JPH06150935A - Manufacture of negative electrode collector - Google Patents

Manufacture of negative electrode collector

Info

Publication number
JPH06150935A
JPH06150935A JP4328481A JP32848192A JPH06150935A JP H06150935 A JPH06150935 A JP H06150935A JP 4328481 A JP4328481 A JP 4328481A JP 32848192 A JP32848192 A JP 32848192A JP H06150935 A JPH06150935 A JP H06150935A
Authority
JP
Japan
Prior art keywords
foil
negative electrode
lithium
current collector
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4328481A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Shiro Kato
史朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP4328481A priority Critical patent/JPH06150935A/en
Publication of JPH06150935A publication Critical patent/JPH06150935A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve the transfer accuracy to the negative electrode collector surface and the manufacturing speed of the negative electrode collector of metal lithium or lithium allay, and the battery performance quality by using continuous metal lithium foil or lithium alloy foil slit into a fixed width previously, or doing others. CONSTITUTION:Metal lithium foil 1 bonded to a resin film 2 is cut into a fixed dimension by the blades 4 of a die roll 3. The cut metal lithium foil 1' is attached to the protruded portion 6 of a transfer device 5 by synchronizing the feed of the film 2 with the rotation of the device 5. After the transfer of the foil 1', the movement of the foil 1 stops momentarily until the next protrusion portion 6' of the device 5 coincides with the tip of the next cut lithium foil 1''. At the point of coincidence, the foil 1'' is attached to the protrusion portion 6' of the device 5, and this operation is continued. The transferred foil 1' is again transferred into the hole 8 of adhesive 9 on which holes are provided with a fixed pattern on the upper surface of a negative electrode collector 7. Thereby transfer dislocation failure is reduced by about 18%, automation can be realized, the inside short-circuit of a battery is reduced about by 15%, and productivity is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エレクトロニクス機
器、玩具、アクセサリ−などの分野に使われる金属リチ
ウム又はリチウム合金を負極活物質とする薄形電池に用
いる金属リチウム又はリチウム合金付き負極集電体の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode current collector with metallic lithium or a lithium alloy used in a thin battery having a negative electrode active material of metallic lithium or a lithium alloy used in the fields of electronic equipment, toys, accessories and the like. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】従来の薄形電池に用いられた金属リチウ
ムは、圧延された金属リチウム箔をハ−フカットなどの
手段で所定の大きさに切断した後、集電体となる金属板
上にピンセットなどで移動し、所定寸法に切断された負
極集電体面に配置した。次に負極集電体の周縁部に接着
剤を接着することで金属リチウム付金属集電体を形成し
ていた。しかしながらこのような方法ではハ−フカット
されたリチウムが移動時に変形したり、負極集電体面に
配置する時及び周縁部に接着剤を接着する時に位置ずれ
し内部短絡の原因になったり、リチウムのデンドライト
形成の原因になったりした。また量産に対処できるもの
ではなかった。
2. Description of the Related Art Metallic lithium used in a conventional thin battery is formed by cutting a rolled metallic lithium foil into a predetermined size by means such as half-cutting and then depositing it on a metal plate serving as a current collector. It was moved with tweezers or the like and placed on the surface of the negative electrode current collector that was cut into a predetermined size. Next, an adhesive was adhered to the peripheral portion of the negative electrode current collector to form a metal current collector with metallic lithium. However, in such a method, the half-cut lithium may be deformed during movement, or may be misaligned when it is placed on the negative electrode current collector surface or when an adhesive is attached to the peripheral portion, which may cause an internal short circuit. It was a cause of dendrite formation. Moreover, it was not able to cope with mass production.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであって、その目的とするところは
金属リチウム又はリチウム合金の負極集電体面への転写
精度の向上と、金属リチウム又はリチウム合金付き負極
集電体の製造速度の向上及び電池性能品質の向上を計っ
た金属リチウム付又はリチウム合金付き負極集電体の製
造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to improve the transfer accuracy of metallic lithium or a lithium alloy onto the negative electrode current collector surface, and It is an object of the present invention to provide a method for producing a negative electrode current collector with metallic lithium or a lithium alloy, which has improved the production speed of a negative electrode current collector with lithium or a lithium alloy and improved battery performance quality.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するもので、一連の帯状金属リチウム箔又はリチウム合
金箔が所定寸法に切断される第1工程、該所定寸法に切
断された金属リチウム箔又はリチウム合金箔が転写装置
に転写される第2工程、該転写された金属リチウム箔又
はリチウム合金箔が負極集電体面に一定間隔で再転写さ
れる第3工程からなること、前記金属リチウム箔又はリ
チウム合金箔が樹脂フィルムに貼り付けられているこ
と、前記第1工程の切断が長さ方向であって、所定寸法
となること、前記第2工程の金属リチウム又はリチウム
合金の転写装置への転写時の保持が吸着又は弱接着によ
り行われること、前記第2工程の金属リチウム又はリチ
ウム合金の転写装置への転写時に金属リチウム又はリチ
ウム合金が一定間隔で転写されること、前記転写装置が
バックアップロ−ルを有し回転及び又は上下移動するこ
とで金属リチウム又はリチウム合金が負極集電体面に一
定間隔で再転写されること及び前記負極集電体面に金属
リチウム又はリチウム合金用の所定寸法の穴が一定間隔
で設けられた接着剤が接着されていること、前記転写装
置の動きと負極集電体の動きが同期することなどを特徴
とするもので、これらにより上述の問題点を解決するも
のである。
Means for Solving the Problems The present invention achieves the above object, and a first step in which a series of strip-shaped metallic lithium foils or lithium alloy foils are cut into a predetermined size, and metallic lithium cut into the predetermined size The second step of transferring the foil or the lithium alloy foil to a transfer device, and the third step of retransferring the transferred metallic lithium foil or lithium alloy foil to the negative electrode current collector surface at regular intervals; A foil or a lithium alloy foil is attached to a resin film, the cutting in the first step is in the longitudinal direction and has a predetermined size, and the metallic lithium or lithium alloy transfer device in the second step is transferred. Is held by adsorption or weak adhesion, and when the metallic lithium or lithium alloy is transferred to the transfer device in the second step, the metallic lithium or lithium alloy is spaced at regular intervals. Transfer, the transfer device has a backup roll, and is rotated and / or moved up and down to retransfer metal lithium or a lithium alloy to the negative electrode current collector surface at regular intervals and to the negative electrode current collector surface. It is characterized in that holes having a predetermined size for metallic lithium or a lithium alloy are adhered with an adhesive provided at regular intervals, and the movement of the transfer device and the movement of the negative electrode current collector are synchronized. By these, the above-mentioned problems are solved.

【0005】[0005]

【作用】請求項1の代表的な各工程により一連の金属リ
チウム又はリチウム合金が負極集電体面に高速で位置精
度よく転写される。従来金属リチウム又はリチウム合金
の箔を負極集電体面に転写した際に集電体面と箔との間
に気泡が入り電気抵抗が高くなったり、集電体に皺が入
ったり、正極と負極の活物質の接触度が悪く内部抵抗が
高くなったりして電池性能を悪くしていたが、全て改善
された。さらに製造速度も従来は約50セル/日・人で
あったが、約1000セル/日・人にまで高めることが
できた。請求項2により第1工程の切断及び転写装置へ
の転写が容易となる。切断された金属リチウム又はリチ
ウム合金の箔を転写装置に転写した後、巻き取ることで
金属リチウム又はリチウム合金の箔の動きと転写装置の
動きを一定周期で同期できる。請求項3によりあらかじ
め所定幅にスリットされた一連の金属リチウム箔又はリ
チウム合金箔により、切断による加工速度、加工精度を
高め、且つ金属リチウム箔又はリチウム合金箔のロス分
を低減した。請求項4により所定寸法に切断された金属
リチウム箔又はリチウム合金箔に皺などの変形を起こす
ことなく保持でき、且つ転写精度を高めた。請求項5に
より負極集電体面への金属リチウム箔又はリチウム合金
箔の再転写時のパタ−ン化を容易にすると共に再転写速
度を高めた。請求項6により一連の金属リチウム又はリ
チウム合金を切断した後の一定間隔での転写を容易にす
るとともに、負極集電体への再転写時に集電体面と金属
リチウム箔又はリチウム合金箔との間に気泡が入ること
を防止した。請求項7及び8により接着剤の穴部と金属
リチウム箔又はリチウム合金箔との位置精度が向上し
た。さらにこのように製造することで高速自動化が達成
できる。
According to the typical steps of claim 1, a series of metallic lithium or lithium alloy is transferred onto the surface of the negative electrode current collector at high speed and with high positional accuracy. When metallic foil or lithium alloy foil is conventionally transferred to the negative electrode current collector surface, bubbles enter between the current collector surface and the foil to increase the electrical resistance, the current collector has wrinkles, and the positive electrode and negative electrode The battery performance was poor due to poor contact with the active material and high internal resistance, but all were improved. Further, the manufacturing speed was conventionally about 50 cells / day / person, but could be increased to about 1000 cells / day / person. According to the second aspect, the cutting in the first step and the transfer to the transfer device are facilitated. After the cut metal lithium or lithium alloy foil is transferred to the transfer device and then wound, the movement of the metal lithium or lithium alloy foil and the motion of the transfer device can be synchronized with each other at a constant cycle. According to the third aspect, the series of metallic lithium foil or lithium alloy foil pre-slit to a predetermined width enhances the processing speed and processing accuracy by cutting, and reduces the loss of the metallic lithium foil or lithium alloy foil. According to the fourth aspect, the metal lithium foil or the lithium alloy foil cut into a predetermined size can be held without deformation such as wrinkles, and the transfer accuracy is improved. According to claim 5, the patterning of the metallic lithium foil or the lithium alloy foil on the negative electrode current collector surface at the time of retransfer is facilitated and the retransfer speed is increased. According to claim 6, while facilitating transfer at a constant interval after cutting a series of metallic lithium or lithium alloy, between the current collector surface and the metallic lithium foil or lithium alloy foil during retransfer to the negative electrode current collector. Prevented air bubbles from entering. According to claims 7 and 8, the positional accuracy of the hole of the adhesive and the metallic lithium foil or the lithium alloy foil is improved. Furthermore, high-speed automation can be achieved by manufacturing in this way.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 (実施例1)図1に概略図を示す。樹脂フィルム2に貼
り付けられた金属リチウム箔1を所定寸法にダイロ−ル
3の刃4で切断する。(第1工程)次に樹脂フィルム2
の送りと転写装置5の回転を同期させることで切断され
た金属リチウム箔1’は転写装置5の凸部6に付着され
る。金属リチウム箔1’の転写後、転写装置5の次の凸
部6’が次の切断された金属リチウム箔1”の先端と合
致するまで瞬間的に移動を停止する。合致した時点で金
属リチウム箔1”は転写装置5の凸部6’に付着され
る。この動きが継続される。(第2工程)一方、転写さ
れた金属リチウム箔1’は負極集電体7(材質;銅箔、
ステンレス箔、ニッケル箔、樹脂フィルムの上に銅を蒸
着したものなどが使用できる。)の上面に一定パタ−ン
(ピッチは転写装置5の凸部と凸部の間隙に相当す
る。)で穴8が設けられた接着剤9の穴8内に再転写さ
れる。(第3工程)この時、転写装置5と負極集電体7
の動きは同期するように負極集電体7の動きが制御され
ている。次に転写装置5の凸部6を用いない場合のリチ
ウム合金(例えばアルミニウムを約1%含有したリチウ
ム箔)の圧着方法について説明する。 (実施例2)図2においてロ−ル状の樹脂フィルム2に
巻き付けられたリチウム合金箔(厚さ約50μ)が前記
と同様に所定寸法に切断され、バックアップロ−ル11
により転写装置10に送られる。転写装置10の定位置
にリチウム合金箔1”が到達した時点でバックアップロ
−ル11が転写装置10側に移動(降下)し転写装置1
0面を接触加圧し、転写装置10とバックアップロ−ル
11の回転が同期することでリチウム合金箔1”が樹脂
フィルム2面から剥離されると同時に転写装置10面側
に転写される。一方、樹脂フィルム2は巻き取られる。
リチウム合金箔1”が転写し終わると、バックアップロ
−ル11が僅かに上方に移動し、転写装置10面から離
れると共に、バックアップロ−ル11の動きが停止す
る。さらに転写装置10は回転を継続し、リチウム合金
箔1”が転写されない距離(後で説明する接着剤の幅に
相当する。)だけ移動して時点で、再びバックアップロ
−ル11が転写装置10側に移動(降下)し転写装置1
0面を接触加圧し、リチウム合金箔1”が転写される。
このように繰り返されることで、転写装置10面に一定
間隔をもってリチウム合金箔1”が複数個転写される。
次に転写装置10に転写されたリチウム合金箔1”の先
端がバックアップロ−ル12により送られるリチウム合
金箔1”と同様の形状の穴8’が設けられた接着剤9’
が接着された負極集電体7’の穴8’の位置と合致した
時点で、リチウム合金箔1”が負極集電体7’面に再転
写される。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) FIG. 1 shows a schematic view. The metal lithium foil 1 attached to the resin film 2 is cut to a predetermined size by the blade 4 of the die roll 3. (First step) Next, the resin film 2
The metal lithium foil 1 ′ cut by synchronizing the feeding of the sheet and the rotation of the transfer device 5 is attached to the convex portion 6 of the transfer device 5. After the transfer of the metallic lithium foil 1 ′, the movement is momentarily stopped until the next convex portion 6 ′ of the transfer device 5 matches the tip of the next cut metallic lithium foil 1 ″. The foil 1 ″ is attached to the convex portion 6 ′ of the transfer device 5. This movement continues. (Second step) On the other hand, the transferred metallic lithium foil 1 ′ is the negative electrode current collector 7 (material: copper foil,
It is possible to use stainless foil, nickel foil, a resin film on which copper is vapor-deposited, or the like. ) Is re-transferred into the holes 8 of the adhesive 9 provided with the holes 8 with a constant pattern (the pitch corresponds to the gap between the protrusions of the transfer device 5) on the upper surface of the above. (Third step) At this time, the transfer device 5 and the negative electrode current collector 7
The movement of the negative electrode current collector 7 is controlled such that the movement of the negative electrode current collector 7 is synchronized. Next, a method of crimping a lithium alloy (for example, a lithium foil containing about 1% aluminum) when the convex portion 6 of the transfer device 5 is not used will be described. (Embodiment 2) In FIG. 2, a lithium alloy foil (thickness: about 50 .mu.m) wound around a roll-shaped resin film 2 is cut into a predetermined size in the same manner as described above, and a backup roll 11
Is sent to the transfer device 10. When the lithium alloy foil 1 ″ reaches the fixed position of the transfer device 10, the backup roll 11 moves (falls) to the transfer device 10 side, and the transfer device 1
The surface 0 is contact-pressurized and the rotations of the transfer device 10 and the backup roll 11 are synchronized with each other, whereby the lithium alloy foil 1 ″ is separated from the surface of the resin film 2 and simultaneously transferred to the surface of the transfer device 10. The resin film 2 is wound up.
When the transfer of the lithium alloy foil 1 ″ is completed, the backup roll 11 moves slightly upward and is separated from the surface of the transfer device 10, and the movement of the backup roll 11 stops. Further, the transfer device 10 rotates. Continuing, the backup roll 11 again moves (descends) to the transfer device 10 side when the lithium alloy foil 1 ″ is moved by a distance (corresponding to the width of the adhesive described later) that is not transferred. Transfer device 1
The 0 surface is contact-pressurized to transfer the lithium alloy foil 1 ″.
By repeating this process, a plurality of lithium alloy foils 1 ″ are transferred to the surface of the transfer device 10 at regular intervals.
Next, the tip of the lithium alloy foil 1 ″ transferred to the transfer device 10 is fed by the backup roll 12 to the adhesive 9 ′ provided with the hole 8 ′ having the same shape as the lithium alloy foil 1 ″.
The lithium alloy foil 1 ″ is retransferred to the surface of the negative electrode current collector 7 ′ at the time when the position of the hole 8 ′ of the bonded negative electrode current collector 7 ′ is matched.

【0007】このように作製された負極集電体の断面を
図3に示す。なお使用した金属リチウム又はリチウム合
金箔の切断前の幅は切断形状の幅と同じであるが、切断
前の幅が大きい場合は転写後樹脂フィルムなどに残存
し、巻き取られる。。また矩形の形状である場合も切断
による残部ができ樹脂フィルムなどに残存する。また幅
広の金属リチウム又はリチウム合金箔から幅方向に複数
個一定間隔をもって切断及び転写する場合も金属リチウ
ム又はリチウム合金箔の残部ができ樹脂フィルムなどに
残存する。
A cross section of the negative electrode current collector thus produced is shown in FIG. The width of the used metal lithium or lithium alloy foil before cutting is the same as the width of the cut shape, but if the width before cutting is large, it remains on the resin film after transfer and is wound up. . Further, even in the case of a rectangular shape, the remaining portion is left by cutting and remains on the resin film or the like. Also, when a plurality of wide lithium metal or lithium alloy foils are cut and transferred at a constant interval in the width direction, the remaining metal lithium or lithium alloy foils remain and remain on the resin film or the like.

【0008】本発明による製造方法では従来に比べて接
着剤の穴と金属リチウム又はリチウム合金箔の位置ズレ
に起因する不良が約18%低減された。製造速度も従来
では約300個/人・日であったのが約15万個/人・
日に相当する速度に改善された。また転写による精度が
向上し、電池に組み入れた場合の内部短絡による電池不
良が約15%低減された。
In the manufacturing method according to the present invention, defects due to the positional deviation between the holes of the adhesive and the metallic lithium or lithium alloy foil were reduced by about 18% as compared with the conventional method. In the past, the production speed was about 300 pieces / person / day, but about 150,000 pieces / person / day.
The speed was improved to the day. Further, the accuracy of the transfer was improved, and the battery failure due to an internal short circuit when incorporated in the battery was reduced by about 15%.

【0009】[0009]

【発明の効果】上述したごとく、本発明は次に記載する
効果を奏する。 (1)転写位置ズレ不良が約18%低減された。 (2)自動化された。 (3)電池の内部短絡が約15%低減された。 (4)生産生が高まった。 なお本発明においては実施例に示すものに限定されるも
のではなく、集電体の形状・材質、樹脂フィルム材質・
厚み、穴の形状・数、金属リチウム又はリチウム合金箔
の形状、転写装置とバックアップロ−ルの動きの同期手
段などは特に限定するものではなく、用途・大きさに応
じて種種変更されるものである。
As described above, the present invention has the following effects. (1) Transfer position deviation defects were reduced by about 18%. (2) It was automated. (3) The internal short circuit of the battery was reduced by about 15%. (4) The number of producers has increased. The present invention is not limited to those shown in the examples, but the shape and material of the current collector, the resin film material,
Thickness, shape and number of holes, shape of metallic lithium or lithium alloy foil, synchronization means for movement of transfer device and backup roll, etc. are not particularly limited, and various kinds can be changed according to use and size. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる金属リチウム又はリチウム合金
箔を負極集電体面に転写する転写装置の断面図である。
FIG. 1 is a cross-sectional view of a transfer device for transferring metallic lithium or lithium alloy foil according to the present invention onto a negative electrode current collector surface.

【図2】本発明に係わる金属リチウム又はリチウム合金
箔を負極集電体面に転写する他の転写装置の断面図であ
る。
FIG. 2 is a cross-sectional view of another transfer device for transferring the metallic lithium or lithium alloy foil according to the present invention onto the negative electrode current collector surface.

【図3】本発明に係わる金属リチウム又はリチウム合金
箔を負極集電体面に転写した場合の断面図である。
FIG. 3 is a cross-sectional view when the metallic lithium or lithium alloy foil according to the present invention is transferred to the negative electrode current collector surface.

【符号の説明】[Explanation of symbols]

1 金属リチウム、リチウム合金 1’、1”切断された金属リチウム、リチウム合金 2 樹脂フィルム 3 切断用ロ−ル(ダイロ−ル) 4 刃 5、10 転写装置 6、6’ 凸部 7、7’ 負極集電体 8、8’ 穴 9、9’ 接着剤 11、12バックアップロ−ル DESCRIPTION OF SYMBOLS 1 Metal lithium, lithium alloy 1 ', 1 "Metal lithium cut, lithium alloy 2 Resin film 3 Roll for cutting (die roll) 4 Blades 5, 10 Transfer device 6, 6'Convex part 7, 7' Negative electrode current collector 8,8 'Hole 9,9' Adhesive 11,12 Backup roll

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一連の金属リチウム箔又はリチウム合金
箔が所定寸法に切断される第1工程、該所定寸法に切断
された金属リチウム箔又はリチウム合金箔が転写装置に
転写される第2工程、該転写された金属リチウム箔又は
リチウム合金箔が負極集電体面に一定間隔で再転写され
る第3工程からなることを特徴とする負極集電体の製造
方法。
1. A first step in which a series of metallic lithium foil or lithium alloy foil is cut into a predetermined size, and a second step in which the metallic lithium foil or lithium alloy foil cut into the predetermined size is transferred to a transfer device, A method for producing a negative electrode current collector, comprising the third step of retransferring the transferred metallic lithium foil or lithium alloy foil to the negative electrode current collector surface at regular intervals.
【請求項2】 前記金属リチウム箔又はリチウム合金箔
が樹脂フィルムに貼り付けられていることを特徴とする
請求項1記載の負極集電体の製造方法。
2. The method for producing a negative electrode current collector according to claim 1, wherein the metallic lithium foil or lithium alloy foil is attached to a resin film.
【請求項3】 前記第1工程の切断が長さ方向であっ
て、所定寸法となることを特徴とする請求項1記載の負
極集電体の製造方法。
3. The method for manufacturing a negative electrode current collector according to claim 1, wherein the cutting in the first step is performed in a longitudinal direction and has a predetermined dimension.
【請求項4】 前記第2工程の金属リチウム又はリチウ
ム合金の転写装置への転写時の保持が吸着又は弱接着に
より行われることを特徴とする請求項1又は2記載の負
極集電体の製造方法。
4. The method for producing a negative electrode current collector according to claim 1, wherein the holding of the metallic lithium or lithium alloy during the transfer to the transfer device in the second step is performed by adsorption or weak adhesion. Method.
【請求項5】 前記第2工程の金属リチウム又はリチウ
ム合金の転写装置への転写時に金属リチウム又はリチウ
ム合金が一定間隔で転写されることを特徴とする請求項
3記載の負極集電体の製造方法。
5. The method for producing a negative electrode current collector according to claim 3, wherein the metallic lithium or lithium alloy is transferred at regular intervals during the transfer of the metallic lithium or lithium alloy to the transfer device in the second step. Method.
【請求項6】 前記転写装置がバックアップロ−ルを有
し、回転及び/又は上下移動することで金属リチウム又
はリチウム合金が負極集電体面に一定間隔で再転写され
ることを特徴とする請求項1、2、3又は4記載の負極
集電体の製造方法。
6. The transfer device has a backup roll, and by rotating and / or moving up and down, metallic lithium or a lithium alloy is retransferred to the negative electrode current collector surface at regular intervals. Item 5. A method for producing a negative electrode current collector according to item 1, 2, 3 or 4.
【請求項7】 前記負極集電体面に金属リチウム又はリ
チウム合金用の所定寸法の穴が一定間隔で設けられた接
着剤が接着されていることを特徴とする請求項1、2、
3、4又は5記載の負極集電体の製造方法。
7. An adhesive having holes of a predetermined size for metallic lithium or a lithium alloy provided at regular intervals is adhered to the surface of the negative electrode current collector.
The method for producing a negative electrode current collector described in 3, 4, or 5.
【請求項8】 前記転写装置の動きと負極集電体の動き
が同期することを特徴とする請求項1、2、3、4、5
又は6記載の負極集電体の製造方法。
8. The movement of the transfer device and the movement of the negative electrode current collector are synchronized with each other.
Or the method for producing a negative electrode current collector described in 6 above.
JP4328481A 1992-11-12 1992-11-12 Manufacture of negative electrode collector Pending JPH06150935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328481A JPH06150935A (en) 1992-11-12 1992-11-12 Manufacture of negative electrode collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328481A JPH06150935A (en) 1992-11-12 1992-11-12 Manufacture of negative electrode collector

Publications (1)

Publication Number Publication Date
JPH06150935A true JPH06150935A (en) 1994-05-31

Family

ID=18210758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328481A Pending JPH06150935A (en) 1992-11-12 1992-11-12 Manufacture of negative electrode collector

Country Status (1)

Country Link
JP (1) JPH06150935A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034329A1 (en) * 1996-03-14 1997-09-18 Fuji Photo Film Co., Ltd. Method and device for sticking lithium foil and method for manufacturing lithium electrode
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
WO2018186561A1 (en) * 2017-04-03 2018-10-11 주식회사 엘지화학 Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
KR20180112659A (en) * 2017-04-03 2018-10-12 주식회사 엘지화학 Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
JP2019212605A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2023176557A1 (en) * 2022-03-16 2023-09-21 パナソニックIpマネジメント株式会社 Manufacturing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034329A1 (en) * 1996-03-14 1997-09-18 Fuji Photo Film Co., Ltd. Method and device for sticking lithium foil and method for manufacturing lithium electrode
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
WO2018186561A1 (en) * 2017-04-03 2018-10-11 주식회사 엘지화학 Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
KR20180112659A (en) * 2017-04-03 2018-10-12 주식회사 엘지화학 Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
CN110476275A (en) * 2017-04-03 2019-11-19 株式会社Lg化学 Prelithiation equipment, the method and negative electrode unit for producing negative electrode unit
EP3591742A4 (en) * 2017-04-03 2020-04-22 LG Chem, Ltd. Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part
US11329312B2 (en) 2017-04-03 2022-05-10 Lg Energy Solution, Ltd. Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
JP2019212605A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2023176557A1 (en) * 2022-03-16 2023-09-21 パナソニックIpマネジメント株式会社 Manufacturing apparatus

Similar Documents

Publication Publication Date Title
US5578398A (en) Perforated substrate and method of manufacture
KR20120076850A (en) Method of fabricating electrode plate and electrode plate fabricated by the same method
EP3961774B1 (en) Tab and battery including the tab
JPH06150935A (en) Manufacture of negative electrode collector
JP3228907B2 (en) Method for manufacturing lithium ion polymer type secondary battery
JPH06124709A (en) Manufacture of negative electrode current collector for lithium battery
JP3528855B2 (en) Negative electrode current collector and method of manufacturing the same
WO2000072398A1 (en) Apparatus and method for battery cell electrode preparation, assembly and lamination
JP3325227B2 (en) Assembly manufacturing method of lithium ion polymer type secondary battery
JP2017062993A (en) Electrode manufacturing apparatus
JP3021485B2 (en) Manufacturing method of sheet storage battery
CN1828984B (en) Paste type plate manufacturing method and alkaline accumulator using same
JP3500863B2 (en) Electrode material cutting equipment
JP2001297754A (en) Cutting device of sheet electrode for battery
JPS606299A (en) Blaking method with progressive feed
JP3197501B2 (en) Manufacturing method of carrier tape
JPS60189211A (en) Method and device for machining crude sheet for laminated porcelain condenser
JPH06124701A (en) Manufacture of lead-acid battery electrode
CN221070382U (en) Roll-type Mylar film and Mylar film feeding device
JPS6339992B2 (en)
JP2951552B2 (en) Method for manufacturing flat electric wiring material and mold used for the method
JP3446258B2 (en) Press processing equipment
US3226274A (en) Method of manufacturing electrodes of variable condenser
JPH10275627A (en) Manufacture of power generating element for battery
JP2707741B2 (en) Method and apparatus for manufacturing storage battery electrode plate