JPH06147675A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JPH06147675A
JPH06147675A JP4301974A JP30197492A JPH06147675A JP H06147675 A JPH06147675 A JP H06147675A JP 4301974 A JP4301974 A JP 4301974A JP 30197492 A JP30197492 A JP 30197492A JP H06147675 A JPH06147675 A JP H06147675A
Authority
JP
Japan
Prior art keywords
heating
heat exchanger
cooling
auxiliary heat
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4301974A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Masao Kurachi
正夫 蔵地
Nobuhiro Nakagawa
信博 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP4301974A priority Critical patent/JPH06147675A/en
Publication of JPH06147675A publication Critical patent/JPH06147675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a comfortable multi-chamber type cooling or heating device preventing a lack of capacity of an indoor device in a system in which each of indoor devices can perform a cooling or a heating operation in an independent manner by a method wherein the refrigerant is prevented from being accumulated in a heat exchanger at a heat source even in the case where a cooling load and a heating load become substantially equal to each other and a pressure reducing device is closed. CONSTITUTION:This multi-chamber type air conditioner comprises a pressure reducing device opening degree sensing means 38 for sensing a degree of opening of a pressure reducing device 23, a three-way valve operating means 39 in which a three-way valve 25 is communicated with an evaporating circuit 26 and a condensing circuit 26' is closed, a surrounding air temperature sensor 40, a suction pressure sensor 41, a pressure comparing means 42 for comparing pressures to each other, and a pressure reducing device fine opening means 43 for adjusting the pressure reducing device 23 to a degree of opening of a specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱源側冷媒サイクルと
利用側冷媒サイクルに分離された多室冷暖房装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber cooling / heating apparatus separated into a heat source side refrigerant cycle and a use side refrigerant cycle.

【0002】[0002]

【従来の技術】従来の技術としては特開平1−2753
14号公報で知られるような多室冷暖房装置がある。
2. Description of the Related Art As a conventional technique, Japanese Patent Laid-Open No. 1-2753
There is a multi-room air conditioner as known from JP-A-14.

【0003】以下、図面を参照しながら従来の技術につ
いて説明する。図3において、1は圧縮機、19は暖房
用第1補助熱交換器である。20は第1制御弁であり、
電動膨張弁を使用している。21は第2制御弁であり、
電動膨張弁を使用している。22は冷房用第1補助熱交
換器である。23は減圧装置であり、電動膨張弁を使用
している。24は熱源側熱交換器である。25は三方弁
である。26は蒸発回路、26’は凝縮回路であり、こ
れらは三方弁25により切り換えられる。圧縮機1、暖
房用第1補助熱交換器19、第1制御弁20、第2制御
弁21、冷房用第1補助熱交換器22、減圧装置23、
熱源側熱交換器24、三方弁25、蒸発回路26、凝縮
回路26’を連接して熱源側冷媒サイクル27を形成し
ている。
A conventional technique will be described below with reference to the drawings. In FIG. 3, 1 is a compressor, and 19 is a first auxiliary heat exchanger for heating. 20 is the first control valve,
It uses an electric expansion valve. 21 is a second control valve,
It uses an electric expansion valve. 22 is a first auxiliary heat exchanger for cooling. A decompression device 23 uses an electric expansion valve. 24 is a heat source side heat exchanger. 25 is a three-way valve. 26 is an evaporation circuit and 26 'is a condensation circuit, which are switched by a three-way valve 25. Compressor 1, heating first auxiliary heat exchanger 19, first control valve 20, second control valve 21, cooling first auxiliary heat exchanger 22, decompression device 23,
The heat source side heat exchanger 24, the three-way valve 25, the evaporation circuit 26, and the condensing circuit 26 ′ are connected to form a heat source side refrigerant cycle 27.

【0004】28は暖房用第2補助熱交換器であり、暖
房用第1補助熱交換器19と熱交換するように一体に形
成された積層熱交換器を使用している。29は暖房用冷
媒搬送装置であり、冷媒ポンプを使用している。30は
冷房用第2補助熱交換器であり、冷房用第1補助熱交換
器22と熱交換するように一体に形成された積層熱交換
器を使用している。31は冷房用冷媒搬送装置であり、
冷媒ポンプを使用している。
Reference numeral 28 denotes a second heating auxiliary heat exchanger, which uses a laminated heat exchanger integrally formed with the first heating auxiliary heat exchanger 19 so as to exchange heat. Reference numeral 29 denotes a heating refrigerant transfer device, which uses a refrigerant pump. Reference numeral 30 denotes a cooling second auxiliary heat exchanger, which uses a laminated heat exchanger integrally formed so as to exchange heat with the cooling first auxiliary heat exchanger 22. Reference numeral 31 is a cooling medium transfer device,
You are using a refrigerant pump.

【0005】熱源側冷媒サイクル27、暖房用第2補助
熱交換器28、暖房用冷媒搬送装置29、冷房用第2補
助熱交換器30、冷房用冷媒搬送装置31は熱源ユニッ
ト32に収納されている。
The heat source side refrigerant cycle 27, the heating second auxiliary heat exchanger 28, the heating refrigerant transfer device 29, the cooling second auxiliary heat exchanger 30, and the cooling refrigerant transfer device 31 are housed in the heat source unit 32. There is.

【0006】33a,33bは暖房用利用側熱交換器で
ある。34a,34bは暖房用能力制御弁であり、電動
膨張弁を使用しており、暖房用利用側熱交換器33a,
33bにそれぞれ直列に接続されている。
Numerals 33a and 33b are heating side heat exchangers. 34a and 34b are heating capacity control valves, which use electric expansion valves, and are used for heating side heat exchangers 33a,
33b are respectively connected in series.

【0007】暖房用第2補助熱交換器28、暖房用冷媒
搬送装置29、暖房用利用側熱交換器33a,33b、
暖房用能力制御弁34a,34bを環状に連接して暖房
用利用側冷媒サイクルを形成している。
The second auxiliary heat exchanger 28 for heating, the refrigerant transfer device 29 for heating, the heat exchangers 33a and 33b for heating,
The heating capacity control valves 34a and 34b are connected in a ring shape to form a heating use side refrigerant cycle.

【0008】35a,35bは冷房用利用側熱交換器で
ある。36a,36bは冷房用能力制御弁であり、電動
膨張弁を使用しており、冷房用利用側熱交換器35a,
35bにそれぞれ直列に接続されている。
Reference numerals 35a and 35b are cooling side use side heat exchangers. Reference numerals 36a and 36b are cooling capacity control valves, which use electric expansion valves, and are used for cooling side heat exchangers 35a, 35a.
35b are respectively connected in series.

【0009】冷房用第2補助熱交換器30、冷房用冷媒
搬送装置31、冷房用能力制御弁36a,36b、冷房
用利用側熱交換器35a,35bを環状に連接して冷房
用利用側冷媒サイクルを形成している。
The second auxiliary heat exchanger for cooling 30, the cooling medium transfer device 31, the cooling capacity control valves 36a and 36b, and the cooling side heat exchangers 35a and 35b are annularly connected to each other to cool the cooling side refrigerant. Forming a cycle.

【0010】37a,37bは室内ユニットであり、暖
房用利用側熱交換器33a,33b、暖房用能力制御弁
34a,34b、冷房用利用側熱交換器35a,35
b、冷房用能力制御弁36a,36bをそれぞれ収納し
ている。
Reference numerals 37a and 37b denote indoor units, which are heating side heat exchangers 33a and 33b, heating capacity control valves 34a and 34b, and cooling side heat exchangers 35a and 35, respectively.
b, and cooling capacity control valves 36a and 36b, respectively.

【0011】以上のように構成された多室冷暖房装置に
ついてその動作を説明する。室内ユニット37a,37
bの両方が冷房運転の場合、熱源側冷媒サイクルでは、
第1制御弁20を閉成し、三方弁25を切り換えて凝縮
回路26’を連通させる。
The operation of the multi-room cooling and heating apparatus configured as described above will be described. Indoor units 37a, 37
When both b are in the cooling operation, in the heat source side refrigerant cycle,
The first control valve 20 is closed, and the three-way valve 25 is switched to connect the condensing circuit 26 '.

【0012】圧縮機1からの高温高圧ガス冷媒は凝縮回
路26’、三方弁25を通って熱源側熱交換器24で放
熱して凝縮液化し、減圧装置23で減圧されて第2制御
弁21を通って冷房用第1補助熱交換器22で吸熱して
蒸発ガス化し圧縮機1へ循環する。
The high-temperature high-pressure gas refrigerant from the compressor 1 passes through the condensing circuit 26 'and the three-way valve 25 to radiate heat in the heat source side heat exchanger 24 to be condensed and liquefied, and is decompressed by the decompression device 23 to be the second control valve 21. The heat is absorbed by the first auxiliary heat exchanger 22 for cooling, evaporated into gas, and circulated to the compressor 1.

【0013】この時、冷房用第2補助熱交換器30と冷
房用第1補助熱交換器22が熱交換し、冷房用利用側冷
媒サイクル内のガス冷媒は冷却されて液化し、冷房用冷
媒搬送装置31に送られる。この冷房用冷媒搬送装置3
1から吐出された液冷媒は冷房用能力制御弁36a,3
6bへ流通して適性に流量制御され、冷房用利用側熱交
換器35a,35bへ送られて吸熱し、蒸発ガス化して
冷房用第2補助熱交換器30に循環する。
At this time, the second cooling auxiliary heat exchanger 30 and the first cooling auxiliary heat exchanger 22 exchange heat, and the gas refrigerant in the cooling user side refrigerant cycle is cooled and liquefied, and the cooling refrigerant is cooled. It is sent to the transport device 31. This cooling medium carrier 3
The liquid refrigerant discharged from No. 1 is used as a cooling capacity control valve 36a, 3
6b, the flow rate is controlled appropriately, and it is sent to the cooling use side heat exchangers 35a and 35b to absorb heat, evaporate into gas, and circulate in the cooling second auxiliary heat exchanger 30.

【0014】この時、例えば室内ユニット37aを暖房
運転にする場合、冷房用能力制御弁36aを閉成し、第
1制御弁20を開成して暖房用利用側冷媒サイクルが運
転される。つまり、暖房用冷媒搬送装置29から送られ
た暖房用利用側冷媒サイクルの冷媒は、暖房用第2補助
熱交換器28へ送られ、暖房用第1補助熱交換器19で
加熱ガス化され、暖房用利用側熱交換器33aへ送られ
暖房用能力制御弁34aで流量制御されながら暖房して
凝縮液化し、暖房用冷媒搬送装置29へ循環する。
At this time, for example, when heating the indoor unit 37a, the cooling capacity control valve 36a is closed and the first control valve 20 is opened to operate the heating use side refrigerant cycle. That is, the refrigerant of the heating-use side refrigerant cycle sent from the heating refrigerant transfer device 29 is sent to the second heating auxiliary heat exchanger 28 and is heated and gasified by the first heating auxiliary heat exchanger 19. It is sent to the heating use side heat exchanger 33a and heated and condensed and liquefied while the flow rate is controlled by the heating capacity control valve 34a, and circulates to the heating refrigerant transfer device 29.

【0015】この時、第1制御弁20と減圧装置23の
開度調整で暖房用第1補助熱交換器19と熱源側熱交換
器24の凝縮量を制御し、第2制御弁21の開度調整で
冷房用第1補助熱交換器22の蒸発量を制御することに
より、熱源側冷媒サイクル27の熱収支のバランスを保
っている。
At this time, the opening amounts of the first control valve 20 and the pressure reducing device 23 are adjusted to control the amount of condensation of the first heating auxiliary heat exchanger 19 and the heat source side heat exchanger 24, and the second control valve 21 is opened. The heat balance of the heat source side refrigerant cycle 27 is maintained by controlling the evaporation amount of the first cooling auxiliary heat exchanger 22 by adjusting the degree.

【0016】もし、暖房負荷が冷房負荷より大きくなっ
た場合には、三方弁25が切り換わって蒸発回路26が
連通し、熱源側熱交換器24が蒸発器となり、減圧装置
23の開度調整で熱源側熱交換器24の蒸発量を制御す
ることにより、熱源側冷媒サイクル27の熱収支のバラ
ンスを保つ。
If the heating load becomes larger than the cooling load, the three-way valve 25 is switched to communicate with the evaporation circuit 26, the heat source side heat exchanger 24 functions as an evaporator, and the opening degree of the decompression device 23 is adjusted. By controlling the evaporation amount of the heat source side heat exchanger 24, the heat balance of the heat source side refrigerant cycle 27 is maintained in balance.

【0017】一方、室内ユニット37a,37bの両方
が暖房運転の場合、熱源側冷媒サイクルでは、第2制御
弁21を閉成し、三方弁25によって蒸発回路26を連
通させる。
On the other hand, when both the indoor units 37a and 37b are in the heating operation, in the heat source side refrigerant cycle, the second control valve 21 is closed and the three-way valve 25 connects the evaporation circuit 26.

【0018】圧縮機1からの高温高圧ガス冷媒は暖房用
第1補助熱交換器19に送られ、放熱して凝縮液化し、
第1制御弁20を通って減圧装置23で減圧され、熱源
側熱交換器24で吸熱して蒸発ガス化し、三方弁25と
蒸発回路26を通って圧縮機1へ循環する。
The high-temperature high-pressure gas refrigerant from the compressor 1 is sent to the first heating auxiliary heat exchanger 19 and radiates heat to condense and liquefy,
It is decompressed by the decompression device 23 through the first control valve 20, absorbs heat by the heat source side heat exchanger 24 to be vaporized, and circulates to the compressor 1 through the three-way valve 25 and the evaporation circuit 26.

【0019】この時、暖房用第2補助熱交換器28と暖
房用第1補助熱交換器19が熱交換し、暖房用利用側冷
媒サイクル内の液冷媒が加熱されてガス化し、暖房用利
用側熱交換器33a,33bへ送られ、暖房用能力制御
弁34a,34bで適正に流量制御されながら暖房して
凝縮液化し、暖房用冷媒搬送装置29へ送られ、暖房用
第2補助熱交換器28へ循環する。
At this time, the second heating auxiliary heat exchanger 28 and the first heating auxiliary heat exchanger 19 exchange heat, and the liquid refrigerant in the heating-use side refrigerant cycle is heated and gasified to be used for heating. It is sent to the side heat exchangers 33a and 33b, heated and condensed and liquefied while the flow rate is appropriately controlled by the heating capacity control valves 34a and 34b, and sent to the heating refrigerant transfer device 29, and the second auxiliary heat exchange for heating. It circulates to the container 28.

【0020】この時、例えば室内ユニット37aを冷房
運転する場合、暖房用能力制御弁34aを閉成し、第2
制御弁21を開成して冷房用利用側冷媒サイクルが運転
される。つまり、冷房用第2補助熱交換器30で冷房用
第1補助熱交換器22に放熱して液化した冷媒は冷房用
冷媒搬送装置31から冷房用能力制御弁36aに送ら
れ、適正に流量制御されて冷房用利用側熱交換器35a
で吸熱して蒸発ガス化し、冷房用第2補助熱交換器30
へ循環する。
At this time, for example, when the indoor unit 37a is operated for cooling, the heating capacity control valve 34a is closed and the second
The control valve 21 is opened to operate the cooling side refrigerant cycle. That is, the refrigerant that radiates heat to the first cooling auxiliary heat exchanger 22 in the cooling second auxiliary heat exchanger 30 and is liquefied is sent from the cooling refrigerant transfer device 31 to the cooling capacity control valve 36a to appropriately control the flow rate. The cooling side heat exchanger 35a
2nd auxiliary heat exchanger 30 for cooling
Circulate to.

【0021】この時、第2制御弁21と減圧装置23の
開度調整で冷房用第1補助熱交換器22と熱源側熱交換
器24の蒸発量を制御し、第1制御弁20の開度調整で
暖房用第1補助熱交換器19の凝縮量を制御することに
より、熱源側冷媒サイクル27の熱収支のバランスを保
っている。
At this time, the evaporation amounts of the first cooling auxiliary heat exchanger 22 and the heat source side heat exchanger 24 are controlled by adjusting the opening degrees of the second control valve 21 and the pressure reducing device 23, and the first control valve 20 is opened. The heat balance of the heat source side refrigerant cycle 27 is maintained by controlling the condensation amount of the first heating auxiliary heat exchanger 19 by adjusting the degree.

【0022】もし、冷房負荷が暖房負荷より大きくなっ
た場合には、三方弁25が切り換わって凝縮回路27が
連通し、熱源側熱交換器24が凝縮器となり、減圧装置
23の開度調整で熱源側熱交換器24の凝縮量を制御す
ることにより、熱源側冷媒サイクル27の熱収支のバラ
ンスを保つ。
If the cooling load becomes larger than the heating load, the three-way valve 25 is switched to connect the condensing circuit 27, the heat source side heat exchanger 24 becomes a condenser, and the opening degree of the decompression device 23 is adjusted. The balance of the heat balance of the heat source side refrigerant cycle 27 is maintained by controlling the condensation amount of the heat source side heat exchanger 24 with.

【0023】[0023]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、例えば室内ユニット37a,37bの両
方が冷房運転を行っている状態から、室内ユニット37
aのみを暖房運転とする場合に室内ユニット37aの暖
房負荷と室内ユニット37bの冷房負荷がほぼ等しくな
ると、熱源側冷媒サイクル27の熱バランスを保つため
に、減圧装置23は閉動作を行いやがて閉止状態とな
る。この時圧縮機1より吐出した高温の冷媒ガスは熱源
側熱交換器24内で凝縮し液冷媒として徐々に溜まり込
んで行き、熱源側冷媒サイクル27内を循環する冷媒量
が不足するため暖房運転している室内ユニット27a、
冷房運転している室内ユニット27b共に能力不足とな
ると言う課題を有していた。
However, in the above structure, for example, the indoor unit 37a, 37b is changed from the state in which both the indoor units 37a, 37b are in the cooling operation to the indoor unit 37.
When the heating load of the indoor unit 37a becomes almost equal to the cooling load of the indoor unit 37b when only a is operated for heating, the decompressor 23 performs a closing operation to close the heat source side refrigerant cycle 27, and then closes. It becomes a state. At this time, the high-temperature refrigerant gas discharged from the compressor 1 is condensed in the heat source side heat exchanger 24 and gradually accumulates as a liquid refrigerant, and the amount of refrigerant circulating in the heat source side refrigerant cycle 27 becomes insufficient, so that the heating operation is performed. Indoor unit 27a,
There is a problem that the capacity of both the indoor units 27b that is in the cooling operation becomes insufficient.

【0024】本発明は上記課題を解決するもので、熱源
側熱交換器を凝縮器として使用している状態から、冷房
暖房の負荷がほぼ同等となり減圧装置が閉止した場合で
も、熱源側熱交換器に冷媒が溜まり込むのを防ぐことで
室内ユニットの能力不足を防止し快適な多室冷暖房装置
を提供する事を第一の目的としている。
The present invention is intended to solve the above-mentioned problems, and even if the load of cooling and heating becomes almost the same and the decompression device is closed from the state where the heat source side heat exchanger is used as a condenser, the heat source side heat exchange is performed. A first object of the present invention is to provide a comfortable multi-room cooling and heating device by preventing refrigerant from accumulating in the container to prevent insufficient capacity of the indoor unit.

【0025】また、第2の目的は外気温度が更に低くな
った場合でも、外気温度に関係なく熱源側熱交換器に冷
媒が溜まり込むのを防ぐことで室内ユニットの能力不足
を防止し快適な多室冷暖房装置を提供する事にある。
The second purpose is to prevent a shortage of the capacity of the indoor unit by preventing the refrigerant from accumulating in the heat exchanger on the heat source side irrespective of the temperature of the outside air even when the temperature of the outside air becomes lower, which is comfortable. It is to provide a multi-room air conditioner.

【0026】[0026]

【課題を解決するための手段】この目的を達成するため
に本発明の多室冷暖房装置は圧縮機、暖房用第1補助熱
交換器、前記暖房用第1補助熱交換器の能力を制御する
第1制御弁、冷房用第1補助熱交換器、前記冷房用第1
補助熱交換器の能力を制御する第2制御弁、減圧装置と
熱源側熱交換器と三方弁を連接し、前記減圧装置は前記
第1制御弁と前記第2制御弁の間に連通するとともに、
前記三方弁の片方を前記冷房用第1補助熱交換器と前記
圧縮機の間に連通した蒸発回路と、前記三方弁の他方を
前記圧縮機と前記暖房用第1補助熱交換器の間に連通し
た凝縮回路とを連接してなる熱源側冷媒サイクルと、前
記暖房用第1補助熱交換器と一体に形成して熱交換する
暖房用第2補助熱交換器、複数の暖房用利用側熱交換
器、暖房用冷媒搬送装置を環状に連接してなる暖房用利
用側冷媒サイクルと、前記冷房用第1補助熱交換器と一
体に形成して熱交換する冷房用第2補助熱交換器、冷房
用冷媒搬送装置、複数の冷房用利用側熱交換器を環状に
連接してなる冷房用利用側冷媒サイクルと、前記減圧装
置の開度を検知する減圧装置開度検知手段と、減圧装置
開度検知手段によって検知した前記減圧装置の開度が一
定値以下となると前記三方弁を前記蒸発回路を連通し前
記凝縮回路を遮断するように動作させる三方弁動作手段
を備えた構成となっている。
In order to achieve this object, the multi-room cooling and heating system of the present invention controls the capacities of the compressor, the first auxiliary heat exchanger for heating, and the first auxiliary heat exchanger for heating. A first control valve, a first auxiliary heat exchanger for cooling, the first cooling air
A second control valve for controlling the capacity of the auxiliary heat exchanger, a pressure reducing device, a heat source side heat exchanger, and a three-way valve are connected to each other, and the pressure reducing device is connected between the first control valve and the second control valve. ,
An evaporation circuit in which one of the three-way valves is in communication between the cooling first auxiliary heat exchanger and the compressor, and the other of the three-way valve is between the compressor and the heating first auxiliary heat exchanger. A heat source side refrigerant cycle formed by connecting a communicating condensing circuit, a second heating auxiliary heat exchanger integrally formed with the first heating auxiliary heat exchanger to exchange heat, and a plurality of heating utilization heats A heating-use side refrigerant cycle in which an exchanger and a heating refrigerant transfer device are connected in an annular shape, and a cooling second auxiliary heat exchanger that is integrally formed with the cooling first auxiliary heat exchanger to exchange heat, Refrigerant carrier for cooling, Cooling side refrigerant cycle in which a plurality of cooling side heat exchangers are annularly connected, decompressor opening detection means for detecting the degree of opening of the decompressor, and decompressor opening. If the opening degree of the decompression device detected by the degree detection means falls below a certain value, The three-way valve has a structure having a three-way valve operation means for operating so as to block the condensing circuit communicating the vaporization circuit.

【0027】また、圧縮機、暖房用第1補助熱交換器、
前記暖房用第1補助熱交換器の能力を制御する第1制御
弁、冷房用第1補助熱交換器、前記冷房用第1補助熱交
換器の能力を制御する第2制御弁、減圧装置と熱源側熱
交換器と三方弁を連接し、前記減圧装置は前記第1制御
弁と前記第2制御弁の間に連通するとともに、前記三方
弁の片方を前記冷房用第1補助熱交換器と前記圧縮機の
間に連通した蒸発回路と、前記三方弁の他方を前記圧縮
機と前記暖房用第1補助熱交換器の間に連通した凝縮回
路とを連接してなる熱源側冷媒サイクルと、前記暖房用
第1補助熱交換器と一体に形成して熱交換する暖房用第
2補助熱交換器、複数の暖房用利用側熱交換器、暖房用
冷媒搬送装置を環状に連接してなる暖房用利用側冷媒サ
イクルと、前記冷房用第1補助熱交換器と一体に形成し
て熱交換する冷房用第2補助熱交換器、冷房用冷媒搬送
装置、複数の冷房用利用側熱交換器を環状に連接してな
る冷房用利用側冷媒サイクルと、前記減圧装置の開度を
検知する減圧装置開度検知手段と、前記減圧装置開度検
知手段によって検知した前記減圧装置の開度が一定値以
下となると前記三方弁を前記蒸発回路を連通し前記凝縮
回路を遮断するように動作させる三方弁動作手段と、外
気温度を検知する外気温度センサーと前記圧縮機の吸込
み圧力を検知する吸込み圧力センサーと、前記外気温度
センサーにより検知した外気温度より冷媒の飽和圧力を
計算し前記吸込み圧力センサーで検知した前記圧縮機の
吸込み圧力と比較する圧力比較手段と、前記圧力比較手
段で比較した結果、冷媒の飽和圧力の方が小さいと前記
減圧装置を一定開度に調整する減圧装置微開手段を備え
た構成となっている。
The compressor, the first auxiliary heat exchanger for heating,
A first control valve for controlling the capacity of the first heating auxiliary heat exchanger, a first cooling auxiliary heat exchanger, a second control valve for controlling the cooling first auxiliary heat exchanger, and a pressure reducing device, A heat source side heat exchanger is connected to a three-way valve, the pressure reducing device is connected between the first control valve and the second control valve, and one of the three-way valves is connected to the cooling first auxiliary heat exchanger. An evaporation circuit communicating between the compressors, and a heat source side refrigerant cycle formed by connecting the other of the three-way valves to a condensing circuit communicating between the compressor and the heating first auxiliary heat exchanger, A second auxiliary heat exchanger for heating, which is integrally formed with the first auxiliary heat exchanger for heating to exchange heat, a plurality of heating-side heat exchangers for heating, and a heating system in which a refrigerant transfer device for heating is annularly connected. For cooling the user-use side refrigerant cycle and the first auxiliary heat exchanger for cooling formed integrally with each other A second auxiliary heat exchanger, a cooling medium transfer device, and a cooling-use side refrigerant cycle in which a plurality of cooling-use side heat exchangers are connected in an annular shape, and a decompression device opening degree for detecting the opening degree of the decompression device Detection means and three-way valve operating means for operating the three-way valve so that the three-way valve communicates with the evaporation circuit and shuts off the condensation circuit when the opening of the decompression device detected by the decompression device opening detection device becomes a certain value or less. An outside air temperature sensor for detecting the outside air temperature, an intake pressure sensor for detecting the intake pressure of the compressor, and a saturation pressure of the refrigerant calculated from the outside air temperature detected by the outside air temperature sensor and the suction pressure sensor for detecting As a result of comparison between the pressure comparison means for comparing with the suction pressure of the compressor and the pressure comparison means, when the saturation pressure of the refrigerant is smaller, the decompression device adjusts the decompression device to a constant opening degree.置微 has a configuration including a opening means.

【0028】[0028]

【作用】本発明は上記のような構成により、熱源側熱交
換器を凝縮器として使用している状態から、冷暖房負荷
がほぼ同等となり減圧装置が閉止した場合に減圧装置開
度が一定値以下となると、三方弁を切換えて蒸発回路を
連通することにより熱源側熱交換器内に溜まり込もうと
する冷媒を圧縮機の吸引力で吸出すことができる。
According to the present invention, when the heat source side heat exchanger is used as a condenser, the cooling / heating load becomes almost equal and the decompression device is closed when the decompression device is closed. In this case, by switching the three-way valve and connecting the evaporation circuits, the refrigerant that tends to accumulate in the heat source side heat exchanger can be sucked by the suction force of the compressor.

【0029】このことにより、熱源側サイクルを循環す
る冷媒量不足を防止できる。また、外気温度が低く熱源
側熱交換器に冷媒がさらに溜まり易い場合には、減圧装
置を一定値微開し熱源側熱交換器に溜まり込んだ冷媒を
押し出すことで、冷媒の熱源側熱交換器への溜まり込み
を防止できる。
This makes it possible to prevent a shortage of the amount of the refrigerant circulating in the heat source side cycle. Also, when the outside air temperature is low and the refrigerant is more likely to accumulate in the heat source side heat exchanger, the pressure reducing device is opened slightly to a certain value and the refrigerant accumulated in the heat source side heat exchanger is pushed out, thereby exchanging the heat source side heat exchanger of the refrigerant. It is possible to prevent accumulation in the vessel.

【0030】このことにより、外気温度の影響を受ける
事無く熱源側サイクルを循環する冷媒量不足を防止でき
る。
As a result, it is possible to prevent a shortage of the amount of refrigerant circulating in the heat source side cycle without being affected by the outside air temperature.

【0031】[0031]

【実施例】以下、本発明の第1の実施例を図1を用いて
説明する。図1は第1の実施例における多室冷暖房装置
の冷媒サイクル図である。尚、従来と同一構成について
は同一符号を付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant cycle diagram of the multi-room cooling and heating apparatus according to the first embodiment. It should be noted that the same components as those of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0032】図1において、38は減圧装置23の開度
を検知する減圧装置開度検知手段、39は減圧装置開度
検知手段38によって検知した減圧装置23の開度が一
定値以下となると三方弁25を動作させ蒸発回路26を
連通し、凝縮回路26’を遮断する三方弁動作手段であ
る。
In FIG. 1, 38 is a pressure reducing device opening detecting means for detecting the opening of the pressure reducing device 23, and 39 is three-way when the pressure reducing device opening detected by the pressure reducing device opening detecting means 38 is below a certain value. It is a three-way valve operating means that operates the valve 25 to communicate with the evaporation circuit 26 and shuts off the condensation circuit 26 ′.

【0033】以上のように構成された多室冷暖房装置に
ついて、従来例と同一の動作の説明は省略し、今問題と
なっている冷房運転から冷暖房がほぼ同等の負荷となっ
た場合に付いての動作を説明する説明する。
With respect to the multi-room cooling and heating apparatus configured as described above, the description of the same operation as the conventional example is omitted, and in the case where the heating and cooling operations have a substantially equal load from the cooling operation which is now a problem. The operation will be described.

【0034】室内ユニット37a,37bの両方が冷房
運転となっていた状態から、例えば室内ユニット37a
を暖房運転とする場合、第1制御弁20と減圧装置23
の開度調整で暖房用第1補助熱交換器19と熱源側熱交
換器24の凝縮量を制御し、第2制御弁21の開度調整
で冷房用第1補助熱交換器22の蒸発量を制御すること
により、熱源側冷媒サイクル27の熱収支のバランスを
保っているが、冷暖房負荷がほぼ同等となった場合に
は、熱収支バランスを保つために減圧装置23は閉止し
て行く。この時、減圧装置開度検知手段38によって減
圧装置23が一定開度以下となったことを検知した場
合、三方弁動作手段39によって三方弁25を動作させ
蒸発回路26を連通させ、凝縮回路26’を遮断する。
From the state where both the indoor units 37a and 37b are in the cooling operation, for example, the indoor unit 37a
When the heating operation is performed on the first control valve 20 and the pressure reducing device 23,
Of the first auxiliary heat exchanger for heating 19 and the heat source side heat exchanger 24 by controlling the opening degree of the second control valve 21, and the evaporation amount of the first auxiliary heat exchanger for cooling 22 by adjusting the opening degree of the second control valve 21. The heat balance of the heat source side refrigerant cycle 27 is maintained by controlling the heat source side refrigerant cycle. However, when the cooling and heating loads are almost equal, the decompression device 23 is closed to keep the heat balance. At this time, when the decompression device opening detection means 38 detects that the decompression device 23 is below a certain opening, the three-way valve operating means 39 operates the three-way valve 25 to communicate the evaporation circuit 26 and the condensing circuit 26. 'Cut off.

【0035】このように第1の実施例によれば、三方弁
25を切換えて蒸発回路26を連通することにより熱源
側熱交換器24内に溜まり込もうとする冷媒を圧縮機1
の吸引力で吸出すことになり防止することができる。
As described above, according to the first embodiment, the refrigerant that tends to accumulate in the heat source side heat exchanger 24 by switching the three-way valve 25 and connecting the evaporation circuit 26 to the compressor 1
It can be prevented by sucking out by the suction force.

【0036】このことにより、熱源側サイクル27を循
環する冷媒量不足を防止できるので、熱源側熱交換器2
4を凝縮器として使用している状態から、冷房暖房の負
荷がほぼ同等となり減圧装置が閉止した場合でも、熱源
側熱交換器24に冷媒が溜まり込むのを防ぐことで室内
ユニット37a,37bの能力不足を防止し快適な多室
冷暖房装置を提供することができる。
As a result, the shortage of the amount of the refrigerant circulating in the heat source side cycle 27 can be prevented, and therefore the heat source side heat exchanger 2
Even when the cooling and heating loads are almost equalized and the decompression device is closed from the state in which 4 is used as the condenser, the refrigerant is prevented from accumulating in the heat source side heat exchanger 24 so that the indoor units 37a and 37b are protected. It is possible to provide a comfortable multi-room air conditioner that prevents a lack of capacity.

【0037】次に本発明の第2の実施例を図2を用いて
説明する。図2は第2の実施例における多室冷暖房装置
の冷媒サイクル図である。尚、従来と同一構成について
は同一符号を付し、その詳細な説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a refrigerant cycle diagram of the multi-room cooling and heating apparatus in the second embodiment. It should be noted that the same components as those of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0038】図2において、38は減圧装置23の開度
を検知する減圧装置開度検知手段、39は減圧装置開度
検知手段38によって検知した減圧装置23の開度が一
定値以下となると三方弁25を動作させ蒸発回路26を
連通し、凝縮回路26’を遮断する三方弁動作手段、4
0は外気温度を検知する外気温度センサー、41は圧縮
機1の吸込み圧力を検知する吸込み圧力センサー、42
は外気温度センサー40により検知した外気温度より冷
媒の飽和圧力を計算し、吸込み圧力センサー41で検知
した圧縮機1の吸込み圧力と比較する圧力比較手段、4
3は圧力比較手段42で比較した結果、冷媒の飽和圧力
の方が小さいと減圧装置23を一定開度に調整する減圧
装置微開手段である。
In FIG. 2, 38 is a pressure reducing device opening detecting means for detecting the opening of the pressure reducing device 23, and 39 is three-way when the opening of the pressure reducing device 23 detected by the pressure reducing device opening detecting means 38 is below a certain value. Three-way valve operating means for operating the valve 25 to communicate with the evaporation circuit 26 and shutting off the condensation circuit 26 ′, 4
0 is an outside air temperature sensor that detects the outside air temperature, 41 is a suction pressure sensor that detects the suction pressure of the compressor 1, 42
Is a pressure comparison means for calculating the saturation pressure of the refrigerant from the outside air temperature detected by the outside air temperature sensor 40 and comparing it with the suction pressure of the compressor 1 detected by the suction pressure sensor 41.
Reference numeral 3 denotes a pressure reducing device fine opening means for adjusting the pressure reducing device 23 to a constant opening degree when the saturated pressure of the refrigerant is smaller as a result of comparison by the pressure comparing means 42.

【0039】以上のように構成された多室冷暖房装置に
ついて、従来例と同一の動作の説明は省略し、今問題と
なっている冷房運転から冷暖房がほぼ同等の負荷となっ
た場合に付いての動作を説明する説明する。
With respect to the multi-room cooling and heating apparatus configured as described above, the explanation of the same operation as the conventional example is omitted, and in the case where the heating and cooling operations become almost the same load from the cooling operation at present, The operation will be described.

【0040】室内ユニット37a,37bの両方が冷房
運転となっていた状態から、例えば室内ユニット37a
を暖房運転とする場合、第1制御弁20と減圧装置23
の開度調整で暖房用第1補助熱交換器19と熱源側熱交
換器24の凝縮量を制御し、第2制御弁21の開度調整
で冷房用第1補助熱交換器22の蒸発量を制御すること
により、熱源側冷媒サイクル27の熱収支のバランスを
保っているが、冷暖房負荷がほぼ同等となった場合に
は、熱収支バランスを保つために減圧装置23は閉止し
て行く。この時、減圧装置開度検知手段38によって減
圧装置23が一定開度以下となったことを検知した場
合、三方弁動作手段39によって三方弁25を動作させ
蒸発回路26を連通させ、凝縮回路26’を遮断する。
更にこの時、外気温センサー40により検知された外気
温度及び吸込み圧力センサー41で検知した圧縮機1の
吸込み圧力を基に圧力比較手段42で比較した結果、冷
媒の飽和圧力の方が小さくなった場合、減圧装置微開手
段43は減圧装置23を一定開度に調整する。
From the state where both the indoor units 37a and 37b are in the cooling operation, for example, the indoor unit 37a
When the heating operation is performed on the first control valve 20 and the pressure reducing device 23,
Of the first auxiliary heat exchanger for heating 19 and the heat source side heat exchanger 24 by controlling the opening degree of the second control valve 21, and the evaporation amount of the first auxiliary heat exchanger for cooling 22 by adjusting the opening degree of the second control valve 21. The heat balance of the heat source side refrigerant cycle 27 is maintained by controlling the heat source side refrigerant cycle. However, when the cooling and heating loads are almost equal, the decompression device 23 is closed to keep the heat balance. At this time, when the decompression device opening detection means 38 detects that the decompression device 23 is below a certain opening, the three-way valve operating means 39 operates the three-way valve 25 to communicate the evaporation circuit 26 and the condensing circuit 26. 'Cut off.
Further, at this time, as a result of comparison by the pressure comparing means 42 based on the outside air temperature detected by the outside air temperature sensor 40 and the suction pressure of the compressor 1 detected by the suction pressure sensor 41, the saturation pressure of the refrigerant becomes smaller. In this case, the decompression device fine opening means 43 adjusts the decompression device 23 to a constant opening.

【0041】このように第2の実施例によれば、三方弁
25を切換えて蒸発回路26を連通することにより熱源
側熱交換器24内に溜まり込もうとする冷媒を圧縮機1
の吸引力で吸出すことになり防止することができる。ま
た、外気温度が低下した場合でも、減圧装置23を一定
開度とすることで熱源側熱交換器24内に溜まる冷媒を
押し出すことができる。
As described above, according to the second embodiment, by switching the three-way valve 25 and connecting the evaporation circuit 26, the refrigerant which tends to accumulate in the heat source side heat exchanger 24 is compressed.
It can be prevented by sucking out by the suction force. Even when the outside air temperature decreases, the refrigerant accumulated in the heat source side heat exchanger 24 can be pushed out by setting the decompression device 23 to a constant opening.

【0042】このことにより、外気温度に関係なく熱源
側サイクル27を循環する冷媒量不足を防止できるの
で、熱源側熱交換器24を凝縮器として使用している状
態から、冷房暖房の負荷がほぼ同等となり減圧装置23
が閉止した場合でも、熱源側熱交換器24に冷媒が溜ま
り込むのを防ぐことができるので室内ユニット37a,
37bの能力不足を防止し快適な多室冷暖房装置を提供
することができる。
As a result, it is possible to prevent a shortage of the amount of the refrigerant circulating in the heat source side cycle 27 regardless of the outside air temperature. Therefore, from the state where the heat source side heat exchanger 24 is used as a condenser, the cooling and heating load is almost the same. Decompression device 23 becomes equivalent
Even when is closed, it is possible to prevent the refrigerant from accumulating in the heat source side heat exchanger 24, so that the indoor unit 37a,
It is possible to provide a comfortable multi-room cooling and heating device by preventing the insufficient capacity of 37b.

【0043】[0043]

【発明の効果】以上の説明から明かなように本発明は、
圧縮機、暖房用第1補助熱交換器、前記暖房用第1補助
熱交換器の能力を制御する第1制御弁、冷房用第1補助
熱交換器、前記冷房用第1補助熱交換器の能力を制御す
る第2制御弁、減圧装置と熱源側熱交換器と三方弁を連
接し、前記減圧装置は前記第1制御弁と前記第2制御弁
の間に連通するとともに、前記三方弁の片方を前記冷房
用第1補助熱交換器と前記圧縮機の間に連通した蒸発回
路と、前記三方弁の他方を前記圧縮機と前記暖房用第1
補助熱交換器の間に連通した凝縮回路とを連接してなる
熱源側冷媒サイクルと、前記暖房用第1補助熱交換器と
一体に形成して熱交換する暖房用第2補助熱交換器、複
数の暖房用利用側熱交換器、暖房用冷媒搬送装置を環状
に連接してなる暖房用利用側冷媒サイクルと、前記冷房
用第1補助熱交換器と一体に形成して熱交換する冷房用
第2補助熱交換器、冷房用冷媒搬送装置、複数の冷房用
利用側熱交換器を環状に連接してなる冷房用利用側冷媒
サイクルと、前記減圧装置の開度を検知する減圧装置開
度検知手段と、減圧装置開度検知手段によって検知した
前記減圧装置の開度が一定値以下となると前記三方弁を
前記蒸発回路を連通し前記凝縮回路を遮断するように動
作させる三方弁動作手段を備えることにより、熱源側サ
イクルを循環する冷媒量不足を防止できるので、熱源側
熱交換器を凝縮器として使用している状態から、冷房暖
房の負荷がほぼ同等となり減圧装置が閉止した場合で
も、熱源側熱交換器に冷媒が溜まり込むのを防ぐことで
室内ユニットの能力不足を防止し快適な多室冷暖房装置
を提供することができる。
As is apparent from the above description, the present invention is
Of the compressor, the first auxiliary heat exchanger for heating, the first auxiliary heat exchanger for heating, the first control valve for cooling, the first auxiliary heat exchanger for cooling, and the first auxiliary heat exchanger for cooling. A second control valve for controlling the capacity, a pressure reducing device, a heat source side heat exchanger, and a three-way valve are connected, and the pressure reducing device is connected between the first control valve and the second control valve, and the three-way valve An evaporation circuit, one of which is connected between the first auxiliary heat exchanger for cooling and the compressor, and the other of the three-way valve is connected to the compressor and the first heating unit.
A heat source side refrigerant cycle formed by connecting a condensing circuit communicating between the auxiliary heat exchangers, and a second heating auxiliary heat exchanger integrally formed with the first heating auxiliary heat exchanger, A heating-use-side refrigerant cycle in which a plurality of heating-use-side heat exchangers and a heating-use refrigerant transfer device are connected in an annular shape, and a cooling system in which heat is exchanged by being integrally formed with the cooling first auxiliary heat exchanger A second auxiliary heat exchanger, a cooling medium transfer device, and a cooling-use side refrigerant cycle in which a plurality of cooling-use side heat exchangers are connected in an annular shape, and a decompression device opening degree for detecting the opening degree of the decompression device Detecting means and three-way valve operating means for operating the three-way valve so as to connect the evaporation circuit to cut off the condensing circuit when the opening degree of the decompression device detected by the decompression device opening detection means becomes a certain value or less. By providing the heat source side cycle Since the shortage of the amount of medium can be prevented, the refrigerant accumulates in the heat source side heat exchanger even when the load of cooling and heating becomes almost equal from the state where the heat source side heat exchanger is used as a condenser and the decompression device closes. By preventing this, it is possible to prevent a lack of capacity of the indoor unit and provide a comfortable multi-room air conditioner.

【0044】また本発明は、圧縮機、暖房用第1補助熱
交換器、前記暖房用第1補助熱交換器の能力を制御する
第1制御弁、冷房用第1補助熱交換器、前記冷房用第1
補助熱交換器の能力を制御する第2制御弁、減圧装置と
熱源側熱交換器と三方弁を連接し、前記減圧装置は前記
第1制御弁と前記第2制御弁の間に連通するとともに、
前記三方弁の片方を前記冷房用第1補助熱交換器と前記
圧縮機の間に連通した蒸発回路と、前記三方弁の他方を
前記圧縮機と前記暖房用第1補助熱交換器の間に連通し
た凝縮回路とを連接してなる熱源側冷媒サイクルと、前
記暖房用第1補助熱交換器と一体に形成して熱交換する
暖房用第2補助熱交換器、複数の暖房用利用側熱交換
器、暖房用冷媒搬送装置を環状に連接してなる暖房用利
用側冷媒サイクルと、前記冷房用第1補助熱交換器と一
体に形成して熱交換する冷房用第2補助熱交換器、冷房
用冷媒搬送装置、複数の冷房用利用側熱交換器を環状に
連接してなる冷房用利用側冷媒サイクルと、前記減圧装
置の開度を検知する減圧装置開度検知手段と、前記減圧
装置開度検知手段によって検知した前記減圧装置の開度
が一定値以下となると前記三方弁を前記蒸発回路を連通
し前記凝縮回路を遮断するように動作させる三方弁動作
手段と、外気温度を検知する外気温度センサーと前記圧
縮機の吸込み圧力を検知する吸込み圧力センサーと、前
記外気温度センサーにより検知した外気温度より冷媒の
飽和圧力を計算し前記吸込み圧力センサーで検知した前
記圧縮機の吸込み圧力と比較する圧力比較手段と、前記
圧力比較手段で比較した結果、冷媒の飽和圧力の方が小
さいと前記減圧装置を一定開度に調整する減圧装置微開
手段を備えたので、外気温度に関係なく熱源側サイクル
を循環する冷媒量不足を防止でき、熱源側熱交換器を凝
縮器として使用している状態から、冷房暖房の負荷がほ
ぼ同等となり減圧装置が閉止した場合でも、熱源側熱交
換器に冷媒が溜まり込むのを防ぐことができるので室内
ユニットの能力不足を防止し快適な多室冷暖房装置を提
供することができる。
Further, the present invention provides a compressor, a first auxiliary heat exchanger for heating, a first control valve for controlling the capacity of the first auxiliary heat exchanger for heating, a first auxiliary heat exchanger for cooling, and the cooling. For first
A second control valve for controlling the capacity of the auxiliary heat exchanger, a pressure reducing device, a heat source side heat exchanger, and a three-way valve are connected to each other, and the pressure reducing device is connected between the first control valve and the second control valve. ,
An evaporation circuit in which one of the three-way valves is in communication between the cooling first auxiliary heat exchanger and the compressor, and the other of the three-way valve is between the compressor and the heating first auxiliary heat exchanger. A heat source side refrigerant cycle formed by connecting a communicating condensing circuit, a second heating auxiliary heat exchanger integrally formed with the first heating auxiliary heat exchanger to exchange heat, and a plurality of heating utilization heats A heating-use side refrigerant cycle in which an exchanger and a heating refrigerant transfer device are connected in an annular shape, and a cooling second auxiliary heat exchanger that is integrally formed with the cooling first auxiliary heat exchanger to exchange heat, Refrigerant carrier for cooling, Cooling side refrigerant cycle in which a plurality of cooling side heat exchangers are connected in a ring, decompression device opening detection means for detecting the opening of the decompression device, and the decompression device The opening degree of the decompression device detected by the opening degree detection means becomes a certain value or less A three-way valve operating means for operating the three-way valve so as to connect the evaporation circuit to cut off the condensation circuit; an outside air temperature sensor for detecting an outside air temperature; and an intake pressure sensor for detecting an intake pressure of the compressor, The saturation pressure of the refrigerant is calculated by calculating the saturation pressure of the refrigerant from the outside air temperature detected by the outside air temperature sensor and comparing it with the suction pressure of the compressor detected by the suction pressure sensor. If it is smaller, the decompression device fine opening means for adjusting the decompression device to a constant opening is provided, so that it is possible to prevent a shortage of the amount of refrigerant circulating in the heat source side cycle regardless of the outside air temperature, and condense the heat source side heat exchanger Prevent the refrigerant from accumulating in the heat source side heat exchanger even when the cooling and heating load becomes almost the same and the decompression device closes after being used as a heat exchanger. It is possible to prevent insufficient capacity of the indoor units to provide a comfortable multi-chamber air conditioner because it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における多室冷暖房装置
の冷媒サイクル図
FIG. 1 is a refrigerant cycle diagram of a multi-room cooling and heating apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における多室冷暖房装置
の冷媒サイクル図
FIG. 2 is a refrigerant cycle diagram of a multi-room cooling and heating apparatus according to a second embodiment of the present invention.

【図3】従来の多室冷暖房装置の冷媒サイクル図FIG. 3 is a refrigerant cycle diagram of a conventional multi-room cooling and heating device.

【符号の説明】[Explanation of symbols]

1 圧縮機 19 暖房用第1補助熱交換器 20 第1制御弁 21 第2制御弁 22 冷房用第1補助熱交換器 23 減圧装置 24 熱源側熱交換器 25 三方弁 26 蒸発回路 26’凝縮回路 27 熱源側冷媒サイクル 28 暖房用第2補助熱交換器 29 暖房用冷媒搬送装置 30 冷房用第2補助熱交換器 31 冷房用冷媒搬送装置 33a,33b 暖房用利用側熱交換器 35a,35b 冷房用利用側熱交換器 38 減圧装置開度検知手段 39 三方弁動作手段 40 外気温度センサー 41 吸込み圧力センサー 42 圧力比較手段 43 減圧装置微開手段 DESCRIPTION OF SYMBOLS 1 Compressor 19 1st auxiliary heat exchanger for heating 20 1st control valve 21 2nd control valve 22 1st auxiliary heat exchanger for cooling 23 Decompression device 24 Heat source side heat exchanger 25 3-way valve 26 Evaporation circuit 26 'Condensation circuit 27 Heat Source Side Refrigerant Cycle 28 Heating Second Auxiliary Heat Exchanger 29 Heating Refrigerant Transfer Device 30 Cooling Second Auxiliary Heat Exchanger 31 Cooling Refrigerant Transfer Device 33a, 33b Heating Utilization Side Heat Exchanger 35a, 35b For Cooling Use side heat exchanger 38 Decompression device opening detection means 39 Three-way valve operation means 40 Outside air temperature sensor 41 Suction pressure sensor 42 Pressure comparison means 43 Decompression device fine opening means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、暖房用第1補助熱交換器、前記
暖房用第1補助熱交換器の能力を制御する第1制御弁、
冷房用第1補助熱交換器、前記冷房用第1補助熱交換器
の能力を制御する第2制御弁、減圧装置と熱源側熱交換
器と三方弁を連接し、前記減圧装置は前記第1制御弁と
前記第2制御弁の間に連通するとともに、前記三方弁の
片方を前記冷房用第1補助熱交換器と前記圧縮機の間に
連通した蒸発回路と、前記三方弁の他方を前記圧縮機と
前記暖房用第1補助熱交換器の間に連通した凝縮回路と
を連接してなる熱源側冷媒サイクルと、前記暖房用第1
補助熱交換器と一体に形成して熱交換する暖房用第2補
助熱交換器、複数の暖房用利用側熱交換器、暖房用冷媒
搬送装置を環状に連接してなる暖房用利用側冷媒サイク
ルと、前記冷房用第1補助熱交換器と一体に形成して熱
交換する冷房用第2補助熱交換器、冷房用冷媒搬送装
置、複数の冷房用利用側熱交換器を環状に連接してなる
冷房用利用側冷媒サイクルと、前記減圧装置の開度を検
知する減圧装置開度検知手段と、減圧装置開度検知手段
によって検知した前記減圧装置の開度が一定値以下とな
ると前記三方弁を前記蒸発回路を連通し前記凝縮回路を
遮断するように動作させる三方弁動作手段を備えた多室
冷暖房装置。
1. A compressor, a first auxiliary heat exchanger for heating, a first control valve for controlling the capacity of the first auxiliary heat exchanger for heating,
A first auxiliary heat exchanger for cooling, a second control valve for controlling the capacity of the first auxiliary heat exchanger for cooling, a pressure reducing device, a heat source side heat exchanger, and a three-way valve are connected, and the pressure reducing device is the first An evaporation circuit communicating between the control valve and the second control valve, one of the three-way valves communicating between the cooling first auxiliary heat exchanger and the compressor, and the other of the three-way valves A heat source side refrigerant cycle in which a compressor and a condensing circuit communicating between the first heating auxiliary heat exchanger are connected, and the first heating heating
A second auxiliary heat exchanger for heating, which is integrally formed with the auxiliary heat exchanger to exchange heat, a plurality of heating side heat exchangers for heating, and a heating side refrigerant cycle in which a heating refrigerant transfer device is annularly connected. A second auxiliary heat exchanger for cooling, which is formed integrally with the first auxiliary heat exchanger for cooling to exchange heat, a cooling medium carrier for cooling, and a plurality of cooling side heat exchangers connected in an annular shape. A cooling side refrigerant cycle, a decompression device opening detection means for detecting the opening degree of the decompression device, and the three-way valve when the opening degree of the decompression device detected by the decompression device opening detection means falls below a certain value. A multi-chamber cooling / heating apparatus having a three-way valve operating means for operating the above so as to communicate with the evaporation circuit and shut off the condensation circuit.
【請求項2】 圧縮機、暖房用第1補助熱交換器、前記
暖房用第1補助熱交換器の能力を制御する第1制御弁、
冷房用第1補助熱交換器、前記冷房用第1補助熱交換器
の能力を制御する第2制御弁、減圧装置と熱源側熱交換
器と三方弁を連接し、前記減圧装置は前記第1制御弁と
前記第2制御弁の間に連通するとともに、前記三方弁の
片方を前記冷房用第1補助熱交換器と前記圧縮機の間に
連通した蒸発回路と、前記三方弁の他方を前記圧縮機と
前記暖房用第1補助熱交換器の間に連通した凝縮回路と
を連接してなる熱源側冷媒サイクルと、前記暖房用第1
補助熱交換器と一体に形成して熱交換する暖房用第2補
助熱交換器、複数の暖房用利用側熱交換器、暖房用冷媒
搬送装置を環状に連接してなる暖房用利用側冷媒サイク
ルと、前記冷房用第1補助熱交換器と一体に形成して熱
交換する冷房用第2補助熱交換器、冷房用冷媒搬送装
置、複数の冷房用利用側熱交換器を環状に連接してなる
冷房用利用側冷媒サイクルと、前記減圧装置の開度を検
知する減圧装置開度検知手段と、前記減圧開度装置検知
手段によって検知した前記減圧装置の開度が一定値以下
となると前記三方弁を前記蒸発回路を連通し前記凝縮回
路を遮断するように動作させる三方弁動作手段と、外気
温度を検知する外気温度センサーと、前記圧縮機の吸込
み圧力を検知する吸込み圧力センサーと、前記外気温度
センサーにより検知した外気温度より冷媒の飽和圧力を
計算し前記吸込み圧力センサーで検知した前記圧縮機の
吸込み圧力と比較する圧力比較手段と、前記圧力比較手
段で比較した結果、冷媒の飽和圧力の方が小さいと前記
減圧装置を一定開度に調整する減圧装置微開手段を備え
た多室冷暖房装置。
2. A compressor, a first auxiliary heat exchanger for heating, a first control valve for controlling the capacity of the first auxiliary heat exchanger for heating,
A first auxiliary heat exchanger for cooling, a second control valve for controlling the capacity of the first auxiliary heat exchanger for cooling, a pressure reducing device, a heat source side heat exchanger, and a three-way valve are connected, and the pressure reducing device is the first An evaporation circuit communicating between the control valve and the second control valve, one of the three-way valves communicating between the cooling first auxiliary heat exchanger and the compressor, and the other of the three-way valves A heat source side refrigerant cycle in which a compressor and a condensing circuit communicating between the first heating auxiliary heat exchanger are connected, and the first heating heating
A second auxiliary heat exchanger for heating, which is integrally formed with the auxiliary heat exchanger to exchange heat, a plurality of heating side heat exchangers for heating, and a heating side refrigerant cycle in which a heating refrigerant transfer device is annularly connected. A second auxiliary heat exchanger for cooling, which is formed integrally with the first auxiliary heat exchanger for cooling to exchange heat, a cooling medium carrier for cooling, and a plurality of cooling side heat exchangers connected in an annular shape. The cooling side refrigerant cycle, the decompression device opening detection means for detecting the opening of the decompression device, and the three directions when the opening of the decompression device detected by the decompression opening device detection means becomes a certain value or less. A three-way valve operating means for operating a valve to communicate with the evaporation circuit to shut off the condensation circuit, an outside air temperature sensor for detecting an outside air temperature, an intake pressure sensor for detecting an intake pressure of the compressor, and the outside air Detected by temperature sensor As compared with the pressure comparison means for calculating the saturation pressure of the refrigerant from the outside air temperature and comparing it with the suction pressure of the compressor detected by the suction pressure sensor, as a result of comparison with the pressure comparison means, if the saturation pressure of the refrigerant is smaller, A multi-chamber cooling and heating device provided with a decompression device fine opening means for adjusting the decompression device to a constant opening.
JP4301974A 1992-11-12 1992-11-12 Multi-chamber type air conditioner Pending JPH06147675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4301974A JPH06147675A (en) 1992-11-12 1992-11-12 Multi-chamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4301974A JPH06147675A (en) 1992-11-12 1992-11-12 Multi-chamber type air conditioner

Publications (1)

Publication Number Publication Date
JPH06147675A true JPH06147675A (en) 1994-05-27

Family

ID=17903375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4301974A Pending JPH06147675A (en) 1992-11-12 1992-11-12 Multi-chamber type air conditioner

Country Status (1)

Country Link
JP (1) JPH06147675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460701B2 (en) * 2009-05-08 2014-04-02 三菱電機株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460701B2 (en) * 2009-05-08 2014-04-02 三菱電機株式会社 Air conditioner
US8713951B2 (en) 2009-05-08 2014-05-06 Mitsubishi Electric Corporation Air conditioning apparatus
EP2428742A4 (en) * 2009-05-08 2017-10-11 Mitsubishi Electric Corporation Air conditioning device

Similar Documents

Publication Publication Date Title
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
WO2006013834A1 (en) Freezing apparatus
JP5629280B2 (en) Waste heat recovery system and operation method thereof
US11187447B2 (en) Refrigeration cycle apparatus
JPH10288420A (en) Heat pump water heater
JPH0432669A (en) Heat pump system controlling method therefor
JP4187008B2 (en) Air conditioner
JPH1163769A (en) Refrigerator for refrigerated container
JPH0682110A (en) Multi-room air-conditioning apparatus
JPH06147675A (en) Multi-chamber type air conditioner
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
JP2001272123A (en) Dual refrigerating machine, and its refrigeration capacity adjusting method
JP2003106694A (en) Air conditioner
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JP2002228284A (en) Refrigerating machine
JPH04236062A (en) Air conditioner
JPH0351644A (en) Multiroom cooling heating device
JP2020106151A (en) Cooling system, cooling method, and program
JPH04222354A (en) Operation controller for refrigerating equipment
JP3092602B2 (en) Refrigeration equipment
JPH0794927B2 (en) Air conditioner
JP2003042505A (en) Air conditioner and method of controlling its operation
JPH0351668A (en) Multi-chamber type air conditioner
JPH03144236A (en) Cooling and heating device for multi rooms
JPH0674589A (en) Multichamber room cooler/heater