JPH06148232A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH06148232A
JPH06148232A JP4302620A JP30262092A JPH06148232A JP H06148232 A JPH06148232 A JP H06148232A JP 4302620 A JP4302620 A JP 4302620A JP 30262092 A JP30262092 A JP 30262092A JP H06148232 A JPH06148232 A JP H06148232A
Authority
JP
Japan
Prior art keywords
acceleration
mass
upper electrode
lower electrodes
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4302620A
Other languages
Japanese (ja)
Inventor
Hironobu Okino
博信 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4302620A priority Critical patent/JPH06148232A/en
Publication of JPH06148232A publication Critical patent/JPH06148232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a sensor which does not require sophisticated processing accuracy by detecting the shift difference and the direction when a mass part shifts in accordance with the acceleration as the change of the capacitance between an upper and a lower electrodes. CONSTITUTION:An acceleration sensor 11 is constituted of a mass part 13 having an upper electrode 12 provided at the lower end part thereof, a spiral movable part 14 set at the upper end part of the mass part 13 and supporting the mass part 13 in an oscillatory fashion in three dimensions, a disc-like fixing part 15 for supporting and fixing the other end part of the movable part 14 and lower electrodes 16-19 below the mass part 13 and arranged in matrix on the same plane opposite to the upper electrode 12. When an acceleration works, the mass part 13 shifts in proportion to the size of the acceleration in a direction of the acceleration. The shift changes the capacitance between the upper electrode 12 and each of the lower electrodes 16-19. The shift difference and three-dimensional direction of the acceleration added to the mass part 13 can be obtained from the changing amount of the capacitance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車、航空機、家
電製品等に用いて好適な静電容量型の加速度センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type acceleration sensor suitable for use in automobiles, aircrafts, home electric appliances and the like.

【0002】[0002]

【従来の技術】従来、圧電セラミックス、有機薄膜、シ
リコン単結晶板等様々な材料を用いた多種多様の加速度
センサが開発され製品化されている。これらの加速度セ
ンサは、ヒステリシス、クリープ、疲労等がなく、ま
た、構造が簡単、電圧感度が極めて大、簡単に増幅可能
等、使い勝手の面においても非常に優れていることか
ら、現在様々な分野で広く用いられている。中でも、シ
リコン単結晶を用いた半導体加速度センサは、シリコン
自体の格子欠陥が極めて少ないために理想的な弾性体と
なること、半導体プロセス技術をそのまま転用すること
ができること等の特徴を有することから、近年では特に
注目されているセンサである。
2. Description of the Related Art Conventionally, a wide variety of acceleration sensors using various materials such as piezoelectric ceramics, organic thin films, and silicon single crystal plates have been developed and commercialized. These acceleration sensors have no hysteresis, creep, fatigue, etc., are simple in structure, have extremely large voltage sensitivity, and can be easily amplified. Widely used in. Among them, a semiconductor acceleration sensor using a silicon single crystal has features such as being an ideal elastic body because the lattice defects of silicon itself are extremely small, and being capable of diverting the semiconductor process technology as it is, In recent years, it is a sensor that has attracted particular attention.

【0003】図5及び図6は、上記の半導体加速度セン
サの一例を示す図である。この半導体加速度センサ1
は、シリコン(Si)基板(110)(半導体基板)2
の中央部に形成された角錐台状の質量部3と、該質量部
3の周囲に形成された矩形状の枠部4と、前記Si基板
2を下方からエッチングすることにより質量部3と枠部
4との間に形成された一対の梁部(弾性部)5,5と、
これらの梁部5の上面5aに不純物拡散により形成され
た複数対のピエゾ抵抗6,6,… とから構成されてい
る。上記の梁部5,5は、質量部3の周囲に薄厚なダイ
ヤフラム部を設けた構成とすることもあり、またSi基
板2の中央部に略C字状の空隙部を形成し、質量部3を
片持ちの梁で支持した構成とすることもある。この半導
体加速度センサ1では、質量部3が加速度に応じて変位
する時の変位の大きさを、梁部5,5のピエゾ抵抗6,
6,…の抵抗値の変化に変換することで加速度の変位差
を検出している。
5 and 6 are views showing an example of the above semiconductor acceleration sensor. This semiconductor acceleration sensor 1
Is a silicon (Si) substrate (110) (semiconductor substrate) 2
The truncated pyramid-shaped mass part 3 formed in the central part, the rectangular frame part 4 formed around the mass part 3, and the mass part 3 and the frame by etching the Si substrate 2 from below. A pair of beam portions (elastic portions) 5 and 5 formed between the portion 4 and
A plurality of pairs of piezoresistors 6, 6, ... Are formed on the upper surface 5a of these beam portions 5 by impurity diffusion. The beam portions 5 and 5 may be configured such that a thin diaphragm portion is provided around the mass portion 3, and a substantially C-shaped void portion is formed in the central portion of the Si substrate 2 so that the mass portion 3 may be supported by a cantilever beam. In this semiconductor acceleration sensor 1, the magnitude of displacement when the mass part 3 is displaced in accordance with acceleration is determined by the piezoresistors 6, 6 of the beam parts 5, 5.
The displacement difference of acceleration is detected by converting into the change of the resistance value of 6, ...

【0004】[0004]

【発明が解決しようとする課題】ところで、前記半導体
加速度センサ1においては、ピエゾ抵抗6,6,…の抵
抗値の変化に伴う出力は、梁部5,5またはダイヤフラ
ム部の厚み及び大きさに依存するという性質があり、こ
れらのピエゾ抵抗6,6,…の出力のバラツキを小さく
するためには梁部5,5やダイヤフラム部の厚み及び大
きさを精密に制御する必要がある。しかしながら、この
梁部5の厚みは5〜50μm程度でダイヤフラム部の厚
みはこれより更に薄いために、Si基板2に複雑な形状
の質量部3や梁部5,5またはダイヤフラム部を精度良
く加工することが難しく、したがって、これらのピエゾ
抵抗6,6,…の抵抗値の変化に伴う出力のバラツキを
小さくすることができないという欠点があった。
By the way, in the semiconductor acceleration sensor 1, the output due to the change in the resistance value of the piezoresistors 6, 6, ... Is determined by the thickness and size of the beam portions 5, 5 or the diaphragm portion. , And the thickness and size of the beam portions 5, 5 and the diaphragm portion must be precisely controlled in order to reduce variations in the outputs of these piezoresistors 6, 6, .... However, since the thickness of the beam portion 5 is about 5 to 50 μm and the thickness of the diaphragm portion is thinner than this, the mass portion 3 having the complicated shape, the beam portions 5, 5 or the diaphragm portion is accurately processed on the Si substrate 2. However, there is a drawback in that variations in the output due to changes in the resistance values of these piezoresistors 6, 6, ... Can not be reduced.

【0005】この発明は、上記の事情に鑑みてなされた
ものであって、ピエゾ抵抗を用いる必要がなく、しかも
高精度の加工精度を必要としない加速度センサを提供す
ることにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an acceleration sensor that does not require the use of piezoresistors and does not require high-precision machining.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は次の様な加速度センサを採用した。すな
わち、下端部に上部電極が設けられ三次元方向に揺動可
能な質量部と、該質量部を三次元方向に揺動可能に支持
する可動部と、前記質量部の下方に前記上部電極に対向
して同一平面上に配列された複数の下部電極とを備え、
前記質量部が加速度に応じて変位する時の変位差及び方
向を、前記上部電極と複数の下部電極との間の静電容量
の変化として検知し、この検知された値から前記加速度
の変位差及び方向を求めることを特徴としている。
In order to solve the above problems, the present invention employs the following acceleration sensor. That is, an upper electrode is provided at a lower end portion and a mass portion that can swing in three-dimensional directions, a movable portion that supports the mass portion so as to swing in three-dimensional directions, and a lower portion of the mass electrode below the mass portion. A plurality of lower electrodes arranged facing each other on the same plane,
A displacement difference and a direction when the mass portion is displaced according to acceleration are detected as a change in capacitance between the upper electrode and a plurality of lower electrodes, and the displacement difference of the acceleration is detected from the detected value. It is characterized by determining the direction and the direction.

【0007】[0007]

【作用】この発明に係る加速度センサでは、該加速度セ
ンサにある加速度が作用すると、質量部はこの加速度の
方向にこの加速度の大きさに比例して変位する。この変
位により質量部に設けられた上部電極と複数の下部電極
との間の各々の静電容量が変化し、これらの静電容量の
変化量の大きさから前記質量部にかかる加速度の変位差
及び方向を求める。
In the acceleration sensor according to the present invention, when an acceleration acts on the acceleration sensor, the mass portion is displaced in the direction of the acceleration in proportion to the magnitude of the acceleration. Due to this displacement, each capacitance between the upper electrode and the plurality of lower electrodes provided on the mass portion changes, and the displacement difference of the acceleration applied to the mass portion from the magnitude of the change amount of these capacitances. And ask for the direction.

【0008】[0008]

【実施例】以下、この発明の一実施例の加速度センサ1
1について図1乃至図4に基づき説明する。この加速度
センサ11は、下端部に上部電極12が設けられた質量
部13と、該質量部13の上端部に取り付けられ該質量
部13を三次元方向に揺動可能に支持する弾性を有する
渦巻状の可動部14と、該可動部14の他端部を支持し
固定する円形状の枠部15と、前記質量部13の下方に
位置し上部電極12に対向して同一平面上に格子状に配
列された4つの下部電極16〜19とから構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An acceleration sensor 1 according to an embodiment of the present invention will be described below.
1 will be described with reference to FIGS. 1 to 4. The acceleration sensor 11 includes a mass portion 13 having an upper electrode 12 provided at a lower end portion thereof, and an elastic spiral attached to an upper end portion of the mass portion 13 for swingably supporting the mass portion 13 in a three-dimensional direction. -Shaped movable portion 14, a circular frame portion 15 that supports and fixes the other end of the movable portion 14, a grid-shaped portion that is located below the mass portion 13 and faces the upper electrode 12, and is on the same plane. It is composed of four lower electrodes 16 to 19 arranged in a line.

【0009】前記上部電極12と下部電極16〜19各
々との間にはコンデンサが形成され、上部電極12が下
部電極16〜19に対して三次元方向に揺動することに
より、該上部電極12と下部電極16〜19各々との間
の静電容量が変化するように構成されている。そして、
下部電極16〜19各々には、それぞれリード線21〜
24が接続されている。また、前記質量部13、可動部
14及び枠部15は、肉厚のシリコンウエハを所定の条
件の下でエッチングすることにより一体に形成されてい
る。これら質量部13、可動部14及び枠部15は、上
記のもの以外に、例えば、CVD、スパッタ蒸着、熱酸
化等により、ホウケイ酸のガラス基板、石英ガラス基板
等に、多結晶シリコン、酸化ケイ素、窒化ケイ素等をエ
ピタキシャル成長させたものも適用可能である。また、
リード線21〜24の材料としては、アルミニウム(A
l)等の金属、リン等をドープした多結晶シリコン等が
好適に用いられる。
A capacitor is formed between the upper electrode 12 and each of the lower electrodes 16 to 19, and the upper electrode 12 swings with respect to the lower electrodes 16 to 19 in a three-dimensional direction, whereby the upper electrode 12 is formed. And the capacitance between the lower electrodes 16 to 19 are changed. And
Lead wires 21 to 21 are respectively provided to the lower electrodes 16 to 19, respectively.
24 is connected. The mass portion 13, the movable portion 14, and the frame portion 15 are integrally formed by etching a thick silicon wafer under predetermined conditions. The mass portion 13, the movable portion 14, and the frame portion 15 are not limited to those described above, and are made of, for example, a glass substrate of borosilicate, a quartz glass substrate, or the like, polycrystalline silicon, or silicon oxide by CVD, sputter deposition, thermal oxidation, or the like. Those obtained by epitaxially growing silicon nitride, etc. are also applicable. Also,
As a material for the lead wires 21 to 24, aluminum (A
A metal such as l), polycrystalline silicon doped with phosphorus or the like is preferably used.

【0010】図4は、上部電極12と下部電極16〜1
9とから構成される等価回路を図示したもので、該上部
電極12と下部電極16〜19各々との間の各々の静電
容量の変化を可変なコンデンサと等価としたものであ
る。
FIG. 4 shows an upper electrode 12 and lower electrodes 16-1.
9 shows an equivalent circuit composed of 9 and the change in capacitance between the upper electrode 12 and each of the lower electrodes 16 to 19 is equivalent to a variable capacitor.

【0011】この加速度センサ11では、該加速度セン
サ11にある加速度が作用すると、質量部13はこの加
速度の方向にこの加速度の大きさに比例して変位する。
この変位により上部電極12と下部電極16〜19各々
との間の静電容量が変化し、これらの静電容量の変化量
の大きさから前記質量部13にかかる加速度の変位差及
び三次元の方向を求めることができる。
In this acceleration sensor 11, when an acceleration acts on the acceleration sensor 11, the mass portion 13 is displaced in the direction of this acceleration in proportion to the magnitude of this acceleration.
Due to this displacement, the electrostatic capacitance between the upper electrode 12 and each of the lower electrodes 16 to 19 changes, and from the magnitude of the amount of change in these electrostatic capacitances, the displacement difference of the acceleration applied to the mass portion 13 and the three-dimensional You can find the direction.

【0012】例えば、質量部13が下部電極16〜19
に対して垂直方向(Z方向)に揺動すると、上部電極1
2と下部電極16〜19各々との間の各静電容量の変化
量は全く同一となる。したがって、これらの静電容量の
変化量から質量部13にかかる加速度の変位差及び方向
(この場合Z方向)を求めることができる。また、質量
部13が下部電極16〜19に対して水平方向(X方
向)に揺動すると、上部電極12と下部電極16,18
各々との間の各静電容量の変化量は、上部電極12と下
部電極17,19各々との間の各静電容量の変化量と絶
対値が等しく符号が反対となる。したがって、これらの
静電容量の変化量から質量部13にかかる加速度の変位
差及び方向(この場合X方向)を求めることができる。
また、質量部13がY方向に揺動する場合も同様であ
る。これらを組み合わせることにより、前記質量部13
にかかる加速度の三次元方向の変位差及び方向を求める
ことができる。
For example, the mass portion 13 has the lower electrodes 16 to 19
When oscillating in the direction perpendicular to (Z direction) with respect to, the upper electrode 1
2 and the lower electrodes 16 to 19 have the same amount of change in each capacitance. Therefore, the displacement difference and direction of the acceleration applied to the mass portion 13 (in this case, the Z direction) can be obtained from the amount of change in these capacitances. When the mass part 13 swings in the horizontal direction (X direction) with respect to the lower electrodes 16 to 19, the upper electrode 12 and the lower electrodes 16 and 18 are moved.
The change amount of each capacitance between each of them is equal in absolute value to the change amount of each capacitance between each of the upper electrode 12 and each of the lower electrodes 17 and 19 and has the opposite sign. Therefore, the displacement difference and the direction of the acceleration applied to the mass portion 13 (in this case, the X direction) can be obtained from the amount of change in the capacitance.
The same applies when the mass unit 13 swings in the Y direction. By combining these, the mass part 13
It is possible to determine the displacement difference and the direction of the acceleration applied to the three-dimensional direction.

【0013】以上説明した様に、上記の加速度センサ1
1によれば、下端部に上部電極12が設けられた質量部
13と、該質量部13を三次元方向に揺動可能に支持す
る可動部14と、該可動部14を支持し固定する枠部1
5と、前記質量部13の下方に上部電極12に対向して
同一平面上に配列された4つの下部電極16〜19とか
ら構成され、該上部電極12が下部電極16〜19に対
して三次元方向に揺動することにより、該上部電極12
と下部電極16〜19各々との間の静電容量が変化する
ように構成したので、前記上部電極12と下部電極16
〜19各々との間の静電容量の変化量の大きさから前記
質量部13にかかる加速度の三次元方向の各々の変位差
及び方向を高精度で求めることができる。
As described above, the above acceleration sensor 1
According to 1, the mass part 13 having the upper electrode 12 provided at the lower end, the movable part 14 that supports the mass part 13 so as to be swingable in the three-dimensional direction, and the frame that supports and fixes the movable part 14. Part 1
5 and four lower electrodes 16 to 19 arranged on the same plane below the mass unit 13 so as to face the upper electrode 12, and the upper electrode 12 is tertiary with respect to the lower electrodes 16 to 19. By swinging in the original direction, the upper electrode 12
Since the electrostatic capacitance between the upper electrode 12 and the lower electrodes 16 to 19 is changed,
.About.19, the displacement difference and direction in each of the three-dimensional directions of acceleration applied to the mass portion 13 can be obtained with high accuracy from the magnitude of the amount of change in capacitance between each of them.

【0014】また、質量部13及び可動部14各々は、
従来の梁部やダイヤフラム部のような高精度の加工精度
を必要としないので、製造工程を簡単化することがで
き、加速度センサ11の歩留まりを向上させることがで
き、製造コストを低減することができる。
Further, each of the mass portion 13 and the movable portion 14 is
Since it does not require high-precision machining accuracy as in the conventional beam portion or diaphragm portion, the manufacturing process can be simplified, the yield of the acceleration sensor 11 can be improved, and the manufacturing cost can be reduced. it can.

【0015】なお、上記の加速度センサ11の質量部1
3、可動部14及び枠部15の形状、上部電極12と下
部電極16〜19各々との間の位置関係及びこれらの数
量については上記の一実施例に限定されることなく種々
の変形が可能である。例えば、可動部14をバネ状の構
成としてもよく、また、下部電極16〜19を円形状に
配置してもよい。
The mass portion 1 of the acceleration sensor 11 described above
3, the shapes of the movable portion 14 and the frame portion 15, the positional relationship between the upper electrode 12 and each of the lower electrodes 16 to 19 and the quantity thereof are not limited to the one embodiment described above, and various modifications are possible. Is. For example, the movable portion 14 may have a spring-like configuration, and the lower electrodes 16 to 19 may be arranged in a circular shape.

【0016】[0016]

【発明の効果】以上説明した様に、この発明の加速度セ
ンサによれば、下端部に上部電極が設けられ三次元方向
に揺動可能な質量部と、該質量部を三次元方向に揺動可
能に支持する可動部と、前記質量部の下方に前記上部電
極に対向して同一平面上に配列された複数の下部電極と
を備え、前記質量部が加速度に応じて変位する時の変位
差及び方向を、前記上部電極と複数の下部電極との間の
静電容量の変化として検知し、この検知された値から前
記加速度の変位差及び方向を求めることとしたので、前
記上部電極と複数の下部電極各々との間の静電容量の変
化量の大きさから前記質量部にかかる加速度の三次元方
向の各々の変位差及び方向を高精度で求めることができ
る。
As described above, according to the acceleration sensor of the present invention, the lower electrode is provided with the upper electrode, and the mass portion is swingable in the three-dimensional direction, and the mass portion is swung in the three-dimensional direction. Displacement difference when the mass part is displaced according to acceleration, comprising a movable part that supports the mass part, and a plurality of lower electrodes that are arranged on the same plane below the mass part so as to face the upper electrode. And the direction are detected as a change in capacitance between the upper electrode and the plurality of lower electrodes, and the displacement difference and the direction of the acceleration are obtained from the detected values. The displacement difference and direction in each of the three-dimensional directions of the acceleration applied to the mass portion can be obtained with high accuracy from the magnitude of the amount of change in capacitance between each of the lower electrodes.

【0017】また、質量部及び可動部各々は、従来の梁
部やダイヤフラム部のような高精度の加工精度を必要と
しないので、製造工程を簡単化することができ、加速度
センサの歩留まりを向上させることができ、製造コスト
を低減することができる。
Further, since the mass portion and the movable portion do not require the high precision processing accuracy of the conventional beam portion and diaphragm portion, the manufacturing process can be simplified and the yield of the acceleration sensor is improved. Therefore, the manufacturing cost can be reduced.

【0018】以上により、従来のようにピエゾ抵抗を用
いる必要がなく、しかも高精度の加工精度を必要としな
い、静電容量型の加速度センサを提供することができ
る。
As described above, it is possible to provide a capacitance type acceleration sensor which does not require the use of a piezoresistor as in the conventional case and which does not require high precision processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の加速度センサを示す側面図である。FIG. 1 is a side view showing an acceleration sensor of the present invention.

【図2】 本発明の加速度センサを示す上面図である。FIG. 2 is a top view showing an acceleration sensor of the present invention.

【図3】 本発明の加速度センサの下部電極の配置を示
す平面図である。
FIG. 3 is a plan view showing the arrangement of lower electrodes of the acceleration sensor of the present invention.

【図4】 本発明の加速度センサの等価回路を示す図で
ある。
FIG. 4 is a diagram showing an equivalent circuit of the acceleration sensor of the present invention.

【図5】 従来の半導体加速度センサを示す斜視図であ
る。
FIG. 5 is a perspective view showing a conventional semiconductor acceleration sensor.

【図6】 図5のAーA線に沿う断面図である。6 is a sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

11…加速度センサ、12…上部電極、13…質量部、
14…可動部、15…枠部、16〜19…下部電極 2
1〜24…リード線。
11 ... Acceleration sensor, 12 ... Upper electrode, 13 ... Mass part,
14 ... Movable part, 15 ... Frame part, 16-19 ... Lower electrode 2
1 to 24 ... Lead wire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下端部に上部電極が設けられ三次元方向
に揺動可能な質量部と、該質量部を三次元方向に揺動可
能に支持する可動部と、前記質量部の下方に前記上部電
極に対向して同一平面上に配列された複数の下部電極と
を備え、 前記質量部が加速度に応じて変位する時の変位差及び方
向を、前記上部電極と複数の下部電極との間の静電容量
の変化として検知し、この検知された値から前記加速度
の変位差及び方向を求めることを特徴とする加速度セン
サ。
1. A mass part which is provided with an upper electrode at its lower end and is capable of swinging in three-dimensional directions, a movable part which supports the mass parts so as to be swingable in three-dimensional directions, and a portion below the mass part. A plurality of lower electrodes arranged on the same plane so as to face the upper electrode, and a displacement difference and a direction when the mass portion is displaced according to acceleration are measured between the upper electrode and the plurality of lower electrodes. Is detected as a change in the capacitance of the acceleration sensor, and the displacement difference and the direction of the acceleration are obtained from the detected value.
JP4302620A 1992-11-12 1992-11-12 Acceleration sensor Pending JPH06148232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302620A JPH06148232A (en) 1992-11-12 1992-11-12 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302620A JPH06148232A (en) 1992-11-12 1992-11-12 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH06148232A true JPH06148232A (en) 1994-05-27

Family

ID=17911180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302620A Pending JPH06148232A (en) 1992-11-12 1992-11-12 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH06148232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789425B2 (en) 2001-08-01 2004-09-14 Nagano Fujitsu Component Limited Acceleration-sensing system
CN101865933A (en) * 2010-06-07 2010-10-20 瑞声声学科技(深圳)有限公司 Differential Capacitive Accelerometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789425B2 (en) 2001-08-01 2004-09-14 Nagano Fujitsu Component Limited Acceleration-sensing system
CN101865933A (en) * 2010-06-07 2010-10-20 瑞声声学科技(深圳)有限公司 Differential Capacitive Accelerometer

Similar Documents

Publication Publication Date Title
US4553436A (en) Silicon accelerometer
US5275055A (en) Resonant gauge with microbeam driven in constant electric field
US5567880A (en) Semiconductor accelerometer
US6159761A (en) Method of manufacturing a force sensor having an electrode which changes resistance or electrostatic capacitance in response to force
JP2896725B2 (en) Capacitive pressure sensor
US5772322A (en) Resonant microbeam temperature sensor
US5036286A (en) Magnetic and electric force sensing method and apparatus
CN109786422A (en) Piezoelectric excitation tension silicon micro-resonant pressure sensor chip and preparation method thereof
CN112611501B (en) Resonant differential pressure sensor and compensation method
KR100508198B1 (en) Acceleration sensor
EP0855583A2 (en) Device for measuring a pressure
JPH06148232A (en) Acceleration sensor
JPH04178533A (en) Semiconductor pressure sensor
JPH10178183A (en) Semiconductor inertial sensor and manufacture thereof
JPH10239345A (en) Semiconductor sensor
JPH055750A (en) Semiconductor acceleration sensor
CN221147909U (en) Temperature, acceleration and pressure sensor chip based on SOI isolation technology
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH0337534A (en) Semiconductor strain detecting apparatus
Igarashi Semiconductor dynamic sensors
Duqi et al. Pressure Sensors
JP2507840B2 (en) Semiconductor acceleration sensor
JPH11101818A (en) Semiconductor sensor and method of manufacturing the same
JPS62190775A (en) Sensor for acceleration
JPH0821774A (en) Semiconductor pressure sensor and its manufacture