JPH0614608B2 - Elastic wave device - Google Patents
Elastic wave deviceInfo
- Publication number
- JPH0614608B2 JPH0614608B2 JP59127155A JP12715584A JPH0614608B2 JP H0614608 B2 JPH0614608 B2 JP H0614608B2 JP 59127155 A JP59127155 A JP 59127155A JP 12715584 A JP12715584 A JP 12715584A JP H0614608 B2 JPH0614608 B2 JP H0614608B2
- Authority
- JP
- Japan
- Prior art keywords
- wave
- substrate
- finger
- wave device
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は弾性波素子、特にタンタル酸リチウム(LiTaO3)
圧電基板を基材とし、結合係数を大きく、温度係数を小
さくする弾性波素子の改良に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an acoustic wave device, particularly lithium tantalate (LiTaO 3 ).
The present invention relates to improvement of an acoustic wave device that uses a piezoelectric substrate as a base material and has a large coupling coefficient and a small temperature coefficient.
(2)技術の背景 弾性波素子は圧電基板の表面上にすだれ状電極体を形成
することによってVHF帯やUHF帯のフィルタ、共振子が容
易に実現できる。一部TV受信機用のPIFフィルタや
RFコンバータの発振素子として実現されているが、用
途の拡大をめざして弾性波素子に対しても新たな機能や
性能向上が要求されてきている。これらの弾性波素子の
性能はすだれ状電極体の設計はもちろん使用する圧電基
板に依るところが大きい。代表的な圧電基板としてはニ
オブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTa
O3)、水晶があり、切断面方位や伝播方向によっても種
々の性能を示すものである。(2) Background of the technology The acoustic wave device can easily realize a VHF band or UHF band filter and a resonator by forming a comb-shaped electrode body on the surface of a piezoelectric substrate. Although it is realized as a PIF filter for some TV receivers and an oscillating element of an RF converter, new functions and performance improvements are required for acoustic wave elements with the aim of expanding their applications. The performance of these acoustic wave devices depends largely on the piezoelectric substrate used as well as the design of the interdigital electrode body. Lithium niobate (LiNbO 3 ) and lithium tantalate (LiTa
O 3 ), quartz, and various performances depending on the cutting plane direction and the propagation direction.
弾性波素子用基板の特性を表示する指標として、結合係
数と温度係数とがある。結合係数は電気エネルギーが振
動エネルギーに変換される効率を示す指標であり、弾性
波素子を構成する電圧基板の表面に金属層等が付着され
ずフリーの状態にある場合の表面波の伝播速度をVfと
し、一方、その表面に金属層等が付着されて短絡されて
いる状態にある場合の表面波の伝播速度をVsとした場
合、結合係数K2は、 として定義される。一方、温度係数Ktは、圧電媒体基材
中を表面波が伝播する速度の温度に対する変化率であ
り、ある位相(H)において温度をΔTだけ変化した場合
に発生する位相変化をΔHとした場合、 Kt=ΔH/H/ΔT と定義される。There are a coupling coefficient and a temperature coefficient as indexes for displaying the characteristics of the acoustic wave device substrate. The coupling coefficient is an index indicating the efficiency with which electric energy is converted into vibration energy, and is the propagation velocity of surface waves when a metal layer or the like is not attached to the surface of the voltage substrate that constitutes the acoustic wave device and is free. Vf, on the other hand, when the propagation velocity of the surface wave when a metal layer or the like is attached to the surface and is short-circuited is Vs, the coupling coefficient K 2 is Is defined as On the other hand, the temperature coefficient Kt is the rate of change of the speed at which the surface wave propagates in the piezoelectric medium substrate with respect to temperature, and when the phase change that occurs when the temperature is changed by ΔT at a certain phase (H) is ΔH. , Kt = ΔH / H / ΔT.
以上の基板の結合係数と温度特性は弾性波素子の特性と
密接な関係をもつもので、結合係数が大きい程広帯域な
フィルタやVCO素子が得られ、又温度特性が良好な程
狭帯域フィルタや高安定発振子を実現する上で有利とな
る。弾性波素子に使用される最も代表的な基板の結合係
数K2と弾性波素子としての周波数温度係数TCFを表1
に示す。The above-mentioned coupling coefficient and temperature characteristic of the substrate have a close relationship with the characteristic of the acoustic wave element. The larger the coupling coefficient is, the wider band filter or VCO element can be obtained. This is advantageous in realizing a highly stable oscillator. Table 1 shows the coupling coefficient K 2 of the most typical substrate used for the acoustic wave device and the frequency temperature coefficient TCF of the acoustic wave device.
Shown in.
すなわち、ニオブ酸リチウムを使用する場合は温度係数
が劣り、タンタル酸リチウムや水晶の場合は結合係数が
劣るという欠点があった。 That is, when lithium niobate is used, the temperature coefficient is poor, and when lithium tantalate or quartz is used, the coupling coefficient is poor.
(4)発明の目的 本発明の目的はこの欠点を解消することにあり、本来温
度係数のすぐれているタンタル酸リチウムを圧電媒体基
材とし、しかも、結合係数の大きな弾性表面波素子を提
供することにある。(4) Object of the invention The object of the present invention is to eliminate this drawback, and to provide a surface acoustic wave element having a large coupling coefficient using lithium tantalate, which originally has a good temperature coefficient, as the piezoelectric medium substrate. Especially.
そしてこの目的は本発明によれば、Z軸を中心に反時計
方向を正として回転した第一回転角φと、X軸を中心に
反時計方向を正として回転した第二回転角θで切断面を
表示し、回転後のZ軸を中心に反時計方向を正として回
転した第三回転角ψを基板面内の表面波伝播方向とした
オイラー角表示(φ,θ,ψ)でφ=0±5°、θ=1
30°±5°、ψ=1°〜3°と表わされる切断方位と
伝播方向とを持つタンタル酸リチウム(LiTaO3)
圧電基板を有し、該基板表面にその表面波伝播方向と略
直角に各フィンガが位置するように少なくとも2個のく
し歯電極を相互に噛み合わせたすだれ状電極体を1個有
し、前記表面波が表面すべり波で、該すべり波が前記基
板の両端面を反射して所望共振周波数を与える端面反射
形の圧電すべり波共振子であることを特徴とした弾性波
素子により達成される。According to the present invention, the object is to cut at the first rotation angle φ rotated about the Z axis with the positive counterclockwise direction and the second rotation angle θ rotated about the X axis with the positive counterclockwise direction. In the Euler angle display (φ, θ, ψ), where the surface is displayed and the third rotation angle ψ rotated about the Z axis after rotation with the counterclockwise direction as positive is the surface wave propagation direction in the substrate surface, φ = 0 ± 5 °, θ = 1
Lithium tantalate (LiTaO 3 ) having a cutting direction and a propagation direction represented by 30 ° ± 5 ° and ψ = 1 ° to 3 °
A piezoelectric substrate, and at least one comb-shaped electrode body in which at least two comb-shaped electrodes are meshed with each other so that each finger is positioned on the surface of the substrate substantially at right angles to the surface wave propagation direction, The elastic wave device is characterized in that the surface wave is a surface slip wave, and the slip wave is an end face reflection type piezoelectric slip wave resonator that reflects both end faces of the substrate to give a desired resonance frequency.
以下、本発明の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明に係る端面反射形の圧電すべり波共振子
に使用したタンタル酸リチウム(LiTaO3)からなる圧電基
板の切断面と弾性波の伝播方向をオイラー表示するため
のオイラー角の定義を示す図である。FIG. 1 is a definition of an Euler angle for Euler display of a cut surface of a piezoelectric substrate made of lithium tantalate (LiTaO 3 ) used for an end face reflection type piezoelectric shear wave resonator according to the present invention and a propagation direction of an elastic wave. FIG.
第一回転角φはZ軸を中心に、第二回転角θはX軸を中
心に反時計方向を正として回転して切断面方位を表示
し、第三回転角ψは回転後の基板内のX軸からの回転角
で伝播方向を表わすもので、(φ,θ,ψ)として表示
される。The first rotation angle φ rotates about the Z axis, the second rotation angle θ rotates about the X axis with the counterclockwise direction being positive, and the cutting plane orientation is displayed, and the third rotation angle ψ is the inside of the substrate after rotation. The rotation angle from the X-axis represents the propagation direction, and is displayed as (φ, θ, ψ).
使用したLiTaO3基板のオイラー角表示φ,θはそれぞれ
0°,130°であり、一般には40°rot(回転)YLi
TaO3とも表現される。The Euler angle indications φ and θ of the LiTaO 3 substrate used are 0 ° and 130 °, respectively, and are generally 40 ° rot (rotation) YLi.
Also expressed as TaO 3 .
第2図はこの40°rotYLiTaO3基板1を使用した本発明
に係る端面反射形の圧電すべり波共振子を示す斜視図
で、すだれ状電極体2によって表面すべり波が発生さ
れ、自由端面3,4で反射されて共振特性を得る。この
表面すべり波は矢印5で示す如くすだれ状電極体2のく
し歯電極2a,2bのフィンガ2c,2dと平行な方向に変
化しそれと略直角方向に伝播するので、自由端面3,4
で他モードへの変換がなく表面すべり波のままで反射さ
れる。また表面すべり波の波長をλとするとそのエネル
ギーは表面から深さ10λ以内に90%以上集中してい
る。FIG. 2 is a perspective view showing an end face reflection type piezoelectric shear wave resonator according to the present invention using this 40 ° rotYLiTaO 3 substrate 1, in which a surface slip wave is generated by the interdigital transducer body 2 and the free end face 3, It is reflected at 4 and a resonance characteristic is obtained. This surface slip wave changes in a direction parallel to the fingers 2c, 2d of the comb-teeth electrodes 2a, 2b of the interdigital electrode body 2 as shown by an arrow 5 and propagates in a direction substantially perpendicular thereto, so that the free end faces 3, 4
The surface slip wave is reflected as it is without conversion to other modes. Further, when the wavelength of the surface slip wave is λ, its energy is concentrated 90% or more within a depth of 10λ from the surface.
この様な共振子のアドミタンスは一般に と表わされる。The admittance of such a resonator is generally Is represented.
ここにWは角周波数、WRは共振角周波数、Cdはすだれ状
電極体の電極間の並列容量、Rは損失を表わす共振抵
抗、K2は電気機械結合係数である。Here, W is the angular frequency, W R is the resonance angular frequency, Cd is the parallel capacitance between the electrodes of the interdigital transducer, R is the resonance resistance that represents loss, and K 2 is the electromechanical coupling coefficient.
また(2)式は簡単に、 Y=jwCd+1/(R+jwL+1/jwC)……(3) と表わされ、その等価回路表現は第3図の如く2端子の
共振回路として表現される。Further, the expression (2) is simply expressed as Y = jwCd + 1 / (R + jwL + 1 / jwC) (3), and its equivalent circuit expression is expressed as a two-terminal resonance circuit as shown in FIG.
第3図において、Cdは上記の並列容量、Cはすだれ状電
極体の直列容量、Rは上記の共振抵抗、Lは直列インダ
クタンスである。In FIG. 3, Cd is the parallel capacitance, C is the series capacitance of the interdigital transducer, R is the resonance resistance, and L is the series inductance.
一方共振子の共振角周波数WRおよび共振先鋭度Qはそれ
ぞれ、 WR=1/LC………(4) Q=WL/R…………………………(5) となる。また振動子の誘導性領域の広さの目安となる容
量比γは γ=Cd/C……………………(6) で表わされる。On the other hand, the resonance angular frequency W R and the resonance sharpness Q of the resonator are W R = 1 / LC (4) and Q = WL / R (5). The capacitance ratio γ, which is a measure of the width of the inductive region of the oscillator, is expressed by γ = Cd / C ……………… (6).
本発明に係る共振子の製造方法は、第4図の如くウェー
ハ状の40rotYLiTaO3基板1aに表面すべり波の伝播方
向(矢印SAW)φが1〜5°で望ましくは1°となるよ
うにフィンガピッチが等間隔のすだれ状電極帯2eを複
数個並列に形成した後、ダイシングソー等によりウェー
ハを切断する。この切断は各すだれ状電極帯2eの分割
(f……f1)と、分割されたすだれ状電極帯2eを更
に本共振子が得られるように所定フィンガ数で個片に分
割(g……)する工程がある。As shown in FIG. 4, the method of manufacturing a resonator according to the present invention uses a finger so that the propagation direction (arrow SAW) φ of the surface slip wave is 1 to 5 °, preferably 1 ° on a wafer-shaped 40rotYLiTaO 3 substrate 1a. After forming a plurality of interdigital electrode strips 2e having equal pitches in parallel, the wafer is cut with a dicing saw or the like. This cleavage divided into division (f ...... f 1) and, piece by a predetermined number of fingers as further present resonator the divided IDT band 2e is obtained in each interdigital electrode strip 2e (g ...... ) There is a process to do.
またすだれ状電極帯2eの形成は、基板1aの表面上に金
接着用のニクロム(NiCr)2fを約500A程度、その上に金(A
u)2gを約2500A程度の膜厚で蒸着形成し、その後フォ
トリソグラフィ技術でエッチングしてパターンニングさ
れる。Further, the interdigital electrode strip 2e is formed by nichrome (NiCr) 2f for gold adhesion on the surface of the substrate 1a of about 500 A, and gold (A
u) 2 g is formed by vapor deposition to a film thickness of about 2500 A, and then patterned by etching by photolithography technology.
更に分割時の基板1の端面3,4のチッピングによる共
振周波数変更を調整するため、すだれ状電極体2の上層
の金2gには金がメッキ処理されたり、或は金2gがエ
ッチングにより溶解される。Further, in order to adjust the resonance frequency change by chipping of the end faces 3 and 4 of the substrate 1 at the time of division, the gold 2g on the upper layer of the interdigital electrode body 2 is plated with gold or the gold 2g is dissolved by etching. It
このようにして本発明に係る第2図の端面反射形圧電す
べり波共振子が形成される。In this way, the end face reflection type piezoelectric shear wave resonator of FIG. 2 according to the present invention is formed.
第6図は本発明に係る上述の基板1の表面すべり波伝播
方向4を変化された際のQの変化を共振周波数の温度特
性TCFを示す図である。FIG. 6 is a diagram showing the temperature characteristic TCF of the resonance frequency with respect to the change of Q when the surface shear wave propagation direction 4 of the substrate 1 according to the present invention is changed.
ここで使用した共振子は、基板1が40°rotYLiTaO
3で、該基板1の表面のすだれ状電極体2が形成され、
且つ該すだれ状電極2は第2図に示す如きフィンガ長
(フィンガの重なり長)W,フィンガピッチP、フィン
ガ本数N(両側のくし歯電極のフィンガ本数)がそれぞ
れ410μm、25.9μm、90本(フィンガ対数は45
対)とした。The resonator used here has a substrate 1 of 40 ° rotYLiTaO.
3 , the interdigital electrode body 2 on the surface of the substrate 1 is formed,
Further, the interdigital electrode 2 has a finger length W (finger overlapping length) W, a finger pitch P, the number of fingers N (the number of fingers of the comb-teeth electrodes on both sides) is 410 μm, 25.9 μm and 90 (as shown in FIG. 2), respectively. Finger logarithm is 45
Pair).
第6図から理解される通り、伝播方向ψが1°±5°が
使用可能で、1°〜3°が良好であり、特に1°の時が
最も高いQ値600が得られた。この際の基板特性を表
2に示す。表1に示す従来の圧電基板に比較して結合係
数が大きく、温度係数も良好である。As can be seen from FIG. 6, the propagation direction ψ of 1 ° ± 5 ° can be used, 1 ° to 3 ° is favorable, and the highest Q value 600 was obtained especially at 1 °. The substrate characteristics at this time are shown in Table 2. Compared with the conventional piezoelectric substrate shown in Table 1, the coupling coefficient is large and the temperature coefficient is good.
また本発明者らはφ,θについてもLiTaO3圧電結晶を種
々カットして調べた結果、φ=0±5°,θ=130°
±5°が良好で、それ以外のカット角度が結合係数が小
さく、温度係数も良好なものではなかった。 The inventors have also investigated φ and θ by variously cutting the LiTaO 3 piezoelectric crystal, and as a result, φ = 0 ± 5 ° and θ = 130 °
± 5 ° was good, the other cut angles had a small coupling coefficient, and the temperature coefficient was not good either.
第7図は第6図で説明した本発明に係る共振子のフィン
ガ長WとQとの関係を示す図である。FIG. 7 is a diagram showing the relationship between the finger lengths W and Q of the resonator according to the present invention described in FIG.
これはフィンガ対数を60対(フィンガ数は120本)に
固定しフィンガ長Wを変化させた結果のデータで、図よ
りフィンガ長Wは5λ〜15λが良好で、特に10λが
最適である。This is data as a result of fixing the finger logarithm to 60 pairs (the number of fingers is 120) and changing the finger length W. From the figure, the finger length W is preferably 5λ to 15λ, and particularly 10λ is optimal.
尚、λは表面波すべり波の波長である。In addition, λ is the wavelength of the surface wave slip wave.
第8図は、第7図の各フィンガ長におけるフィンガ対数
とQとの関係を示す本発明に係る図である。FIG. 8 is a diagram according to the present invention showing the relationship between the finger logarithm and Q at each finger length in FIG.
この図より理解される通り、フィンガ対数は40〜80
対が良好で特に60対が最適である。As can be understood from this figure, the logarithm of fingers is 40 to 80.
The number of pairs is good, and especially 60 pairs are optimum.
第9図は基板1の切断位置誤差と共振周波数の変化を示
す本発明に係る図である。FIG. 9 is a diagram according to the present invention showing changes in the cutting position error of the substrate 1 and the resonance frequency.
本発明に係る共振子は第2図の如く基板1を切断する場
合、フィンガの中央位置で切断すると周波数変化はほと
んどない。In the resonator according to the present invention, when cutting the substrate 1 as shown in FIG. 2, there is almost no frequency change when cutting at the center position of the finger.
しかしこのような切断は多少バラツキを生じるが、フィ
ンガ対数が少ない場合(例えば第9図の20対)に顕著
に現われる。However, such cutting causes some variation, but it appears remarkably when the number of finger pairs is small (for example, 20 pairs in FIG. 9).
これに対し、フィンガ対数が40〜80対の場合はその
変化は小さく、メッキ或はエッチングによる上述の周波
数調整方法によってそのバラツキをなくし所望共振周波
数が得られる。On the other hand, when the number of finger pairs is 40 to 80, the change is small, and the desired resonance frequency can be obtained by eliminating the variation by the above-mentioned frequency adjusting method by plating or etching.
次に(φ,θ,ψ)が(0,130°,1°)のLiTaO3
基板を使用した本発明に係る端面反射形圧電すべり波共
振子の等価回路定数列を表3に示す。Next, (φ, θ, ψ) is (0, 130 °, 1 °) LiTaO 3
Table 3 shows an equivalent circuit constant string of the end face reflection type piezoelectric shear wave resonator according to the present invention using a substrate.
この共振子のおけるすだれ状電極体2は第6図で説明し
たものである。The interdigital transducer electrode body 2 of this resonator is as described in FIG.
また第10図は表3における共振子の共振周波数および
反共振周波数の温度特性を示すもので、それぞれ-28ppm
/℃、-39ppm/℃が得られた。 Fig. 10 shows the temperature characteristics of the resonance frequency and anti-resonance frequency of the resonator in Table 3, which are -28ppm respectively.
/ ° C and -39ppm / ° C were obtained.
更に第11図は表3における振幅および位相特性を示す
本発明に係る図である。Further, FIG. 11 is a diagram according to the present invention showing the amplitude and phase characteristics in Table 3.
以上説明の通り本発明によれば、本来温度係数のすぐれ
ているタンタル酸リチウムを圧電媒体基材とし、しか
も、結合係数の大きな弾性波素子を提供することができ
る。As described above, according to the present invention, it is possible to provide an elastic wave element having a large coupling coefficient, using lithium tantalate, which originally has an excellent temperature coefficient, as a piezoelectric medium base material.
第1図は本発明に係る共振子に使用した圧電基板の切断
面方位と弾性波の伝播方向とを定義する図、第2図は本
発明に係る共振子の構造を示す図、第3図は第2図共振
子の等価回路、第4図と第5図は本発明に係る共振子の
製造方法を説明する図、第6図は表面波の伝播方向4を
変化された時のQおよび共振周波数の関係を示す本発明
に係る図、第7図と第8図および第9図は本発明に係る
共振子のすだれ状電極体の特性を示す図、第10図は本
発明に係る共振子の共振周波数および反共振周波数の温
度特性を示す図、第11図は本発明に係る共振子の振幅
および位相特性を示す図である。 〔符号の説明〕 1……圧電基板、2……すだれ状電極体、3,4……自
由端面、5……表面すべり波の変位方向FIG. 1 is a diagram that defines a cutting plane direction of a piezoelectric substrate used for a resonator according to the present invention and a propagation direction of elastic waves, and FIG. 2 is a diagram showing a structure of the resonator according to the present invention, FIG. 2 is an equivalent circuit of the resonator, FIGS. 4 and 5 are drawings for explaining the method of manufacturing the resonator according to the present invention, and FIG. 6 is a graph showing Q and Q when the propagation direction 4 of the surface wave is changed. Figures showing the relationship of the resonance frequency according to the present invention, FIGS. 7 and 8 and 9 show the characteristics of the interdigital transducer electrode of the resonator according to the present invention, and FIG. 10 shows the resonance according to the present invention. FIG. 11 is a diagram showing temperature characteristics of the resonance frequency and anti-resonance frequency of the child, and FIG. 11 is a view showing amplitude and phase characteristics of the resonator according to the present invention. [Description of symbols] 1 ... Piezoelectric substrate, 2 ... Interdigital electrode body, 3, 4 ... Free end face, 5 ... Displacement direction of surface slip wave
───────────────────────────────────────────────────── フロントページの続き (72)発明者 若月 昇 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭58−33310(JP,A) 特開 昭52−130586(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Wakatsuki 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited (56) Reference JP 58-33310 (JP, A) JP 52- 130586 (JP, A)
Claims (5)
た第一回転角φと、X軸を中心に反時計方向を正として
回転した第二回転角θで切断面を表示し、回転後のZ軸
を中心に反時計方向を正として回転した第三回転角ψを
基板面内の表面波伝播方向としたオイラー角表示(φ,
θ,ψ)でφ=0±5°、θ=130°±5°、ψ=1
°〜3°と表わされる切断方位と伝播方向とを持つタン
タル酸リチウム(LiTaO3)圧電基板を有し、該基
板表面にその表面波伝播方向と略直角に各フィンガが位
置するように少なくとも2個のくし歯電極を相互に噛み
合わせたすだれ状電極体を1個有し、前記表面波が表面
すべり波で、該すべり波が前記基板の両端面を反射して
所望共振周波数を与える端面反射形の圧電すべり波共振
子であることを特徴とした弾性波素子。1. A cutting plane is displayed with a first rotation angle φ rotated about the Z axis with a positive counterclockwise direction and a second rotation angle θ rotated about the X axis with a positive counterclockwise direction, Euler angle display (φ, 3rd rotation angle ψ rotated about Z axis after rotation with positive counterclockwise direction as surface wave propagation direction in substrate surface)
θ, ψ), φ = 0 ± 5 °, θ = 130 ° ± 5 °, ψ = 1
A lithium tantalate (LiTaO 3 ) piezoelectric substrate having a cutting direction and a propagation direction represented by ° to 3 ° is provided, and at least two fingers are placed on the surface of the substrate so that each finger is positioned substantially at right angles to the surface wave propagation direction. One interdigital electrode body in which a number of comb-teeth electrodes are intermeshed with each other, and the surface wave is a surface slip wave, and the slip wave reflects both end surfaces of the substrate to give a desired resonance frequency. An acoustic wave device characterized by being a piezoelectric piezoelectric shear wave resonator.
であるフィンガ長を前記表面すべり波の波長をλとした
場合、5λ〜15λとしたことを特徴とする特許請求の
範囲第1項記載の弾性波素子。2. The finger length, which is the overlapping length of the fingers of the interdigital electrode body, is 5λ to 15λ when the wavelength of the surface slip wave is λ. Elastic wave device.
徴とする特許請求の範囲第2項記載の弾性波素子。3. The acoustic wave device according to claim 2, wherein the finger length is about 10λ.
〜80対としたことを特徴とする特許請求の範囲第1項
記載の弾性波素子。4. The number of finger pairs of the interdigital transducer is 40.
The elastic wave device according to claim 1, wherein the acoustic wave device is composed of ~ 80 pairs.
特徴とする特許請求の範囲第4項記載の弾性波素子。5. The acoustic wave device according to claim 4, wherein the number of finger pairs is about 60.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59127155A JPH0614608B2 (en) | 1984-06-20 | 1984-06-20 | Elastic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59127155A JPH0614608B2 (en) | 1984-06-20 | 1984-06-20 | Elastic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS616919A JPS616919A (en) | 1986-01-13 |
JPH0614608B2 true JPH0614608B2 (en) | 1994-02-23 |
Family
ID=14952989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59127155A Expired - Lifetime JPH0614608B2 (en) | 1984-06-20 | 1984-06-20 | Elastic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0614608B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09167936A (en) | 1995-10-13 | 1997-06-24 | Fujitsu Ltd | Surface acoustic wave device |
JP3397195B2 (en) | 2000-02-28 | 2003-04-14 | 株式会社村田製作所 | Edge reflection type surface acoustic wave filter |
JP3797155B2 (en) | 2000-09-06 | 2006-07-12 | 株式会社村田製作所 | Frequency adjustment method for end surface reflection type surface acoustic wave device |
TWI325687B (en) | 2006-02-23 | 2010-06-01 | Murata Manufacturing Co | Boundary acoustic wave device and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5833310A (en) * | 1981-08-21 | 1983-02-26 | Hitachi Ltd | Surface acoustic wave device |
-
1984
- 1984-06-20 JP JP59127155A patent/JPH0614608B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS616919A (en) | 1986-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4757860B2 (en) | Surface acoustic wave functional element | |
US4635009A (en) | Surface acoustic wave resonator | |
JP3216137B2 (en) | SAW device | |
KR100200179B1 (en) | Saw apparatus | |
JP3339350B2 (en) | Surface acoustic wave device | |
JPH09167936A (en) | Surface acoustic wave device | |
JP4109877B2 (en) | Surface acoustic wave functional element | |
EP0034351B1 (en) | Surface acoustic wave device | |
JP4645957B2 (en) | Surface acoustic wave element and surface acoustic wave device | |
JPH11298290A (en) | Surface acoustic wave device | |
JP2006295311A (en) | Surface acoustic wave element chip and surface acoustic wave device | |
JPS5945286B2 (en) | Element for surface acoustic wave tip shaker | |
JPH09298446A (en) | Surface acoustic wave device and its design method | |
JPS632414A (en) | Elastic surface wave resonator | |
JP2000286663A (en) | Surface acoustic wave element | |
JP3363937B2 (en) | Surface acoustic wave filter device | |
JPH11191720A (en) | Surface acoustic wave device and surface accosting wave filter | |
JPH0614608B2 (en) | Elastic wave device | |
JP3106912B2 (en) | Method of manufacturing edge reflection type surface acoustic wave device | |
JPH05335879A (en) | Surface acoustic wave element | |
JP2006074136A (en) | Surface acoustic wave element chip and surface acoustic wave device | |
JP2008092610A (en) | Surface acoustic wave substrate and surface acoustic wave functional element | |
JP3442202B2 (en) | Surface acoustic wave filter | |
JPH02295212A (en) | Surface acoustic wave resonator | |
JP3196474B2 (en) | Surface wave device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |