JPH06150975A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH06150975A
JPH06150975A JP4319393A JP31939392A JPH06150975A JP H06150975 A JPH06150975 A JP H06150975A JP 4319393 A JP4319393 A JP 4319393A JP 31939392 A JP31939392 A JP 31939392A JP H06150975 A JPH06150975 A JP H06150975A
Authority
JP
Japan
Prior art keywords
battery
lithium
secondary battery
electrolyte secondary
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4319393A
Other languages
Japanese (ja)
Inventor
Masayasu Arakawa
正泰 荒川
Shinichi Tobishima
真一 鳶島
Shigeo Sugihara
茂雄 杉原
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4319393A priority Critical patent/JPH06150975A/en
Publication of JPH06150975A publication Critical patent/JPH06150975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery preventing the thermal runaway by efficiently discharging an electrolyte which is a reactant to the outside when the battery temperature rises. CONSTITUTION:A nonaqueous electrolyte secondary battery is constituted of a positive electrode, a negative electrode using lithium and lithium ions as an active material, and a nonaqueous solution containing a carbonate solvent, and the incombustible filling gas easily dissolved in the nonaqueous electrolyte is pressed into the battery. When battery temperature rises due to an abnormal use in the lithium secondary battery pressure-filled with the electrolyte with carbon dioxide, the electrolyte can be efficiently discharged to the outside of the battery, the safety can be improved, and the industrial value is very large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池、さ
らに詳細にはリチウムを活物質とする負極と、非水電解
液よりなる、非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery comprising a negative electrode using lithium as an active material and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】電子機器の小型軽量化、携帯化が進み、
その電源として高エネルギー密度電池の開発が要請され
ている。このような要求に応える電池として、負極とし
てリチウム金属、アルミニウム等とのリチウム合金、ま
たは炭素等のリチウムイオンを放出、吸収する電極を用
いた電池の開発が進められている(本明細書では、これ
らのリチウムあるいはリチウムイオンを活物質とした負
極をリチウム負極、リチウム負極を用いた充放電可能な
電池のことを、リチウム二次電池と称する)。
2. Description of the Related Art As electronic devices are becoming smaller and lighter and portable,
Development of a high energy density battery is required as the power source. As a battery that meets such a demand, a battery using an electrode that releases and absorbs lithium metal such as a negative electrode, a lithium alloy with aluminum or the like, or a lithium ion such as carbon is being developed (in this specification, A negative electrode using these lithium or lithium ions as an active material is a lithium negative electrode, and a chargeable / dischargeable battery using the lithium negative electrode is referred to as a lithium secondary battery).

【0003】しかしながら、二酸化マンガンを正極活物
質に用いた電池で報告されているように、リチウム二次
電池をオーブンで加熱すると、リチウム負極と電解液と
の化学反応による自発的な発熱が起こり、熱暴走状態と
なって電池の発火が起こり得る(Extended Abstracts o
f Electrochemical Society Fall Meeting, Seattle,Wa
shington, p-85, 1990)。上記報告は、オーブン加熱で
電池温度が上昇する例であるが、電池においては、外部
ショート、内部ショート、逆充電、過充電等でも、電池
温度が上昇することが予想され、これら、異常状態にお
ける安全性の確保が、リチウム二次電池を商品化する上
で極めて重要である。
However, as reported in a battery using manganese dioxide as a positive electrode active material, when a lithium secondary battery is heated in an oven, spontaneous heat generation occurs due to a chemical reaction between a lithium negative electrode and an electrolytic solution. A battery may ignite due to thermal runaway (Extended Abstracts o
f Electrochemical Society Fall Meeting, Seattle, Wa
shington, p-85, 1990). The above report is an example in which the battery temperature rises due to oven heating, but it is expected that the battery temperature will rise due to external short circuit, internal short circuit, reverse charge, overcharge, etc. in the battery. Ensuring safety is extremely important for commercializing lithium secondary batteries.

【0004】リチウム二次電池内における自発的な発熱
は、主にリチウム負極と電解液との反応によって起こる
と考えられているので、電池の安全性を向上させるため
には、リチウムと反応し難い電解液を用いれば良い。こ
れらの観点から、スルフォラン等を電解液溶媒に用いた
電解液が提案されているが(電気化学協会第59回大会
予稿集p−238)、リチウム二次電池の安定性、サイ
クル性には、リチウム負極と電解液との反応性生物もま
た影響しているため(Lithium Batteries, Edited by
J.P.Gabano, Academic Press, New York, p-195(198
8))、充放電サイクル特性の劣化等、マイナスの効果が
出てしまう。
Since it is considered that the spontaneous heat generation in the lithium secondary battery is caused mainly by the reaction between the lithium negative electrode and the electrolytic solution, it is difficult to react with lithium in order to improve the safety of the battery. An electrolytic solution may be used. From these viewpoints, an electrolytic solution using sulfolane as an electrolytic solution solvent has been proposed (Proceedings of the 59th Congress of the Electrochemical Society p-238), but the stability and cycleability of a lithium secondary battery are Since the reaction product of the lithium negative electrode and the electrolyte is also affected (Lithium Batteries, Edited by
JPGabano, Academic Press, New York, p-195 (198
8)), negative effects such as deterioration of charge / discharge cycle characteristics occur.

【0005】[0005]

【発明が解決しようとする課題】一方、前述したように
電池の熱暴走は、リチウム負極と電解液との化学反応に
よる自発的な発熱が原因になっていると考えられるか
ら、電池温度が上昇した時に、反応物質である電解液が
効率良く外部に放出されれば、それ以上の発熱は抑制さ
れ、熱暴走状態には至らない。しかしながら、通常の安
全弁では、電解液を効率良く電池外部に放出できない。
それは、電解液が正極活物質や負極の微細孔に充填され
ているため、安全弁が開いた程度では、これら微細孔の
電解液を放出するには不十分だからである。
On the other hand, as described above, it is considered that the thermal runaway of the battery is caused by the spontaneous heat generation due to the chemical reaction between the lithium negative electrode and the electrolytic solution, so that the battery temperature rises. At this time, if the electrolytic solution, which is a reactant, is efficiently released to the outside, further heat generation is suppressed and the thermal runaway state is not reached. However, a normal safety valve cannot efficiently discharge the electrolytic solution to the outside of the battery.
This is because the electrolyte is filled in the positive electrode active material and the fine pores of the negative electrode, and even if the safety valve is opened, it is not sufficient to discharge the electrolyte in these fine pores.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明による非水電解液二次電池は、正極と、リチ
ウムおよびリチウムイオンを活物質とする負極と、カー
ボネート系の溶媒を含む非水電解液とを用いる非水電解
液二次電池において、電池内部に前記非水電解液に溶解
しやすく、かつ不燃性の充填ガスを圧入したことを特徴
とする。
In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode, a negative electrode containing lithium and lithium ions as an active material, and a non-carbonate-based solvent. A non-aqueous electrolyte secondary battery using an aqueous electrolyte is characterized in that a non-flammable filling gas that is easily dissolved in the non-aqueous electrolyte is injected into the battery.

【0007】本発明では、電池内反応における電池の自
発的な発熱は、主にリチウム負極と電解液の反応による
ことに注目し、電池温度が上昇した時に、反応物質であ
る電解液が効率良く外部に放出され、更なる反応による
発熱を回避することを特徴としている。
In the present invention, it is noted that the spontaneous heat generation of the battery in the reaction in the battery is mainly due to the reaction between the lithium negative electrode and the electrolytic solution, and when the battery temperature rises, the electrolytic solution which is the reaction material is efficiently discharged. It is characterized by being released to the outside and avoiding heat generation due to further reaction.

【0008】具体的には、電池内部に電解液に良好に溶
解し、かつ不燃性のガスを充填している。このような
充填ガスに求められる特性としては、電解液に良く溶
け、不燃性であり、かつ電池の充放電サイクル特性を劣
化させないものでなくてはならない。このような特性を
示すガスとして、二酸化炭素が挙げられる。二酸化炭素
は、カーボネート系の溶媒、例えばプロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ジエチルカーボネート等、特にプロピレンカーボネート
に良く溶け(溶剤ハンドブック、浅原照三ほか編、p−
627、講談社)、不燃性で、かつ添加によって充放電
特性が向上するという報告がある(Extended Abstracts
of 6th International Meeting on Lithium Batterie
s, p-228(1992))。
Specifically, the inside of the battery is filled with a gas which is well dissolved in the electrolytic solution and which is nonflammable. like this
The properties required of the filling gas must be such that it is well soluble in the electrolyte solution, nonflammable, and does not deteriorate the charge / discharge cycle characteristics of the battery. Carbon dioxide is an example of a gas having such characteristics. Carbon dioxide is a carbonate-based solvent such as propylene carbonate, ethylene carbonate, butylene carbonate,
Dissolves well in diethyl carbonate, especially propylene carbonate (Solvent Handbook, Asahara Teruzou et al., P-
627, Kodansha), it is reported that it is nonflammable and the charge and discharge characteristics are improved by addition (Extended Abstracts
of 6th International Meeting on Lithium Batterie
s, p-228 (1992)).

【0009】電池内部の充填ガスの常温における圧力
は、好ましくは5kg/cm2以上15kg/cm2以下
であるのがよい。5kg/cm2未満であると、電解液
が含浸しにくくなる恐れがあり、一方15kg/cm2
を越えると、圧力が高くなり過ぎ、安全弁が作動する恐
れを生じる。
The pressure of the filling gas inside the battery at room temperature is preferably 5 kg / cm 2 or more and 15 kg / cm 2 or less. If it is less than 5 kg / cm 2 , it may be difficult to impregnate with the electrolytic solution, while 15 kg / cm 2
If it exceeds, the pressure becomes too high and the safety valve may operate.

【0010】本発明による非水電解液二次電池を製造す
るにあたっては、図1に示すように正極、セパレータ、
負極を重ね合わせて、巻き込み、電池缶に挿入する。こ
の後、電池缶をロータリーポンプで真空引きし、好まし
くは3mmHg以下にしたのち、電解液を注液する。電
解液を注液する際に、電池を真空に引いた後、電解液に
溶け易い充填ガスを用いて、電解液を加圧充填する。こ
のとき上記と同様の理由により注液圧力は5〜15kg
/cm2であるのがよい。
In manufacturing the non-aqueous electrolyte secondary battery according to the present invention, as shown in FIG.
Stack the negative electrodes, roll them up, and insert them into the battery can. After that, the battery can is evacuated with a rotary pump to reduce the pressure to preferably 3 mmHg or less, and then an electrolytic solution is injected. When injecting the electrolytic solution, the battery is evacuated, and then the electrolytic solution is pressurized and filled using a filling gas that is easily dissolved in the electrolytic solution. At this time, the injection pressure is 5 to 15 kg for the same reason as above.
/ Cm 2 is good.

【0011】本発明による非水電解液二次電池は、外部
短絡等何らかの原因で電池温度が上昇した場合、電解液
中に溶けていたガスは気化し、電池の内圧を上昇させ迅
速に安全弁を作動させるばかりでなく、正極あるいは負
極の微細孔中の電解液も効率良く電池外部に放出する。
In the non-aqueous electrolyte secondary battery according to the present invention, when the battery temperature rises for some reason such as an external short circuit, the gas dissolved in the electrolyte is vaporized and the internal pressure of the battery is raised to quickly open the safety valve. Not only is it activated, but the electrolyte in the micropores of the positive electrode or negative electrode is also efficiently discharged to the outside of the battery.

【0012】[0012]

【作用】上記のように二酸化炭素で電解液を加圧充填し
た、リチウム二次電池においては、何らかの異常使用に
より電池温度が上昇した場合でも、電解液を効率的に電
池外に排出できるため、安全性を向上させることができ
る。
In the lithium secondary battery in which the electrolytic solution is pressurized and filled with carbon dioxide as described above, the electrolytic solution can be efficiently discharged to the outside of the battery even when the battery temperature rises due to some abnormal use. The safety can be improved.

【0013】[0013]

【実施例】以下本発明の実施例について詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0014】[0014]

【実施例1】P25を5モル%添加した非晶質V25
正極活物質とし、負極に130μm厚のリチウム金属を
用い、正極と負極を平均孔径0.15μm、厚さ50μ
mのポリエチレンセパレータで電気的に絶縁して巻き込
み、電池缶に挿入する。その電池缶をロータリーポンプ
で3mmHgまで真空引きした後(図参照)、電解液と
してプロピレンカーボネートとエチレンカーボネートの
混合溶媒系電解液を、12kg/cm2の圧力で充填し
た電池において、充填ガスにアルゴンを用いた場合
(1)、および二酸化炭素を用いた場合(2)について
比較を行った。(1)、(2)を、60mAで25回充
放電した後、約40mΩの抵抗を介した短絡試験およ
び、リチウム1次電池のUL規格の加熱試験(室温から
毎分5℃で165℃まで昇温し、165℃で10分間維
持)を行い、発火の有無を調べた。結果を表1に示す。
短絡試験においては、電池(1)、(2)共に発火しな
かったが、(2)で安全弁が作動しているのに対し、
(1)では作動しなかった。しかし、加熱試験において
は(1)の電池が発火しているのに対し、(2)の電池
では安全弁の早期作動により発火せず、電池の安全性に
関して効果の大きいことがわかる。
EXAMPLE 1 P 2 O 5 was an amorphous V 2 O 5 was added 5 mol% and a positive electrode active material, using a 130μm thick lithium metal as the negative electrode, positive electrode and the negative electrode of the average pore diameter 0.15 [mu] m, the thickness 50μ
It is electrically insulated with a polyethylene separator of m and rolled up, and inserted into a battery can. After the battery can was evacuated to 3 mmHg by a rotary pump (see the figure), a mixed solvent system electrolytic solution of propylene carbonate and ethylene carbonate was filled as an electrolytic solution at a pressure of 12 kg / cm 2 , and the filling gas was filled with argon. Was compared (1) with carbon dioxide and (2) with carbon dioxide. After charging and discharging (1) and (2) 25 times at 60 mA, a short circuit test through a resistance of about 40 mΩ and a UL standard heating test of a lithium primary battery (room temperature to 5 ° C. up to 165 ° C. per minute) The temperature was raised and the temperature was maintained at 165 ° C. for 10 minutes), and the presence or absence of ignition was examined. The results are shown in Table 1.
In the short circuit test, both batteries (1) and (2) did not ignite, but the safety valve was activated in (2),
It did not work in (1). However, in the heating test, while the battery of (1) ignited, the battery of (2) did not ignite due to the early operation of the safety valve, and it is understood that the effect of the battery safety is great.

【0015】 [0015]

【0016】[0016]

【実施例2】実施例1と同様の構成の電池の充填圧を5
kg/cm2とした電池において、充填ガスにアルゴン
を用いた電池(3)および二酸化炭素を用いた電池
(4)について、60mAで25回充放電した後、約4
0mΩの抵抗を介した短絡試験および、リチウム1次電
池のUL規格の加熱試験(室温から毎分5℃で165℃
まで昇温し、165℃で10分間維持)を行い、発火の
有無を調べた。結果を表2に示す。短絡試験において
は、電池(3)、(4)共に発火しなかった。また、加
熱試験においては(3)の電池が発火しているのに対
し、(4)の電池では安全弁の早期作動により発火せ
ず、電池の安全性に関して効果の大きいことがわかる。
[Embodiment 2] The charging pressure of a battery having the same configuration as that of Embodiment 1 is 5
About the battery (kg / cm 2 ) using argon as a filling gas (3) and carbon dioxide (4), after charging and discharging at 60 mA 25 times, about 4
Short circuit test through 0mΩ resistance and UL standard heating test of lithium primary battery (165 ° C from room temperature to 5 ° C per minute)
The temperature was raised to 165 ° C. and maintained for 10 minutes), and the presence or absence of ignition was examined. The results are shown in Table 2. In the short circuit test, neither battery (3) nor battery (4) ignited. Further, in the heating test, the battery of (3) is ignited, whereas the battery of (4) does not ignite due to the early operation of the safety valve, which shows that the effect of the battery safety is great.

【0017】 [0017]

【0018】[0018]

【発明の効果】上述したように、二酸化炭素で電解液を
加圧充填した、リチウム二次電池においては、何らかの
異常使用により電池温度が上昇した場合でも、電解液を
効率的に電池外に排出できるため、安全性を向上させる
ことができ、その工業的価値は極めて大である。
As described above, in the lithium secondary battery in which the electrolytic solution is pressurized and filled with carbon dioxide, the electrolytic solution is efficiently discharged to the outside of the battery even if the battery temperature rises due to some abnormal use. Therefore, safety can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の製造方法を説明
するためのブロック図。
FIG. 1 is a block diagram for explaining a method for manufacturing a non-aqueous electrolyte secondary battery of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市村 雅弘 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Ichimura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムおよびリチウムイオンを
活物質とする負極と、カーボネート系の溶媒を含む非水
電解液とを用いる非水電解液二次電池において、電池内
部に前記非水電解液に溶解しやすく、かつ不燃性の充填
ガスを圧入したことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a positive electrode, a negative electrode using lithium and lithium ions as an active material, and a non-aqueous electrolyte containing a carbonate-based solvent, wherein the non-aqueous electrolyte is inside the battery. A non-aqueous electrolyte secondary battery characterized in that a non-flammable filling gas that is easy to dissolve in is injected.
【請求項2】上記充填ガスは二酸化炭素ガスであり、上
記カーボネート系溶媒が、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、ジエチル
カーボネートであることを特徴とする請求項1記載の非
水電解液二次電池。
2. The non-aqueous electrolyte secondary according to claim 1, wherein the filling gas is carbon dioxide gas, and the carbonate-based solvent is propylene carbonate, ethylene carbonate, butylene carbonate, or diethyl carbonate. battery.
JP4319393A 1992-11-04 1992-11-04 Nonaqueous electrolyte secondary battery Pending JPH06150975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4319393A JPH06150975A (en) 1992-11-04 1992-11-04 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4319393A JPH06150975A (en) 1992-11-04 1992-11-04 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH06150975A true JPH06150975A (en) 1994-05-31

Family

ID=18109676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4319393A Pending JPH06150975A (en) 1992-11-04 1992-11-04 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH06150975A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176323A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution and negative electrode for li secondary battery
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture
WO2002091514A1 (en) * 2001-05-09 2002-11-14 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte cell and its manufacturing method
WO2004109839A1 (en) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2004114453A1 (en) * 2003-06-19 2004-12-29 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
CN100359748C (en) * 2003-06-19 2008-01-02 三洋电机株式会社 Lithium secondary battery and method for producing same
US7833648B2 (en) 2006-07-27 2010-11-16 Lg Chem, Ltd. Electrochemical device with high safety at over-voltage and high temperature
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
CN111717032A (en) * 2020-06-30 2020-09-29 蜂巢能源科技有限公司 Method and equipment for inhibiting thermal runaway of lithium battery and electric automobile
WO2020224016A1 (en) * 2019-05-07 2020-11-12 国网江苏省电力有限公司电力科学研究院 Novel lithium ion battery and battery module
WO2021033697A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Method for producing electricity storage element, and electricity storage element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176323A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution and negative electrode for li secondary battery
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture
WO2002091514A1 (en) * 2001-05-09 2002-11-14 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte cell and its manufacturing method
US8609279B2 (en) 2003-06-09 2013-12-17 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2004109839A1 (en) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
WO2004114453A1 (en) * 2003-06-19 2004-12-29 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
CN100359748C (en) * 2003-06-19 2008-01-02 三洋电机株式会社 Lithium secondary battery and method for producing same
US8211569B2 (en) 2003-06-19 2012-07-03 Sanyo Electric Co., Ltd. Lithium secondary battery including a negative electrode which is a sintered layer of silicon particles and/or silicon alloy particles and a nonaqueous electrolyte containing carbon dioxide dissolved therein and method for producing same
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US9593016B2 (en) 2005-06-20 2017-03-14 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US7833648B2 (en) 2006-07-27 2010-11-16 Lg Chem, Ltd. Electrochemical device with high safety at over-voltage and high temperature
WO2020224016A1 (en) * 2019-05-07 2020-11-12 国网江苏省电力有限公司电力科学研究院 Novel lithium ion battery and battery module
WO2021033697A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Method for producing electricity storage element, and electricity storage element
CN111717032A (en) * 2020-06-30 2020-09-29 蜂巢能源科技有限公司 Method and equipment for inhibiting thermal runaway of lithium battery and electric automobile

Similar Documents

Publication Publication Date Title
JP4336461B2 (en) Lithium secondary battery
JP3358478B2 (en) Organic electrolyte secondary battery
TW400661B (en) Non-aqueous liquid electrolyte battery
US5496663A (en) Lithium ion battery with lithium vanadium pentoxide positive electrode
JPH10255839A (en) Nonaqueous electrolyte secondary battery
JPH06150975A (en) Nonaqueous electrolyte secondary battery
Yamaki et al. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP2001307774A (en) Nonaqueous electrolyte secondary battery
JPH09129241A (en) Nonaqueous electrolytic secondary battery
JP4411823B2 (en) Battery electrode and battery using the same
JPH1140199A (en) Lithium secondary battery
JPH08162155A (en) Nonaqueous electrolytic battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
JP3371713B2 (en) Organic electrolyte secondary battery
JPH1064535A (en) Nickel electrode for alkaline storage battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JPH08138737A (en) Lithium secondary battery
JPH08111214A (en) Organic electrolytic battery
JP3358482B2 (en) Lithium secondary battery
JP3719405B2 (en) Lithium secondary battery
JP2000106210A (en) Organic electrolyte secondary battery
JP2002134102A (en) Battery electrode plate and its producing method, and battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP2003173820A (en) Nonaqueous electrolyte secondary battery