した構成としたから、発振エネルギー効
率の高い固体レーザを得ることができ、さらに、熱伝導
的に効率よくレーザ媒質及び半導体レーザを冷却する構
成としたからビーム品質の優れた固体レーザが得られる
In this way, this embodiment includes a guide surface that makes the LD light enter the laser medium obliquely and makes the reflected light from the surface of the laser medium enter the laser medium again, so that the polarization plane of the LD is relative to the laser medium. Since the LD is mounted at a corner to generate P waves, a solid-state laser with high oscillation energy efficiency can be obtained, and the laser medium and semiconductor laser can be efficiently cooled in terms of heat conduction. As a result, a solid-state laser with excellent beam quality can be obtained.

なお上記実施例では、光ガイド7を円錐状に形成したが
、反射面71のある穴状のものでもよく、あるいは光フ
ァイバによるものでもよい。またLDlのマウント11
の構造は種々の変形が可能である。
In the above embodiment, the light guide 7 is formed into a conical shape, but it may be formed in the shape of a hole with a reflective surface 71, or may be formed of an optical fiber. Also LDl's mount 11
The structure of can be modified in various ways.

第4図(al、 (tel、 (C1はそれぞれ本発明
の他の実施例の要部を示す図である。第4図(alは直
線穴状、第4図(blは屈曲、または湾曲した穴状、第
4図(0)は光ファイバ120を光ガイド導入孔122
に通して光ガイドを形成した例である。
Figure 4 (al, tel, (C1) are diagrams showing main parts of other embodiments of the present invention, respectively. Figure 4 (al is a straight hole shape, Figure 4 (bl is a bent or curved hole) Hole-shaped, FIG. 4 (0) shows the optical fiber 120 connected to the light guide introduction hole 122
This is an example of forming a light guide through the

また、LDIの配列は第5図に示すようにレーザ媒質2
の軸方向に複数個として大出力化を図ることが可能であ
る。
Furthermore, the arrangement of the LDI is as shown in FIG.
It is possible to increase the output by setting a plurality of pieces in the axial direction.

また、上記各実施例ではレーザ媒質2がロンド(丸棒)
状のものについて示したが、板状のスラブ型レーザ媒質
を用い、レーザ光軸がその内で複数回の内部全反射を繰
り返している、いわゆるスラブ型レーザにも本発明は有
効である。第6図は本発明をスラブ型レーザに適用した
一実施例を示す図であり、第6図(a)はその横断面図
、第6図(blはその縦断面図である。図において、2
0はスラブ型レーザ媒質、40はTRミラーである。図
に示すように、スラブ型レーザ媒質20の幅方向に複数
個のLDが複数列配置されている。
Furthermore, in each of the above embodiments, the laser medium 2 is a round bar.
The present invention is also effective for so-called slab-type lasers in which a plate-shaped slab-type laser medium is used and the laser optical axis undergoes total internal reflection multiple times. FIG. 6 is a diagram showing an embodiment in which the present invention is applied to a slab laser, in which FIG. 6(a) is a cross-sectional view thereof, and FIG. 6 (bl is a vertical cross-sectional view thereof. 2
0 is a slab type laser medium, and 40 is a TR mirror. As shown in the figure, a plurality of LDs are arranged in a plurality of rows in the width direction of the slab type laser medium 20.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば固体レーザにおいて、
LD光をレーザ媒質に対して斜めに入射させる光ガイド
を備えた構成としたから、レーザ媒質での励起光の光路
が長くなり、発振エネルギー効率を向上することができ
る効果がある。
As described above, according to the present invention, in the solid-state laser,
Since the configuration includes a light guide that allows the LD light to enter the laser medium obliquely, the optical path of the excitation light in the laser medium becomes longer, which has the effect of improving oscillation energy efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明の一実施例による固体レーザ
を示す横断面図、及び縦断面図、第3図は本実施例の固
体レーザにおける励起光の動きを従来の固体レーザの励
起光の動きと対比して示した図、第4図、第5図、第6
図はそれぞれ本発明の他の実施例の要部を示す図、第7
図は従来の固体レーザの構成を示す図である。 1はLD、11はマウント、12は励起光、2はレーザ
媒質、20はスラブ型レーザ媒質、30はPR(部分反
射)ミラー、4はTR(全反射)膜、40はTRミラー
、6はホルダ、61は充填物、7は光ガイド、71は反
射面、8は冷却器、81は放熱フィン、9はレーザ出力
。 なお図中同一符号は同−又は相当部分を示す。
1 and 2 are a cross-sectional view and a longitudinal sectional view showing a solid-state laser according to an embodiment of the present invention, and FIG. 3 shows the movement of excitation light in the solid-state laser of this embodiment compared to the conventional solid-state laser Diagrams shown in comparison with the movement of light, Figures 4, 5, and 6
Figures 7 and 7 are diagrams showing main parts of other embodiments of the present invention, respectively.
The figure shows the configuration of a conventional solid-state laser. 1 is LD, 11 is mount, 12 is excitation light, 2 is laser medium, 20 is slab type laser medium, 30 is PR (partial reflection) mirror, 4 is TR (total reflection) film, 40 is TR mirror, 6 is holder, 61 is a filling, 7 is a light guide, 71 is a reflective surface, 8 is a cooler, 81 is a radiation fin, and 9 is a laser output. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)固体レーザ媒質を半導体レーザによって励起する
固体レーザにおいて、 上記半導体レーザの光を上記固体レーザ媒質に対して斜
めに入射させる光ガイドを備えたことを特徴とする固体
レーザ。
(1) A solid-state laser in which a solid-state laser medium is excited by a semiconductor laser, characterized in that the solid-state laser is provided with a light guide that allows light from the semiconductor laser to enter the solid-state laser medium obliquely.
JP63217621A 1988-02-10 1988-08-31 Solid state laser Expired - Fee Related JP2706098B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63217621A JP2706098B2 (en) 1988-08-31 1988-08-31 Solid state laser
GB8902856A GB2215906B (en) 1988-02-10 1989-02-09 Laser device
US07/308,586 US4924474A (en) 1988-02-10 1989-02-10 Laser device with high oscillation efficiency
DE3943722A DE3943722C2 (en) 1988-02-10 1989-02-10 Solid-state laser with light emitting semiconductor devices
DE3904039A DE3904039C2 (en) 1988-02-10 1989-02-10 Laser array
GB9202756A GB2253515B (en) 1988-02-10 1992-02-10 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217621A JP2706098B2 (en) 1988-08-31 1988-08-31 Solid state laser

Publications (2)

Publication Number Publication Date
JPH0265283A true JPH0265283A (en) 1990-03-05
JP2706098B2 JP2706098B2 (en) 1998-01-28

Family

ID=16707164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217621A Expired - Fee Related JP2706098B2 (en) 1988-02-10 1988-08-31 Solid state laser

Country Status (1)

Country Link
JP (1) JP2706098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135082A (en) * 1989-10-10 1991-06-10 Hughes Aircraft Co Integrated laser diode pump laser device
WO1999031772A1 (en) * 1997-12-15 1999-06-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid-state laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100983A (en) * 1987-10-14 1989-04-19 Komatsu Ltd Laser rod excitation device of solid state laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100983A (en) * 1987-10-14 1989-04-19 Komatsu Ltd Laser rod excitation device of solid state laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135082A (en) * 1989-10-10 1991-06-10 Hughes Aircraft Co Integrated laser diode pump laser device
WO1999031772A1 (en) * 1997-12-15 1999-06-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid-state laser device

Also Published As

Publication number Publication date
JP2706098B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US4924474A (en) Laser device with high oscillation efficiency
US6327291B1 (en) Fiber stub end-pumped laser
US5050179A (en) External cavity semiconductor laser
JPH07106665A (en) Solid state laser unit
US6873633B2 (en) Solid-state laser
JP2664392B2 (en) Laser device
JP2006339638A (en) Surface emitting laser coupled together with pump laser on single heat sink
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPH07505979A (en) Method and apparatus for generating and using high-density excited ions in a laser medium
US6625194B1 (en) Laser beam generation apparatus
JP2000133863A (en) Solid-state laser
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
US6285705B1 (en) Solid-state laser oscillator and machining apparatus using the same
JP3820250B2 (en) Laser oscillator and optical amplifier
JPH0265283A (en) Solid-state laser
JP2885175B2 (en) Solid-state laser device
JP2581189B2 (en) Solid-state laser device
US6341139B1 (en) Semiconductor-laser-pumped solid state laser
JPH0685357A (en) Solid laser oscillator
JP4325036B2 (en) aperture
JPH0697543A (en) Solid laser oscillator
JP3003172B2 (en) Solid state laser oscillator
JPS63254776A (en) Solid-state laser device
JPH0697544A (en) Solid laser osillator
JP2002076477A (en) Fiber leaser amplifier and fiber laser working device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees