JP3325227B2 - Assembly manufacturing method of lithium ion polymer type secondary battery - Google Patents

Assembly manufacturing method of lithium ion polymer type secondary battery

Info

Publication number
JP3325227B2
JP3325227B2 JP19363198A JP19363198A JP3325227B2 JP 3325227 B2 JP3325227 B2 JP 3325227B2 JP 19363198 A JP19363198 A JP 19363198A JP 19363198 A JP19363198 A JP 19363198A JP 3325227 B2 JP3325227 B2 JP 3325227B2
Authority
JP
Japan
Prior art keywords
film
electrode film
negative electrode
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19363198A
Other languages
Japanese (ja)
Other versions
JP2000012096A (en
Inventor
証 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP19363198A priority Critical patent/JP3325227B2/en
Publication of JP2000012096A publication Critical patent/JP2000012096A/en
Application granted granted Critical
Publication of JP3325227B2 publication Critical patent/JP3325227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンポ
リマー型2次電池の組立製造方法に関するものであり、
特にキャリア材に連続フィルムを貼り付け、それらを連
続搬送する中で、リチウムイオンポリマー型2次電池の
組立を行ない、生産性と組立精度を向上させ、量産に対
応できる、リチウムイオンポリマー型2次電池の組立製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for assembling and manufacturing a lithium ion polymer type secondary battery.
In particular, while attaching a continuous film to a carrier material and transporting them continuously, a lithium ion polymer type secondary battery is assembled to improve productivity and assembly accuracy, and can be used for mass production. The present invention relates to a method for assembling and manufacturing a battery.

【0002】[0002]

【従来の技術】リチウム2次電池の基本構成は、正極及
び負極並びに両電極に介在せしめられる電解質を保持し
たセパレーターである。このうち、正極及び負極は、活
物質、導電材、結着材に必要に応じて可塑剤を分散媒に
混合分散して成るスラリーを塗工して、フィルムを製作
し、それらフィルムを金属箔、金属メッシュ等の集電体
に貼り付けたものを使用する。正極活物質としては遷移
金属のリチウム酸化物が最適である。たとえば、マンガ
ン酸リチウム(LiMn24 )、コバルト酸リチウム
(LiCoO2 )、ニッケル酸リチウム(LiNiO
2 )等が好ましい。また、負極活物質としてはリチウム
イオンを吸蔵・放出できる公知の物質であり、たとえば
リチウムイオン吸蔵能を示す炭素材料が好ましい。炭素
材料の中でもコークス系炭素、黒鉛系炭素がより好まし
い。導電材としては電子伝導性の公知の物質であり、た
とえば天然黒鉛、カーボンブラック、アセチレンブラッ
ク等が好ましく、これらの混合物も使用できる。結着材
としてはフッ素系樹脂が良好で、ポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
F)、ヘキサフロロプロピレン(HFP)等が好まし
く、これらの共重合体も使用できる。分散媒としては、
結着材が溶解可能な有機溶媒が適切で、たとえばアセト
ン、メチルエチルケトン(MEK)、テトラヒドロフラ
ン(THF)、ジメチルホルムアミド、ジメチルアセタ
ミド、テトラメチル尿素、リン酸トリメチル、N−メチ
ルピロリゾン(NMP)等が好ましい。また、必要に応
じて加える可塑剤は成膜後に電解液と置換可能な有機溶
媒が適切で、フタル酸ジエステル類が好ましい。集電体
にはステンレス鋼、ニッケル、アルミニウム、チタン、
銅のパンチングメタル、エキスパンドメタルが好まし
く、表面処理を施した材料も使用できる。電解質は一般
に溶媒とその溶媒に溶解するリチウム塩とから構成され
る。溶媒としてはポリエチレンカーボネート、エチレン
カーボネート、ジメチルスルホキシド、ブチルラクト
ン、スルホラン、1,2−ジメトキシエタン、テトラヒ
ドロフラン、ジエチルカーボネート、メチルエチルカー
ボネート、ジメチルカーボネート等の有機溶媒が挙げら
れ、これらの一種又は二種以上を混合して使用するのが
好ましい。リチウム塩としては、LiCF3 SO3 、L
iAsF6 、LiClO4 、LiBF4 、LiPF6
が好ましい。
2. Description of the Related Art The basic structure of a lithium secondary battery is a positive electrode, a negative electrode, and a separator holding an electrolyte interposed between both electrodes. Of these, the positive electrode and the negative electrode are coated with a slurry made by mixing and dispersing a plasticizer in a dispersion medium, if necessary, for the active material, the conductive material, and the binder. And a collector attached to a current collector such as a metal mesh. As the positive electrode active material, a transition metal lithium oxide is most suitable. For example, lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 )
2 ) and the like are preferred. Further, the negative electrode active material is a known material capable of storing and releasing lithium ions, and for example, a carbon material having lithium ion storing ability is preferable. Among carbon materials, coke-based carbon and graphite-based carbon are more preferable. The conductive material is a known material having electronic conductivity, for example, natural graphite, carbon black, acetylene black, and the like, and a mixture thereof can also be used. As the binder, a fluororesin is preferable, and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVD)
F), hexafluoropropylene (HFP) and the like are preferable, and copolymers thereof can also be used. As a dispersion medium,
Organic solvents capable of dissolving the binder are suitable, for example, acetone, methyl ethyl ketone (MEK), tetrahydrofuran (THF), dimethylformamide, dimethylacetamide, tetramethylurea, trimethyl phosphate, N-methylpyrrolizone (NMP) Are preferred. As the plasticizer to be added as needed, an organic solvent that can be replaced with an electrolytic solution after film formation is appropriate, and phthalic acid diesters are preferable. Current collectors include stainless steel, nickel, aluminum, titanium,
Copper punched metal and expanded metal are preferable, and a material subjected to surface treatment can also be used. The electrolyte is generally composed of a solvent and a lithium salt dissolved in the solvent. Examples of the solvent include organic solvents such as polyethylene carbonate, ethylene carbonate, dimethyl sulfoxide, butyl lactone, sulfolane, 1,2-dimethoxyethane, tetrahydrofuran, diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate, and one or more of these. Are preferably used in combination. As the lithium salt, LiCF 3 SO 3 , L
iAsF 6 , LiClO 4 , LiBF 4 , LiPF 6 and the like are preferable.

【0003】図11に、リチウムイオンポリマー型2次
電池の電池Bの組立図を示す。表裏2枚の正極C、Cの
間に負極AがセパレーターS、Sを介して挟まれてい
る。正極及び負極からは集電体タブが突出している。縁
辺での電流漏洩を防止するために、正極Cより負極A及
びセパレーターSが四方突出する構造をしている。
FIG. 11 is an assembly view of a battery B of a lithium ion polymer type secondary battery. The negative electrode A is sandwiched between the two front and rear positive electrodes C, C via the separators S, S. Current collector tabs protrude from the positive and negative electrodes. In order to prevent current leakage at the edge, the negative electrode A and the separator S project from the positive electrode C in all directions.

【0004】従来、リチウムイオンポリマー型2次電池
の組立製造方法は、図12に示すような形で行なってき
た。まず、大きめに電極フィルムとセパレーターを作
り、金型で所定の形状に打抜く。次に、打抜かれた正極
電極フィルムと負極電極フィルム及びセパレーターを1
枚ずつピンセット等で組立て、ラミネーションで貼り合
わせて電池を組立てていた。このように人手で電池を1
ケずつ組立てていたため、組立精度と生産性が非常に悪
いという欠点があった。
Conventionally, a method of assembling and manufacturing a lithium ion polymer type secondary battery has been performed in a form as shown in FIG. First, an electrode film and a separator are made larger, and are punched into a predetermined shape by a mold. Next, the punched positive electrode film, negative electrode film and separator were
The batteries were assembled one by one with tweezers or the like, and then bonded together by lamination. In this way, one battery
Since the parts are assembled one by one, there is a disadvantage that the assembling accuracy and productivity are very poor.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
の欠点を解決し、キャリア材に連続フィルムを貼り付
け、それらを連続搬送する中で、リチウムイオンポリマ
ー型2次電池の組立を行ない、生産性と組立精度を向上
させ、量産に対応できる製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to assemble a lithium ion polymer type secondary battery while attaching a continuous film to a carrier material and transporting them continuously. Another object of the present invention is to provide a manufacturing method capable of improving productivity and assembling accuracy and corresponding to mass production.

【0006】[0006]

【課題を解決するための手段】本発明の上記課題は、次
のようにして解決される。 (A)キャリア材に、リチウムイオンポリマー型2次電
池電極フィルムを貼り付け、さらに、金型で位置決め基
準穴を開け、キャリア材の強度及び基準穴を利用して電
極フィルムを連続搬送し、キャリア材上で電極フィルム
を外形処理して電池組立を連続的に行う。 (B)キャリア材に、リチウムイオンポリマー型2次電
池電極フィルムを貼り付けたものに、金型で位置決め基
準穴を開け、その基準穴を用いて電極フィルムの外形処
理及び電池組立の位置決めを行う。 (C)外形処理された負極電極フィルムの両面に、外形
処理された正極電極フィルムをキャリア材から一定間隔
で間欠転写し、リチウムイオンポリマー型2次電池を連
続的に組立て、最後に金型で個々の電池に切り離す。
The above object of the present invention is attained as follows. (A) An electrode film of a lithium ion polymer type secondary battery is attached to a carrier material, and is further positioned with a mold.
A semi-perforated hole is formed, the electrode film is continuously conveyed using the strength of the carrier material and the reference hole , and the outer shape of the electrode film is processed on the carrier material to continuously perform battery assembly. (B) A positioning reference hole is opened with a mold on a lithium ion polymer type secondary battery electrode film attached to a carrier material, and the outer shape processing of the electrode film and the positioning of the battery assembly are performed using the reference hole. . (C) The externally processed positive electrode film is intermittently transferred from a carrier material to both surfaces of the externally processed negative electrode film at regular intervals, and a lithium ion polymer type secondary battery is continuously assembled, and finally, a metal mold is used. Disconnect into individual batteries.

【0007】かくして、本発明は、 (1)キャリア材に、リチウムイオンポリマー型2次電
池電極フィルムを貼り付け、さらに、金型で位置決め基
準穴を開け、キャリア材の強度及び基準穴を利用して電
極フィルムを連続搬送し、キャリア材上で電極フィルム
を外形処理して電池組立を連続的に行うことを特徴とす
る電池組立製造方法、 (2)キャリア材に、リチウムイオンポリマー型2次電
池電極フィルムを貼り付けたものに、金型で位置決め基
準穴を開け、その基準穴を用いて電極フィルムの外形処
理及び電池組立の位置決めを行うことを特徴とする電池
組立製造方法、 (3)外形処理された負極電極フィルムの両面に、外形
処理された正極電極フィルムをキャリア材から一定間隔
で間欠転写し、リチウムイオンポリマー型2次電池を連
続的に組立て、最後に金型で個々の電池に切り離すこと
を特徴とする電池組立製造方法を提供する。
[0007] Thus, the present invention provides (1) a carrier material, stuck lithium ion polymer type secondary battery electrode film, further, the positioning based on the mold
A method for manufacturing a battery assembly, comprising: forming a quasi-hole, continuously transporting the electrode film using the strength of the carrier material and the criterion hole , externally processing the electrode film on the carrier material, and continuously performing battery assembly. (2) A positioning reference hole is opened with a mold on a lithium ion polymer type secondary battery electrode film attached to a carrier material, and the outer shape processing of the electrode film and the positioning of the battery assembly are performed using the reference hole. (3) The externally processed positive electrode film is intermittently transferred at regular intervals from a carrier material to both surfaces of the externally processed negative electrode film, and the lithium ion polymer secondary battery is manufactured. Are continuously assembled, and finally separated into individual cells by a mold.

【0008】[0008]

【発明の実施の形態】図1において、キャリア材1上に
正極材、負極材及びセパレーター材を、それぞれ、塗工
して、正極材フィルム2、負極材フィルム3及びセパレ
ーターフィルム4を個別に形成する成膜工程が示され
る。これらは、成膜後、巻取られていずれもロール形態
とされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a positive electrode material, a negative electrode material and a separator material are applied on a carrier material 1 respectively to form a positive electrode material film 2, a negative electrode material film 3 and a separator film 4 individually. Is shown. After these films are formed, they are wound into a roll.

【0009】成膜工程での密着性及び後工程での易剥離
性が良好であり、製造工程を一貫して同一のキャリアー
フィルムを用いることができるように、正極スラリー及
び負極スラリーをそれぞれ成膜してカソードフィルム及
びアノードフィルムを作製するに際して、該キャリアー
フィルムとして中心線平均粗さが0.01μm〜1.0
μm(JIS B0601での評価法による)、60°
光沢度(GS 60°)が0.5〜140%(JIS Z
8741での評価法による)に粗面加工を施したポリエ
ステルフィルムを用いることが好ましい。
The positive electrode slurry and the negative electrode slurry are each formed into a film so that the adhesiveness in the film forming step and the easy peelability in the subsequent step are good and the same carrier film can be used throughout the manufacturing process. To produce a cathode film and an anode film, the carrier film has a center line average roughness of 0.01 μm to 1.0 μm.
μm (based on the evaluation method according to JIS B0601), 60 °
Glossiness (G S 60 °) is .5 to 140% (JIS Z
It is preferable to use a polyester film which has been subjected to a roughening process (according to the evaluation method of 8741).

【0010】図2において、キャリア材上に塗工された
正極材フィルム、負極材フィルム及びセパレーターフィ
ルムそれぞれを所定の幅に切断するスリッティング工程
が示される。ここでは、2連にスリッティングするもの
として示すが、3連以上にスリッティングすることも可
能である。所定の幅に切断された正極材フィルム、負極
材フィルム及びセパレーターフィルムをそれぞれ2’、
3’及び4’として示す。
FIG. 2 shows a slitting step of cutting each of a positive electrode material film, a negative electrode material film, and a separator film coated on a carrier material into a predetermined width. Here, the slitting is performed in two stations, but the slitting can be performed in three or more stations. The positive electrode material film, the negative electrode material film and the separator film cut to a predetermined width are each 2 ′,
Shown as 3 'and 4'.

【0011】図3及び図4において、ここでは集電メッ
シュとして示す集電体5を間に挟んで、所定の幅に切断
された正極材フィルム2’及び負極材フィルム3’を集
電体それぞれの両面に貼り合わせ、ラミネートして、正
極電極フィルム6及び負極電極フィルム7を個別に形成
する正極及び負極の集電体ラミネーション工程が示され
る。ここでは、集電体として、銅製の集電メッシュを示
すが、集電体にはステンレス鋼、ニッケル、アルミニウ
ム、チタン、銅のパンチングメタル、エキスパンドメタ
ルが好ましく、表面処理を施した材料も使用できる。こ
の時、画像処理等の電気的な方法を用いて、表裏のフィ
ルムの貼り合わせ位置を正確に合わせる。
3 and 4, each of the positive electrode material film 2 'and the negative electrode material film 3' cut to a predetermined width is sandwiched by a current collector 5 shown here as a current collector mesh. The lamination process of the positive electrode and the negative electrode in which the positive electrode film 6 and the negative electrode film 7 are separately formed by bonding and laminating on both surfaces of the negative electrode film 6 is shown. Here, a current collector made of copper is shown as a current collector, but a stainless steel, nickel, aluminum, titanium, a punched metal of copper, an expanded metal is preferable for the current collector, and a material subjected to a surface treatment can also be used. . At this time, the bonding positions of the front and back films are accurately adjusted by using an electrical method such as image processing.

【0012】この場合、ラミネーション後、正極電極フ
ィルムについては、表面のキャリア材1のみを剥がす。
表面のキャリア材1のみを剥がした正極電極フィルム6
はロール状に巻取られる。負極電極フィルムについては
表裏のキャリア材1、1を剥がす。
In this case, after lamination, only the carrier material 1 on the surface of the positive electrode film is peeled off.
Positive electrode film 6 from which only carrier material 1 on the surface is peeled off
Is wound into a roll. For the negative electrode film, the front and back carrier materials 1 and 1 are peeled off.

【0013】図4の下流部に示すように、キャリア材
1、1を剥がした負極電極フィルムには、その両面にロ
ール状のセパレーターフィルム4’から繰り出したセパ
レーターを貼り付け、ロール状のセパレーター付き負極
電極フィルム8を形成する。このセパレーター貼り付け
についても上述の方法と同様にして、両面の貼り合わせ
位置を合わせる。図4では、負極の集電体ラミネーショ
ン工程、負極電極フィルムの表裏のキャリア材1、1を
剥がす工程及びセパレーターを貼り付け、ロール状のセ
パレーター付き負極電極フィルム8を形成する工程を連
続して示す。
As shown in the downstream part of FIG. 4, on the negative electrode film from which the carrier materials 1 and 1 have been peeled off, a separator drawn out from a roll-shaped separator film 4 ′ is attached to both surfaces thereof, and a roll-shaped separator is provided. The negative electrode film 8 is formed. In the same manner as the above-described method, the positions of both sides are also adjusted. In FIG. 4, a current collector lamination process of the negative electrode, a process of peeling the carrier materials 1 and 1 on the front and back of the negative electrode film, a process of attaching a separator, and a process of forming a roll-shaped negative electrode film 8 with a separator are continuously shown. .

【0014】こうして、正極電極フィルム6及びセパレ
ータ付き負極電極フィルム8が形成される。両者は、そ
れぞれ、以下に説明するようにして、外形処理した後、
組み立てられ、図11に示した電池を完成する。
Thus, the positive electrode film 6 and the negative electrode film with separator 8 are formed. After the outer shape processing as described below,
Assembled to complete the battery shown in FIG.

【0015】(正極電極フィルム外形処理)図5におい
て、正極電極フィルム6を巻き出す。巻き出された正極
電極フィルム6は、位置決め基準穴打抜き、集電メ
ッシュ打抜き、外形ハーフカット、の順で金型12に
より外形処理される。外形処理後、不要な正極電極フィ
ルム中央部破材9は除去する。フィルムの位置決めは、
位置決め基準穴(スプロケットホール)10に位置決め
搬送スプロケット11を差し込んで行う。位置決め搬送
スプロケット11には、エンコーダーが取り付けられて
おり、正極電極フィルムの送り量を管理している。打ち
抜かれた集電メッシュタブを番号13として示す。図6
に、ハーフカットの様相を示す。
(Positive electrode film outer shape processing) In FIG. 5, the positive electrode film 6 is unwound. The unwound positive electrode film 6 is externally processed by the mold 12 in the order of punching out positioning reference holes, punching out a current collector mesh, and half-cutting the outer shape. After the outer shape processing, the unnecessary fractured material 9 at the center of the positive electrode film is removed. The positioning of the film
The positioning is performed by inserting the positioning transport sprocket 11 into the positioning reference hole (sprocket hole) 10. An encoder is attached to the positioning / conveying sprocket 11, and controls the feed amount of the positive electrode film. The punched current collector mesh tab is shown as number 13. FIG.
The appearance of half-cut is shown in FIG.

【0016】(負極電極フィルム外形処理)図7におい
て、セパレーター付き負極電極フィルム8もまた、図5
と同様に、位置決め基準穴打抜き、集電メッシュ打
抜き、の順で金型12’により外形処理される。フィル
ムの位置決めは、位置決め基準穴14に位置決め搬送ス
プロケット15を差し込んで行う。位置決め搬送スプロ
ケット15には、エンコーダーが取り付けられており、
負極電極フィルムの送り量を管理している。打ち抜かれ
た集電メッシュタブを番号16として示す。
(Negative electrode film outer shape treatment) In FIG. 7, a negative electrode film 8 with a separator is also shown in FIG.
Similarly to the above, the outer shape is processed by the mold 12 'in the order of the positioning reference hole punching and the current collecting mesh punching. The positioning of the film is performed by inserting the positioning transport sprocket 15 into the positioning reference hole 14. An encoder is attached to the positioning transport sprocket 15,
The feed amount of the negative electrode film is controlled. The punched current collector mesh tab is shown as number 16.

【0017】(電池組立処理)次に、図8及び図9にお
いて示すように、外形処理された負極電極フィルム8及
び正極電極フィルム6から電池が組み立てられる。外形
処理された負極電極フィルム8を巻き出し、貼り付いて
いるキャリア材1を剥がす。その両面に外形処理された
正極電極フィルム6を巻き出し、両面同じ位置に正極電
極フィルム6をキャリア材から離して転写ロール17に
より間欠転写する。キャリア材は取り除かれる。
(Battery Assembling Process) Next, as shown in FIGS. 8 and 9, a battery is assembled from the negative electrode film 8 and the positive electrode film 6 subjected to the outer shape treatment. The outer shape-treated negative electrode film 8 is unwound, and the attached carrier material 1 is peeled off. The positive electrode film 6 whose outer shape has been processed is unwound on both surfaces thereof, and the positive electrode film 6 is intermittently transferred by the transfer roll 17 at the same position on both surfaces while separating from the carrier material. The carrier material is removed.

【0018】間欠転写は、図10に詳しく示すように、
外形処理された正極電極フィルム6を加熱(50〜13
0℃)された転写ロール17、17を閉じて、キャリア
材1から外形処理された負極電極フィルム8に転写す
る。電池1ケ分の正極電極フィルム6を転写したところ
で、転写ロール17、17を上下に開き、同時に正極電
極フィルム6の搬送を停止する。この時、負極電極フィ
ルム8は搬送を継続しており、所定の間隔(例えば1.
5mm)になったところで転写ロール17、17を閉
じ、正極電極フィルム6の搬送を再開し、次の転写を行
なう。以上の動作を繰り返し間欠転写を連続的に行う。
この転写の時の各フィルムの位置決めも、図8に示した
ように、位置決め基準穴と位置決め搬送スプロケット1
8を用いて行う。
The intermittent transfer is, as shown in detail in FIG.
The externally processed positive electrode film 6 is heated (50 to 13
(0 ° C.), the transfer rolls 17 and 17 are closed, and the transfer is performed from the carrier material 1 to the negative electrode film 8 subjected to the outer shape treatment. When the positive electrode film 6 for one battery is transferred, the transfer rolls 17 and 17 are opened up and down, and at the same time, the transport of the positive electrode film 6 is stopped. At this time, the negative electrode film 8 continues to be transported, and has a predetermined interval (for example, 1.
5 mm), the transfer rolls 17 and 17 are closed, the conveyance of the positive electrode film 6 is restarted, and the next transfer is performed. The above operation is repeated to perform intermittent transfer continuously.
As shown in FIG. 8, the positioning of each film at the time of this transfer is also performed by positioning the positioning reference hole and the positioning transport sprocket 1.
8 is performed.

【0019】転写後、図9に示すように、金属ヒートロ
ール19を用いてラミネーションが行われ、最後に、電
池打ち抜き金型20で個々の電池に切り離す。切り離さ
れた後の中央部の負極電極フィルム破材21は巻き取っ
て除去する。
After the transfer, as shown in FIG. 9, lamination is performed using a metal heat roll 19, and finally, the individual batteries are separated by a battery punching die 20. The cut piece 21 of the negative electrode film at the central portion after being cut off is wound up and removed.

【0020】その後、除湿雰囲気で電池セルを活性化
し、パッケージフィルムに入れて包装して出荷される。
After that, the battery cells are activated in a dehumidifying atmosphere, put in a package film, packaged and shipped.

【0021】以上説明した通り、本発明に従えば、電極
フィルムを連続搬送するためには、電極フィルムに引張
強度が要求されるが、電極フィルムにはその強度が無い
ため、予め電極フィルムにキャリア材(例えばPET)
をラミネーション等で貼り付け、キャリア材に強度を持
たせたものである。この手段により電極フィルムの高速
連続搬送と位置決め基準穴の搬送スプロケットの差し込
みを可能としたものである。図11に示したように正極
より負極及びセパレーターが四方突出する構造で電池を
連続に組立てるため、キャリア材から負極電極フィルム
(セパレーター付)に正極電極フィルムを間欠転写する
手段で連続組立の課題を解決した。転写をするには、転
写前に電極フィルムの外形処理をしなければならない
が、その処理は金型によって行った。金型処理及び組立
では、位置決め基準が重要であるが、本発明では、電極
フィルム中央部にまず最初に金型で位置決め基準穴を作
ることで解決した。この位置決め基準穴と位置決め搬送
スプロケットを用いることにより、安価で精度の高い位
置決めが可能となった。キャリア材上での正極電極フィ
ルム1の外形処理は、ハーフカットにより解決した。
As described above, according to the present invention, in order to continuously transport the electrode film, the electrode film needs to have a tensile strength. Materials (eg PET)
Is attached by lamination or the like to give strength to the carrier material. By this means, high-speed continuous transport of the electrode film and insertion of the transport sprocket into the positioning reference hole are made possible. As shown in FIG. 11, in order to continuously assemble the battery with a structure in which the negative electrode and the separator protrude in all directions from the positive electrode, the means of intermittently transferring the positive electrode film from the carrier material to the negative electrode film (with separator) solves the problem of continuous assembly. Settled. In order to perform the transfer, the outer shape of the electrode film must be processed before the transfer, and the processing is performed using a mold. In the mold processing and assembly, the positioning reference is important, but in the present invention, it was solved by first forming a positioning reference hole with a die in the center of the electrode film. By using the positioning reference hole and the positioning transport sprocket, inexpensive and highly accurate positioning can be performed. The outer shape treatment of the positive electrode film 1 on the carrier material was solved by half cutting.

【0022】こうして、本発明は、全体工程として、 第1工程:キャリア材に正極材、負極材及びセパレータ
ーをそれぞれ塗工して、巻取り、ロール状の正極材フィ
ルム、負極材フィルム及びセパレーターフィルムを個別
に形成する成膜工程、 第2工程:前記正極材フィルム、負極材フィルム及びセ
パレーターフィルムそれぞれを所定の幅に切断して、ロ
ール状の正極材フィルム、負極材フィルム及びセパレー
ターフィルムを個別に形成するスリッティング工程、 第3工程:集電体を間に挟んで、前記切断された正極材
フィルム及び負極材フィルムを該集電体それぞれの両面
に貼り合わせ、ラミネートして、正極電極フィルム及び
負極電極フィルムを個別に形成し、その場合、ラミネー
ション後、正極電極フィルムについては、表面のキャリ
アフィルムのみを剥がし、ロール状の正極電極フィルム
を巻取り、他方、負極電極フィルムについては表裏のキ
ャリアフィルムを剥がす正極及び負極の集電体ラミネー
ション工程と、 第4工程:ラミネートされそして表裏のキャリアフィル
ムを剥がれた負極電極フィルムの両面に、さらにセパレ
ーターフィルムを貼り合わせるセパレーター付き負極電
極フィルム形成工程、 第5工程:前記正極電極フィルム及びセパレーター付き
負極電極フィルムそれぞれの両側縁辺の集電メッシュ部
分を金型で所定の形状に打抜く打抜き工程、 第6工程:キャリアフィルム上の正極電極フィルムのみ
を、金型で所定の形状にカットする正極電極フィルムカ
ット工程、 第7工程:セパレーター付き負極電極フィルムから表裏
のキャリアフィルムを剥がした後、該セパレータ付き負
極電極フィルム両面にハーフカットされた正極電極フィ
ルムを、所定の位置に一定間隔で転写する転写工程、 第8工程:前記転写された正極電極フィルムとセパレー
ター付き負極電極フィルムをラミネートするラミネーシ
ョン工程、 第9工程:転写された正極電極フィルムとセパレータ付
き負極電極フィルムをラミネートした組立体を金型で個
々の電池に打抜く打抜き工程 を包含することを特徴とするリチウムイオンポリマー型
2次電池の製造方法を提供するものである。
Thus, the present invention provides, as an overall process, a first step: applying a positive electrode material, a negative electrode material, and a separator to a carrier material, and winding and winding the same; a roll-shaped positive electrode material film, a negative electrode material film, and a separator film A second step: cutting each of the positive electrode material film, the negative electrode material film and the separator film into a predetermined width, and separately forming the roll-shaped positive electrode material film, the negative electrode material film and the separator film. A slitting step to be formed; a third step: bonding the cut positive electrode material film and the cut negative electrode material film to both surfaces of the current collector with a current collector therebetween, laminating the cut, and forming a positive electrode film and The negative electrode film is formed separately. In this case, after lamination, the positive electrode film A) A positive electrode and a negative electrode current collector lamination step of peeling off only the film and winding up the roll-shaped positive electrode film, while removing the front and back carrier films for the negative electrode film; A separator-attached anode electrode film forming step in which a separator film is further attached to both surfaces of the anode electrode film from which the film has been peeled off; 5th step: the current-collecting mesh portions on both side edges of the cathode electrode film and the separator-attached anode electrode film are formed of gold. A punching step of punching into a predetermined shape with a mold, a sixth step: a positive electrode film cutting step of cutting only the positive electrode film on the carrier film into a predetermined shape with a mold, a seventh step: from a negative electrode film with a separator. Removed carrier film on both sides A transferring step of transferring the positive electrode film half-cut on both surfaces of the negative electrode film with the separator to a predetermined position at a predetermined interval, and an eighth step: laminating the transferred positive electrode film and the negative electrode film with the separator. Laminating step, Ninth step: a punching step of punching an assembly obtained by laminating the transferred positive electrode film and the negative electrode film with a separator into individual batteries using a mold, wherein the secondary step is a lithium ion polymer type secondary step. A method for manufacturing a battery is provided.

【0023】[0023]

【発明の効果】このように、リチウムイオンポリマー型
2次電池を長尺フィルムを搬送して組立てを行うことに
より、高い生産性が得られる。また、キャリア材上で組
立を行うため、キャリア材に位置決め用の工夫をするこ
とにより、機械的または電気的に位置決めができ、高い
組立精度が得られる。さらには、第2工程の切断幅と金
型を変えることにより、容易に色々な製品形状に対応で
きる。かくして、本発明により、リチウムイオンポリマ
ー型2次電池製造の(1)生産性が高まり、(2)自動
化され、(3)組立精度が上がり、そして(4)製品形
状の変更に容易に対応できる。
As described above, high productivity can be obtained by assembling the lithium ion polymer type secondary battery by transporting the long film. In addition, since the assembling is performed on the carrier material, the device can be mechanically or electrically positioned by devising the positioning of the carrier material, and high assembling accuracy can be obtained. Further, by changing the cutting width and the mold in the second step, it is possible to easily cope with various product shapes. Thus, according to the present invention, (1) productivity is enhanced, (2) automation is achieved, (3) assembling accuracy is increased, and (4) the product shape can be easily changed in the production of a lithium ion polymer type secondary battery. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】キャリア材上に正極材、負極材及びセパレータ
ー材を、それぞれ、塗工し、正極材フィルム、負極材フ
ィルム及びセパレーターフィルムを個別に形成する成膜
工程を示す説明図である。
FIG. 1 is an explanatory view showing a film forming step of coating a positive electrode material, a negative electrode material and a separator material on a carrier material, respectively, and separately forming a positive electrode material film, a negative electrode material film and a separator film.

【図2】正極材フィルム、負極材フィルム及びセパレー
ターフィルムをそれぞれ所定の幅に切断するスリッティ
ング工程を示す説明図である。
FIG. 2 is an explanatory view showing a slitting step of cutting a positive electrode material film, a negative electrode material film, and a separator film into respective predetermined widths.

【図3】集電体を間に挟んで、所定の幅に切断された正
極材フィルムを集電体の両面に貼り合わせ、ラミネート
して、正極電極フィルムを形成する正極集電体ラミネー
ション工程を示す説明図である。
FIG. 3 shows a positive electrode current collector lamination step of laminating a positive electrode material film cut into a predetermined width on both sides of the current collector with a current collector interposed therebetween and forming a positive electrode film. FIG.

【図4】負極の集電体ラミネーション工程、負極電極フ
ィルムの表裏のキャリア材を剥がす工程及びセパレータ
ーを貼り付け、ロール状のセパレーター付き負極電極フ
ィルムを形成する工程を示す説明図である。
FIG. 4 is an explanatory view showing a current collector lamination step of a negative electrode, a step of peeling a carrier material on the front and back of a negative electrode film, and a step of attaching a separator to form a roll-shaped negative electrode film with a separator.

【図5】正極電極フィルムを外形処理する説明図であ
る。
FIG. 5 is an explanatory diagram for performing outer shape processing of a positive electrode film.

【図6】正極電極フィルムのハーフカットの様相を示す
斜視図である。
FIG. 6 is a perspective view showing a half cut aspect of a positive electrode film.

【図7】セパレーター付き負極電極フィルムの外形処理
を示す説明図である。
FIG. 7 is an explanatory view showing an outer shape treatment of a negative electrode film with a separator.

【図8】セパレータ付き負極電極フィルムの両面にハー
フカットされた正極電極フィルムを所定の位置に転写し
て、ラミネートし、最後に、組立体を金型で個々の電池
に打抜く工程を示す説明図である。
FIG. 8 is an illustration showing a process of transferring a half-cut positive electrode film on both sides of a negative electrode film with a separator to a predetermined position, laminating, and finally punching the assembly into individual batteries by using a mold. FIG.

【図9】図8の電池組立状態を示す斜視図である。FIG. 9 is a perspective view showing an assembled state of the battery of FIG. 8;

【図10】間欠転写フローを段階的に説明する説明図で
ある。
FIG. 10 is an explanatory diagram for explaining an intermittent transfer flow in a stepwise manner.

【図11】電池組立体の斜視図である。FIG. 11 is a perspective view of a battery assembly.

【図12】従来からの電池組立様相を示す流れ図であ
る。
FIG. 12 is a flowchart showing a conventional battery assembly aspect.

【符号の説明】[Explanation of symbols]

C 正極 A 負極 S セパレーター 1 キャリア材 2 正極材フィルム 3 負極材フィルム 4 セパレーターフィルム 2’、3’、4’切断正極材、負極材及びセパレーター
フィルム 5 集電体 6 正極電極フィルム 7 負極電極フィルム 8 セパレーター付き負極電極フィルム 9 中央部破材 10 正極位置決め基準穴 11 搬送スプロケット 12 金型 13 集電メッシュタブ 14 負極位置決め基準穴 15 位置決め搬送スプロケット 16 集電メッシュタブ 17 転写ロール 18 位置決め搬送スプロケット 19 金属ヒートロール 20 電池打ち抜き金型 21 負極電極フィルム破材
C positive electrode A negative electrode S separator 1 carrier material 2 positive electrode material film 3 negative electrode material film 4 separator film 2 ′, 3 ′, 4 ′ cut positive electrode material, negative electrode material and separator film 5 current collector 6 positive electrode film 7 negative electrode film 8 Negative electrode film with separator 9 Central broken material 10 Positive electrode positioning reference hole 11 Conveyor sprocket 12 Mold 13 Current collecting mesh tab 14 Negative electrode positioning reference hole 15 Positioning / conveying sprocket 16 Current collecting mesh tab 17 Transfer roll 18 Positioning / conveying sprocket 19 Metal heat Roll 20 Battery punch 21 Negative electrode film broken material

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 キャリア材に、リチウムイオンポリマー
型2次電池電極フィルムを貼り付け、さらに、金型で
置決め基準穴を開け、キャリア材の強度及び基準穴を利
用して電極フィルムを連続搬送し、キャリア材上で電極
フィルムを外形処理して電池組立を連続的に行うことを
特徴とする電池組立製造方法。
1. A lithium ion polymer type secondary battery electrode film is stuck on a carrier material, and a positioning reference hole is opened with a mold, and the strength and reference hole of the carrier material are used. A method of manufacturing a battery assembly, comprising continuously transporting an electrode film, externally processing the electrode film on a carrier material, and continuously performing battery assembly.
【請求項2】 キャリア材に、リチウムイオンポリマー
型2次電池電極フィルムを貼り付けたものに、金型で位
置決め基準穴を開け、その基準穴を用いて電極フィルム
の外形処理及び電池組立の位置決めを行うことを特徴と
する電池組立製造方法。
2. A positioning reference hole is opened with a mold on a carrier material on which a lithium ion polymer type secondary battery electrode film is adhered, and the outer shape processing of the electrode film and the positioning of the battery assembly are performed using the reference hole. And a method for producing and assembling a battery.
【請求項3】 外形処理された負極電極フィルムの両面
に、外形処理された正極電極フィルムをキャリア材から
一定間隔で間欠転写し、リチウムイオンポリマー型2次
電池を連続的に組立て、最後に金型で個々の電池に切り
離すことを特徴とする電池組立製造方法。
3. The externally processed positive electrode film is intermittently transferred from the carrier material at regular intervals to both surfaces of the externally processed negative electrode film, and a lithium ion polymer secondary battery is continuously assembled. A method for producing and assembling a battery, wherein the battery is separated into individual batteries by a mold.
JP19363198A 1998-06-25 1998-06-25 Assembly manufacturing method of lithium ion polymer type secondary battery Expired - Fee Related JP3325227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19363198A JP3325227B2 (en) 1998-06-25 1998-06-25 Assembly manufacturing method of lithium ion polymer type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19363198A JP3325227B2 (en) 1998-06-25 1998-06-25 Assembly manufacturing method of lithium ion polymer type secondary battery

Publications (2)

Publication Number Publication Date
JP2000012096A JP2000012096A (en) 2000-01-14
JP3325227B2 true JP3325227B2 (en) 2002-09-17

Family

ID=16311164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19363198A Expired - Fee Related JP3325227B2 (en) 1998-06-25 1998-06-25 Assembly manufacturing method of lithium ion polymer type secondary battery

Country Status (1)

Country Link
JP (1) JP3325227B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462780B1 (en) * 2002-06-03 2004-12-20 삼성에스디아이 주식회사 Manufacturing method of electrode assembly for lithium secondary cell
FR2849283B1 (en) * 2002-12-23 2005-10-28 Batscap Sa ARCHITECTURE OF WINDING DEVICE OF ELECTRIC ENERGY STORAGE ASSEMBLY
CN103794822B (en) * 2014-02-28 2015-12-16 山东爱通工业机器人科技有限公司 A kind of automatic laminating production line of dynamic lithium battery battery sheet
DE102016210838A1 (en) * 2016-06-17 2017-12-21 Robert Bosch Gmbh Anode for a battery cell, method for making an anode and battery cell
JP6747248B2 (en) * 2016-11-03 2020-08-26 トヨタ自動車株式会社 Stacked battery manufacturing equipment
CN114361733B (en) * 2021-12-31 2022-11-25 东莞市鑫晟达智能装备有限公司 Small-size polymer battery processing equipment
CN117254127B (en) * 2023-10-25 2024-07-26 东莞市鑫晟达智能装备有限公司 PACK wire of long-wire soft-package lithium ion battery

Also Published As

Publication number Publication date
JP2000012096A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
CN100401573C (en) Manufacturing method for non-aqueous electrolyte secondary battery and used electrode thereof
JP2002525823A (en) Improved method of manufacturing electrochemical cells
US7163565B2 (en) Electrode plate for secondary battery, method of manufacturing the same, and secondary battery using the same
KR102079929B1 (en) Manufacturing Method for Electrodes Having Uniform Quality and Manufacturing Method for Electrode Assembly with the Same
JP3228907B2 (en) Method for manufacturing lithium ion polymer type secondary battery
CA2231482A1 (en) Laminated lithium-ion cell and process for fabricating same
KR20170114351A (en) Manufacturing Apparatus for Electrode Assembly with Improved Productivity
CN112670435A (en) Preparation method of battery pole piece
WO2018048126A1 (en) Method for manufacturing electrodes having uniform quality and method for manufacturing electrode assembly comprising same
CN110462883B (en) Method and apparatus for manufacturing secondary battery
JPH10214616A (en) Manufacture of stacked battery electrode
JP4737817B2 (en) Method for manufacturing a foldable lithium battery
JP2020140932A (en) All-solid-state battery and manufacturing method thereof
JP3325227B2 (en) Assembly manufacturing method of lithium ion polymer type secondary battery
US6132477A (en) Method of making laminated polymeric rechargeable battery cells
JP2005190787A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method
KR20230014733A (en) Secondary battery and its manufacturing method
US20150340726A1 (en) Energy storage device
JP2005183181A (en) Electrode plate for nonaqueous electrolyte secondary battery and manufacturing method of the same
US20040185332A1 (en) Tabs for electrochemical cells
JP5550091B2 (en) Method for producing electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2000058012A (en) Flat-battery and its manufacture
JP2000149928A (en) Manufacture of nonaqueous electrolyte secondary battery
EP3608996B1 (en) Flexible batteries for wearable devices
CN111433944B (en) Collector electrode sheet and method for manufacturing same, battery and method for manufacturing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

LAPS Cancellation because of no payment of annual fees