JPH06151106A - Semiconductor porcelain composition for positive temperature coefficient thermistor - Google Patents

Semiconductor porcelain composition for positive temperature coefficient thermistor

Info

Publication number
JPH06151106A
JPH06151106A JP30335392A JP30335392A JPH06151106A JP H06151106 A JPH06151106 A JP H06151106A JP 30335392 A JP30335392 A JP 30335392A JP 30335392 A JP30335392 A JP 30335392A JP H06151106 A JPH06151106 A JP H06151106A
Authority
JP
Japan
Prior art keywords
withstand voltage
rare earth
earth element
added
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30335392A
Other languages
Japanese (ja)
Inventor
Toshishige Yamamoto
利重 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30335392A priority Critical patent/JPH06151106A/en
Publication of JPH06151106A publication Critical patent/JPH06151106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase withstand voltage per grain in a grain boundary layer by standardization to the withstand voltage per fixed resistance as a withstand voltage evaluation method for optimizing the amount of a rare earth element to be added and the amount of a Mn compourld to be added. CONSTITUTION:For a barium titanate composition expressed by (Ba1-x-ySrxCay) TiO3 (where 0<=X<=0.15, 0.13<=Y<=0.17), 0.5 to 1.5mol% of TiO2, 1.0 to 2.5mol% of SiO2 and a rare earth element and a Mn compound are contained so that the relationship b=0.2a-0.006+ or -0.01 is formulated when the rare earth element is less than 0.26 atomic % and the relationship b=0.715a-0.143+ or -0.02 is formulated when the rare earth element is equal to or more than 0.26 atomic %, where the rare earth element is (a) atomic % and Mn is(b)atomic %. By this, the grain diameter in a barium titanate sintered body is made fine and the withstand voltage per grain in a grain boundary layer is increased, which can result in a high withstand voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は正特性サーミスタ用半導
体磁器組成物に関し、より詳細には単位抵抗当たりの耐
電圧を向上させた過電流保護素子又はスイッチング素子
等として使用される正特性サーミスタ用半導体磁器組成
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic composition for a positive temperature coefficient thermistor, and more particularly to a positive temperature coefficient thermistor used as an overcurrent protection element or a switching element having an improved withstand voltage per unit resistance. The present invention relates to a semiconductor porcelain composition.

【0002】[0002]

【従来の技術】一般に、例えばチタン酸バリウム、チタ
ン酸ストロンチウム、チタン酸鉛、チタン酸カルシウム
等又はこれらの固溶体に希土類元素であるNb、Dy、
La等を微量添加して焼成すると、正の抵抗係数を有す
る半導体磁器材料(正特性サーミスタ用材料)を得るこ
とができる。
2. Description of the Related Art Generally, for example, barium titanate, strontium titanate, lead titanate, calcium titanate, etc., or Nb, Dy which is a rare earth element in a solid solution thereof,
When a small amount of La or the like is added and fired, a semiconductor ceramic material having a positive resistance coefficient (material for positive temperature coefficient thermistor) can be obtained.

【0003】これらの材料は、今日過電流保護素子等に
使用されているが、その特性として負荷に対して充分低
抵抗であることが必要であり、それと同時に充分高耐圧
であることが望まれる。
Today, these materials are used for overcurrent protection elements and the like, but as a characteristic thereof, they must have sufficiently low resistance to a load, and at the same time, they must have sufficiently high breakdown voltage. .

【0004】しかし、低抵抗特性と高耐圧特性とは相反
する特性であるため、両特性を同時に満足させることは
難しく、両特性をなるべく優れたものとすべくこれまで
種々の検討がなされてきた。低抵抗特性と高耐圧特性と
を同時に改善するための具体的な方法としては、次のよ
うな二つの方法が挙げられる。第1の方法は、焼結体中
の粒径を微細化し、さらに異常粒成長を抑制することに
より一か所に電圧が集中するのを防ぐ方法であり、他の
方法は、焼結体中の一粒子当たりの粒界層における耐電
圧を向上させる方法である。
However, since the low resistance characteristic and the high withstand voltage characteristic are contradictory characteristics, it is difficult to satisfy both characteristics at the same time, and various studies have been made so far to make both characteristics as excellent as possible. . The following two methods can be given as specific methods for simultaneously improving the low resistance characteristic and the high breakdown voltage characteristic. The first method is to reduce the grain size in the sintered body and further suppress abnormal grain growth to prevent the voltage from being concentrated in one place. It is a method of improving the withstand voltage in the grain boundary layer per grain.

【0005】正特性サーミスタ(以後、PTCサーミス
タと記す)を製造する際には、SiO2 、TiO2 等の
焼結助剤を添加して液相焼結させる方法を採用すること
ができるので粒径の制御が比較的容易であり、第1の方
法を利用した報告は多い。前記焼結助剤に、さらにCa
を添加することにより粒径を微細化する方法も知られて
おり、例えば特公昭54−10110号公報や特開平2
−192456号公報等には、チタン酸バリウムのBa
原子をCaで置換し、その他にSiO2 、TiO2 、M
n等を添加して焼結することにより半導体磁器を得る方
法が記載されている。
When manufacturing a positive temperature coefficient thermistor (hereinafter referred to as PTC thermistor), a method of adding a sintering aid such as SiO 2 or TiO 2 and performing liquid phase sintering can be adopted. It is relatively easy to control the diameter, and there are many reports using the first method. In addition to the sintering aid, Ca
There is also known a method of making the particle size finer by adding a compound such as JP-B No. 54-10110 and JP-A No.
No. 192456, etc., discloses that Ba of barium titanate is Ba.
Atoms are replaced by Ca, and in addition, SiO 2 , TiO 2 , M
A method for obtaining a semiconductor porcelain by adding n and the like and sintering is described.

【0006】しかし、上記した粒子を微細化する方法に
おいては、PTCサーミスタの粒径が3μm程度まで微
細化されると絶縁化されてしまうことが報告されてお
り、この方法には限界があると考えられる。
However, it has been reported that in the above method for making the particles fine, the PTC thermistor becomes insulated when the particle size is reduced to about 3 μm, and there is a limit to this method. Conceivable.

【0007】[0007]

【発明が解決しようとする課題】一方、前記第2の方法
については、効果についての評価方法自体が確立されて
おらず、その検討自体がなかなか容易ではない。その理
由は、一つの粒子当たりの粒界層における耐電圧を変化
させるとPTC効果そのものも変化するため、耐電圧の
評価をどのように行うかが難しいためである。
On the other hand, regarding the second method, the evaluation method for the effect itself has not been established, and its study itself is not easy. The reason is that when the withstand voltage in the grain boundary layer per one particle is changed, the PTC effect itself also changes, and it is difficult to evaluate the withstand voltage.

【0008】PTC効果に影響を及ぼす添加剤として、
例えば半導体化剤であるNb等の希土類元素や抵抗変化
幅に影響を及ぼすMnが挙げられる。上記公知例にみら
れるように、PTCサーミスタの半導体化のために希土
類元素やMnを添加することは従来から公知の事実とな
っているが、両者については大まかな範囲のみが規定さ
れており、高耐電圧化するための希土類元素とMnとの
添加量の関係については今まで検討されていなかった。
As an additive that affects the PTC effect,
For example, a rare earth element such as Nb, which is a semiconducting agent, or Mn that affects the resistance change width can be used. As seen in the above-mentioned known example, it has been a known fact from the past to add rare earth elements and Mn for semiconductorization of PTC thermistors, but for both, only a rough range is defined, The relationship between the amounts of rare earth elements and Mn added for increasing the withstand voltage has not been studied so far.

【0009】現実には、両者は主成分に固溶すると同時
に、互いに原子価補償も起こすために大きく影響し合う
ことが知られている。これらの関係は耐電圧にも大きく
影響するため、耐電圧につき両者の関係を検討する必要
がある。しかし、従来は適切な評価方法が採用されてい
なかったため、その添加量が最適な範囲に設定されてい
ないという課題が残されていた。
In reality, it is known that both of them dissolve in the main component at the same time, and at the same time, they also cause valence compensation, which greatly influence each other. Since these relationships also greatly affect the withstand voltage, it is necessary to study the relationship between the two with respect to the withstand voltage. However, since an appropriate evaluation method has not been conventionally used, there remains a problem that the amount added is not set in the optimum range.

【0010】本発明はこのような課題に鑑みなされたも
ので、耐電圧の評価方法として一定の抵抗当たりの耐電
圧に規格化する方法を採用することにより、希土類元素
の添加量とMn化合物の添加量の最適化を図って一つの
粒子当たりの粒界層における耐電圧を向上させ、より一
層高耐電圧化された正特性サーミスタ用半導体磁器組成
物を提供することを目的としている。
The present invention has been made in view of the above problems. By adopting a method of normalizing the withstand voltage per constant resistance as a method of evaluating withstand voltage, the amount of rare earth element added and the amount of Mn compound are determined. It is an object of the present invention to provide a semiconductor ceramic composition for a positive temperature coefficient thermistor in which the withstand voltage in a grain boundary layer per one particle is improved by optimizing the addition amount and the withstand voltage is further increased.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る正特性サーミスタ用半導体磁器組成物
は、(Ba1-X-Y SrX CaY )TiO3 (但し、0≦
X≦0.15、0.13≦Y≦0.17の範囲にある
値)で表されるチタン酸バリウム系組成物に対し、Ti
2 を0.5〜1.5 mol%、SiO2 を1.0〜2.
5 mol%及び希土類元素とMn化合物とを、希土類元素
をa原子%、Mnをb原子%としたとき、希土類元素が
0.26原子%未満の場合、 b=0.2a−0.006±0.01 希土類元素が0.26原子%以上の場合、 b=0.715a−0.143±0.02 の関係が成立するように含有していることを特徴として
いる。
In order to achieve the above object, a semiconductor ceramic composition for a positive temperature coefficient thermistor according to the present invention comprises (Ba 1-XY Sr X Ca Y ) TiO 3 (where 0 ≦
X is less than 0.15 and 0.13 is less than Y ≦ 0.17).
O 2 is 0.5 to 1.5 mol%, and SiO 2 is 1.0 to 2 .
5 mol% and the rare earth element and the Mn compound, when the rare earth element is a atom% and the Mn is b atom% and the rare earth element is less than 0.26 atom%, b = 0.2a−0.006 ± 0.01 When the rare earth element is 0.26 atomic% or more, it is contained so that the relationship of b = 0.715a−0.143 ± 0.02 is established.

【0012】[0012]

【作用】本発明に係る正特性サーミスタ用半導体磁器組
成物によれば、(Ba1-X-Y SrX CaY )TiO3
(但し、0≦X≦0.15、0.13≦Y≦0.17の
範囲にある値)で表されるチタン酸バリウム系組成物に
対し、TiO2 を0.5〜1.5 mol%、SiO2
1.0〜2.5 mol%及び希土類元素とMn化合物と
を、希土類元素をa原子%、Mnをb原子%としたと
き、希土類元素が0.26原子%未満の場合、 b=0.2a−0.006±0.01 希土類元素が0.26原子%以上の場合、 b=0.715a−0.143±0.02 の関係が成立するように含有しており、チタン酸バリウ
ム焼結体中の粒子径が微細化され、さらに一つの粒子当
たりの粒界層における耐電圧の増加がなされ、その結果
0.5Ω当たりの耐電圧が30V以上と高耐電圧化され
る。
According to the semiconductor ceramic composition for a positive temperature coefficient thermistor according to the present invention, (Ba 1-XY Sr X Ca Y ) TiO 3
(However, in the range of 0 ≦ X ≦ 0.15 and 0.13 ≦ Y ≦ 0.17), 0.5 to 1.5 mol of TiO 2 is added to the barium titanate-based composition. %, SiO 2 is 1.0 to 2.5 mol%, the rare earth element and Mn compound are less than 0.26 atomic% when the rare earth element is a atomic% and the Mn is b atomic%. , B = 0.2a-0.006 ± 0.01 When the rare earth element is 0.26 atomic% or more, it is contained so that the relationship of b = 0.715a-0.143 ± 0.02 is established. The grain size in the barium titanate sintered body was made finer, and the withstand voltage in the grain boundary layer per grain was increased, resulting in a high withstand voltage of 30V or more per 0.5Ω. To be done.

【0013】まず、チタン酸バリウムのBa原子をCa
で置換した場合の、焼結体中の粒径微細化の効果と耐電
圧の関係について説明する。図1は、Srを5 mol%含
有するチタン酸バリウムのBa原子をCaで置換してい
った際の、焼結体の平均粒径及び粒径分布が耐電圧に及
ぼす影響をグラフにまとめたものである。図1からわか
るように、焼結体の平均粒径はCaの添加量10 mol%
付近が最小値となり、添加量10 mol%付近を境にし
て、その前後で平均粒径が大きくなっている。図1に
は、粒径分布の幅も同時に示しているが、粒径分布の幅
はCaの添加量が15 mol%付近が一番小さく、耐電圧
はその付近が一番高い値となっている。粒度分布の幅が
広いということは、焼結過程において不均一な粒成長が
生じることを示しており、前記したように焼結体中に周
囲の粒子よりも大きい粒子が存在すると、その粒子に電
圧が集中するため全体として耐電圧が低い値となると考
えられる。従って、平均粒径が比較的小さく粒度分布の
幅が狭く、電圧が特定粒子に集中しない条件、すなわち
Caの添加量が13〜17 mol%の範囲が耐電圧が高い
範囲にある。
First, the Ba atom of barium titanate is replaced with Ca.
The relationship between the effect of reducing the grain size in the sintered body and the withstand voltage in the case of substituting by is explained. FIG. 1 is a graph showing the influence of the average particle size and particle size distribution of the sintered body on the withstand voltage when Ba atoms of barium titanate containing 5 mol% of Sr were replaced by Ca. It is a thing. As can be seen from Fig. 1, the average particle size of the sintered body is 10 mol% of the addition amount of Ca.
The minimum value is in the vicinity, and the average particle size is large before and after the addition amount of about 10 mol% as a boundary. In Fig. 1, the width of the particle size distribution is also shown. The width of the particle size distribution is the smallest when the amount of Ca added is around 15 mol%, and the withstand voltage is the highest around that. There is. The fact that the width of the particle size distribution is wide indicates that non-uniform grain growth occurs in the sintering process, and as described above, when there are particles larger than the surrounding particles in the sintered body, the particles are It is considered that the withstand voltage is low as a whole because the voltage is concentrated. Therefore, the condition in which the average particle size is relatively small, the width of the particle size distribution is narrow, and the voltage is not concentrated on the specific particles, that is, the range in which the amount of Ca added is 13 to 17 mol% is the high withstand voltage range.

【0014】次に、SiO2 の添加量について説明す
る。SiO2 の添加により、粒成長は抑制されるが、そ
の添加範囲は1.0〜2.5 mol%が好ましい。SiO
2 の添加量が1.0 mol%未満の場合は粒成長抑制効果
が発揮されず、また前記添加量が2.5 mol%を超えた
場合は粒界に偏析して比抵抗を上昇させるため好ましく
ない。
Next, the amount of SiO 2 added will be described. Although grain growth is suppressed by adding SiO 2 , the addition range is preferably 1.0 to 2.5 mol%. SiO
If the addition amount of 2 is less than 1.0 mol%, the grain growth suppressing effect is not exhibited, and if the addition amount exceeds 2.5 mol%, segregation at grain boundaries increases the specific resistance. Not preferable.

【0015】次に、TiO2 の添加量について説明す
る。TiO2 を添加することによっても同様に粒成長が
抑制されるが、その添加量は0.5〜1.5 mol%が好
ましい。TiO2 の添加量が0.5 mol%未満の場合は
粒成長抑制効果が発揮されず、また前記添加量が1.5
mol%を超えた場合は異常粒成長を起こし、耐電圧を低
下させるため好ましくない。
Next, the amount of TiO 2 added will be described. Similarly, grain growth can be suppressed by adding TiO 2 , but the addition amount is preferably 0.5 to 1.5 mol%. If the addition amount of TiO 2 is less than 0.5 mol%, the grain growth suppressing effect is not exhibited, and the addition amount is 1.5
If it exceeds mol%, abnormal grain growth occurs and the withstand voltage is lowered, which is not preferable.

【0016】さらに、希土類元素とMnの添加量につい
て説明する。前記した各添加物の添加量の範囲で、さら
に希土類元素とMnの添加量の関係が、希土類元素をa
mol%、MnCO3 をb mol%としたとき、希土類元素
が0.13 mol%未満の場合、 b=0.4a−0.006±0.01 希土類元素が0.13 mol%以上の場合、 b=0.15−0.143±0.02 の関係が成立するように添加された組成物でその耐電圧
が高くなるが、その理由の一つは両者が互いに原子価補
償するためと考えられる。前記原子化補償とは、例えば
希土類元素としてNb25 、Mn化合物としてMnC
3 を使用した場合、両者は主成分に固溶するが、一部
分が結合して電子のアクセプターにもドナーとならず、
相殺されていることをいう。従って、前記した式の範囲
より希土類が過剰である場合は、原子価補償によりMn
が不足の状態となり、PTC効果が小さくなって耐電圧
が低下する。また前記した式の範囲よりMnが過剰の場
合は、希土類元素が不足となり、半導体化が阻害されて
耐電圧が低下する。
Further, the added amounts of rare earth element and Mn will be described. Within the range of the addition amount of each additive described above, the relation between the addition amounts of rare earth element and Mn is
When mol% and MnCO 3 are b mol%, when the rare earth element is less than 0.13 mol%, b = 0.4a−0.006 ± 0.01 When the rare earth element is 0.13 mol% or more, The composition is added so that the relationship of b = 0.15-0.143 ± 0.02 is established, and the withstand voltage thereof is high, and one of the reasons is considered that they are valence-compensated with each other. To be The atomization compensation means, for example, Nb 2 O 5 as a rare earth element and MnC as a Mn compound.
When O 3 is used, both are solid-solved in the main component, but a part of them does not bond and does not serve as an electron acceptor or a donor.
It means being offset. Therefore, when the rare earth is in excess of the range of the above formula, Mn is compensated by valence compensation.
Becomes insufficient, the PTC effect becomes small, and the withstand voltage decreases. On the other hand, if Mn is excessive from the range of the above formula, the rare earth element becomes insufficient, semiconductor formation is hindered, and the withstand voltage decreases.

【0017】本発明で用いられる希土類元素としては、
例えばNb、Dy、La等が挙げられる。前記希土類元
素は酸化物として添加するのが好ましい。また本発明で
用いられるMn化合物としては、例えばMnCO3 等が
好ましい。
The rare earth element used in the present invention includes:
For example, Nb, Dy, La and the like can be mentioned. The rare earth element is preferably added as an oxide. The Mn compound used in the present invention is preferably MnCO 3 , for example.

【0018】[0018]

【実施例及び比較例】以下、本発明に係る正特性サーミ
スタ用磁器組成物の実施例及び比較例を説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the porcelain composition for a positive temperature coefficient thermistor according to the present invention will be described below.

【0019】出発原料として、純度99%以上の市販原
料のBaCO3 、SrCO3 、CaCO3 、TiO2
Nb25 、SiO2 及びMnCO3 を用いた。
As starting materials, commercially available raw materials with a purity of 99% or more, such as BaCO 3 , SrCO 3 , CaCO 3 , TiO 2 ,
Nb 2 O 5 , SiO 2 and MnCO 3 were used.

【0020】まず、表1に示す組成で上記出発原料の総
重量が100gとなるように秤量し、純水100gを加
えて、ボールミルで24時間混合粉砕した。混合に使用
した容器は、直径90mm、高さ110mmのポリエチ
レン製であり、玉石としてはポリエチレンでコートした
直径15mmのステンレスボールを用い、容器の高さの
3分の1まで敷きつめて用いた。前記混合粉砕後、これ
を乾燥させてアルミナ性のるつぼに入れ、1100℃で
2時間仮焼した。次に、仮焼した粉末をアルミナ性乳鉢
で解砕し、解砕された粉末80gに対して純水100g
を加えて、ボールミルにより14時間粉砕し、その後乾
燥させた。さらに、乾燥処理した粉末50gに対して濃
度10重量%のポリビニールアルコール水溶液8gを添
加して、アルミナ乳鉢で混練した後250メッシュの篩
に通して整粒し、1ton/cm2 の圧力を加えて円盤状成形
体を作製した。
First, the starting materials having the compositions shown in Table 1 were weighed so that the total weight of the starting materials was 100 g, 100 g of pure water was added, and the mixture was mixed and ground in a ball mill for 24 hours. The container used for mixing was made of polyethylene having a diameter of 90 mm and a height of 110 mm, and as the cobble stones, stainless steel balls having a diameter of 15 mm coated with polyethylene were used, and the balls were laid up to one third of the height of the container. After the mixing and pulverization, this was dried, put into an alumina crucible, and calcined at 1100 ° C. for 2 hours. Next, the calcined powder was crushed in an alumina mortar, and 100 g of pure water was added to 80 g of the crushed powder.
Was added, and the mixture was crushed by a ball mill for 14 hours and then dried. Further, to 50 g of the dried powder, 8 g of a 10% by weight aqueous solution of polyvinyl alcohol was added, kneaded in an alumina mortar, passed through a 250-mesh sieve and sized, and a pressure of 1 ton / cm 2 was applied. To produce a disk-shaped molded body.

【0021】得られ円盤状成形体を200℃/時間の速
度で昇温し、1350℃で2時間保持した後、100℃
/時間の速度で徐冷して、10.5mmφのディスク状
の焼結体を得た。得られた焼結体の両面に直径9.5m
mのオーミック性銀電極を塗布し、これを580℃で1
0分間焼き付けた。リード端子付けは、電極の両面に直
径0.5mmの軟銅線を融点が300℃の銀入りはんだ
を用いてはんだ付けすることにより行った。
The disc-shaped compact thus obtained was heated at a rate of 200 ° C./hour and held at 1350 ° C. for 2 hours, and then at 100 ° C.
It was gradually cooled at a speed of / hour to obtain a disk-shaped sintered body of 10.5 mmφ. Diameter 9.5m on both sides of the obtained sintered body
m ohmic silver electrode is applied and this is applied at 580 ° C for 1
Bake for 0 minutes. The lead terminals were attached by soldering an annealed copper wire having a diameter of 0.5 mm on both surfaces of the electrode using silver-containing solder having a melting point of 300 ° C.

【0022】こうして得られた各供試体の耐電圧を調べ
た結果を表1に示す。なお、ここでいう耐電圧とは、図
2に示すPTCサーミスタの電流−電圧特性曲線を求め
る測定を行った場合に極小の電流値を与える電圧をい
う。また、本発明では各素子の一定値の抵抗当たりの耐
電圧を調べるのに都合がよいように、各素子の室温抵抗
が0.5Ωになるように焼成前の成形体の厚さを調整し
てある。
Table 1 shows the results of examining the withstand voltage of each of the specimens thus obtained. The term "withstand voltage" as used herein refers to a voltage that gives a minimum current value when the current-voltage characteristic curve of the PTC thermistor shown in FIG. 2 is measured. Further, in the present invention, the thickness of the molded product before firing is adjusted so that the room temperature resistance of each element is 0.5Ω, so that it is convenient to examine the withstand voltage per resistance of a constant value of each element. There is.

【0023】各素子の耐電圧の値については、30V以
上の値を有するものは、公知例等から考え、充分耐電圧
が大きいものとして本発明の範囲とした。従来の方法に
より得られた焼結体の耐電圧を本発明の耐電圧と比較で
きる値に修正したデータを比較例として下記の表3に示
している。
Regarding the withstand voltage value of each element, those having a value of 30 V or more were considered to have a sufficiently high withstand voltage in view of known examples, and were set within the scope of the present invention. The data obtained by correcting the withstand voltage of the sintered body obtained by the conventional method to a value with which the withstand voltage of the present invention can be compared is shown in Table 3 below as a comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】上記の表1の実施例1〜3、比較例1〜4
は、Baに対するCaの置換量を変化させた場合の耐電
圧の値を示しているが、Caの置換量が13〜17 mol
%の範囲において、30V以上の高い耐電圧を示してい
る。また、実施例4〜5、比較例5〜6は、過剰に添加
したTiO2 の添加量を変化させた場合の耐電圧の値を
示しているが、TiO2 の添加量が0.5〜1.5 mol
%の範囲で高い耐電圧を示している。また、実施例6〜
7、比較例7〜8は、SiO2 の添加量を変化させた場
合の耐電圧の示しているが、SiO2 の添加量が1.0
〜2.5 mol%の範囲で高い耐電圧を示している。
Examples 1 to 3 and Comparative Examples 1 to 4 shown in Table 1 above.
Shows the value of withstand voltage when the substitution amount of Ca with respect to Ba is changed, and the substitution amount of Ca is 13 to 17 mol.
In the range of%, a high withstand voltage of 30 V or higher is shown. In addition, Examples 4 to 5 and Comparative Examples 5 to 6 show withstand voltage values when the addition amount of TiO 2 added excessively is changed, but the addition amount of TiO 2 is 0.5 to 1.5 mol
High withstand voltage is shown in the range of%. Moreover, Example 6-
7, Comparative Example 7-8, while indicating the withstand voltage in the case of changing the added amount of SiO 2, the added amount of SiO 2 is 1.0
High withstand voltage is shown in the range of up to 2.5 mol%.

【0028】上記の表1〜2の実施例8〜24、比較例
9〜17は、Nb25 とMnCO3添加量を組み合わ
せてそれぞれ変化させたときの耐電圧を示している。こ
の結果を用い、Nb25 の添加量を一定値にとった場
合のMnCO3 の添加量に対する耐電圧の関係を図3に
まとめている。図3より、Nb25 の添加量の少ない
領域では高い耐電圧を示すMnCO3 の量も少なく、3
0V以上の高耐電圧を示すMnCO3 の添加量の範囲も
約0.02 mol%と狭いことがわかる。またNb25
の添加量が多くなるに従って、高耐電圧を示すMnCO
3 の添加量も多くなり、30V以上の高耐電圧を示すM
nCO3 の添加量の範囲も次第に広くなっていることが
わかる。実際にNb25 の添加量がNbとして0.0
65 mol%以上では、30V以上の高耐電圧を示すMn
CO3 の添加量の範囲は、約0.04 mol%となってい
る。
[0028] Example 8-24 in the above Tables 1-2, Comparative Examples 9 to 17 shows a withstand voltage when changing each combination of Nb 2 0 5 and MnCO 3 added amount. Using this result, it is summarized in Figure 3 the relationship between the withstand voltage relative to the addition amount of MnCO 3 in the case of taking the amount of Nb 2 0 5 at a constant value. Than 3, less the amount of MnCO 3 showing a high withstand voltage is added a small amount of area of the Nb 2 0 5, 3
It can be seen that the range of the addition amount of MnCO 3 showing a high withstand voltage of 0 V or more is narrow, about 0.02 mol%. The Nb 2 0 5
MnCO showing high withstand voltage as the amount of added MnCO increases
The amount of 3 added increases, and M showing a high withstand voltage of 30 V or higher
It can be seen that the range of the amount of nCO 3 added gradually widens. 0.0 actually added amount of Nb 2 0 5 as the Nb
Mn showing a high withstand voltage of 30 V or more at 65 mol% or more
The range of the amount of CO 3 added is about 0.04 mol%.

【0029】耐電圧が30V以上を示すNb25 とM
nCO3 の添加量の関係を図4に示す。これより、Nb
25 中の希土類元素の添加量をa原子%、MnCO3
中のMnの添加量をb原子%としたとき、希土類元素が
0.26原子%未満の場合、 b=0.2a−0.006±0.01 希土類元素が0.26原子%以上の場合、 b=0.715a−0.143±0.02 の関係が成立することがわかる。
[0029] Nb 2 the withstand voltage indicates higher 30 V 0 5 and M
FIG. 4 shows the relationship between the amounts of nCO 3 added. From this, Nb
2 0 a atomic% of addition amount of the rare earth element in the 5, MnCO 3
When the amount of Mn added is b atomic%, when the rare earth element is less than 0.26 atomic%, b = 0.2a−0.006 ± 0.01 When the rare earth element is 0.26 atomic% or more , B = 0.715a−0.143 ± 0.02.

【0030】本実施例において、その比抵抗の値は5〜
15Ω・cmであった。
In this embodiment, the specific resistance value is 5 to
It was 15 Ω · cm.

【0031】また、従来例のデータより、実施例に係る
正特性サーミスタ用磁器組成物は、従来の組成物と比較
して、その耐電圧が50%以上高くなっていることがわ
かる。
From the data of the conventional example, it is understood that the porcelain composition for positive temperature coefficient thermistor according to the example has a withstand voltage higher by 50% or more as compared with the conventional composition.

【0032】[0032]

【発明の効果】以上詳述したように本発明に係る正特性
サーミスタ用半導体磁器組成物にあっては、(Ba
1-X-Y SrX CaY )TiO3 (但し、0≦X≦0.1
5、0.13≦Y≦0.17の範囲にある値)で表され
るチタン酸バリウム系組成物に対し、TiO2 を0.5
〜1.5 mol%、SiO2 を1.0〜2.5 mol%及び
希土類元素とMn化合物とを、希土類元素をa原子%、
Mnをb原子%としたとき、希土類元素が0.26原子
%未満の場合、 b=0.2a−0.006±0.01 希土類元素が0.26原子%以上の場合、 b=0.715a−0.143±0.02 の関係が成立するように含有しているので、チタン酸バ
リウム焼結体の粒子径を微細化することができ、さらに
一つの粒子当たりの粒界層における耐電圧を増加させる
ことができ、その結果0.5Ω当たりの耐電圧を30V
以上と高耐電圧化にすることができる。
As described above in detail, in the semiconductor ceramic composition for a positive temperature coefficient thermistor according to the present invention, (Ba
1-XY Sr X Ca Y ) TiO 3 (however, 0 ≦ X ≦ 0.1
To 5,0.13 ≦ Y ≦ 0.17 barium titanate-based composition represented by the value) in the range of the TiO 2 0.5
˜1.5 mol%, SiO 2 1.0 to 2.5 mol%, rare earth element and Mn compound, rare earth element a atom%,
When Mn is b atomic%, when the rare earth element is less than 0.26 atomic%, b = 0.2a−0.006 ± 0.01 When the rare earth element is 0.26 atomic% or more, b = 0. 715a-0.143 ± 0.02, so that the grain size of the barium titanate sintered body can be reduced, and the grain boundary layer resistance per grain can be further improved. Voltage can be increased, resulting in a withstand voltage of 30V per 0.5Ω
As described above, the withstand voltage can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるBa原子をCaで置換
した場合のCa置換量に対する焼結体の平均粒径及び耐
電圧の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the average particle size of a sintered body and the withstand voltage with respect to the amount of Ca substitution when Ba atoms are substituted with Ca in an example of the present invention.

【図2】PTCサーミスターの電流−電圧特性(対数
値)を示すグラフである。
FIG. 2 is a graph showing a current-voltage characteristic (logarithmic value) of a PTC thermistor.

【図3】実施例におけるNb25 の添加量及びMnC
3 の添加量に対する耐電圧の値の関係について、各N
25 の添加量をパラメーターとして示したグラフで
ある。
FIG. 3 shows the amount of Nb 2 O 5 added and MnC in Examples.
Regarding the relationship between the withstand voltage value and the added amount of O 3 , each N
the amount of b 2 O 5 is a graph showing a parameter.

【図4】実施例の耐電圧の値が30V以上となるときの
MnCO3 の添加量とNb25 の添加量の関係を示し
たグラフである。
FIG. 4 is a graph showing the relationship between the added amount of MnCO 3 and the added amount of Nb 2 O 5 when the withstand voltage value of the example is 30 V or more.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (Ba1-X-Y SrX CaY )TiO3
(但し、0≦X≦0.15、0.13≦Y≦0.17の
範囲にある値)で表されるチタン酸バリウム系組成物に
対し、TiO2 を0.5〜1.5 mol%、SiO2
1.0〜2.5 mol%及び希土類元素とMn化合物と
を、希土類元素をa原子%、Mnをb原子%としたと
き、 希土類元素が0.26原子%未満の場合、 b=0.2a−0.006±0.01 希土類元素が0.26原子%以上の場合、 b=0.715a−0.143±0.02 の関係が成立するように含有していることを特徴とする
正特性サーミスタ用半導体磁器組成物。
1. (Ba 1-XY Sr X Ca Y ) TiO 3
(However, in the range of 0 ≦ X ≦ 0.15 and 0.13 ≦ Y ≦ 0.17), 0.5 to 1.5 mol of TiO 2 is added to the barium titanate-based composition. %, SiO 2 is 1.0 to 2.5 mol%, the rare earth element and the Mn compound are a rare earth element a atom% and Mn b atom%, and the rare earth element is less than 0.26 atom%. , B = 0.2a-0.006 ± 0.01 When the rare earth element is 0.26 atomic% or more, it is contained so that the relationship of b = 0.715a-0.143 ± 0.02 is established. A semiconductor porcelain composition for a positive temperature coefficient thermistor, which is characterized in that
JP30335392A 1992-11-13 1992-11-13 Semiconductor porcelain composition for positive temperature coefficient thermistor Pending JPH06151106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30335392A JPH06151106A (en) 1992-11-13 1992-11-13 Semiconductor porcelain composition for positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30335392A JPH06151106A (en) 1992-11-13 1992-11-13 Semiconductor porcelain composition for positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH06151106A true JPH06151106A (en) 1994-05-31

Family

ID=17919960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30335392A Pending JPH06151106A (en) 1992-11-13 1992-11-13 Semiconductor porcelain composition for positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH06151106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110952A1 (en) * 2003-06-16 2004-12-23 Toho Titanium Co., Ltd. Barium titanate based semiconductor porcelain composition
JP5812091B2 (en) * 2011-03-30 2015-11-11 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110952A1 (en) * 2003-06-16 2004-12-23 Toho Titanium Co., Ltd. Barium titanate based semiconductor porcelain composition
JP5812091B2 (en) * 2011-03-30 2015-11-11 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor

Similar Documents

Publication Publication Date Title
JP2541344B2 (en) Electronic parts using barium titanate based semiconductor porcelain
JPH06151106A (en) Semiconductor porcelain composition for positive temperature coefficient thermistor
JPS63312616A (en) Semiconductor porcelain composition
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH07201531A (en) Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain
JPH07220902A (en) Barium titanate semiconductor ceramic
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JPH07201532A (en) Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain
JP2630156B2 (en) Semiconductor porcelain composition and method for producing the same
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP2713040B2 (en) Semiconductor porcelain composition and method for producing the same
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP3469910B2 (en) Dielectric porcelain composition
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture
JP2580916B2 (en) Porcelain composition and method for producing the same
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JP2998586B2 (en) Semiconductor porcelain composition and method for producing the same
JP3469911B2 (en) Dielectric porcelain composition
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JPH0443603A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof
JPH05315106A (en) Barium titanate ceramic semiconductor and its manufacture