JPH06145921A - Production of high heat resisting strength aluminum alloy - Google Patents

Production of high heat resisting strength aluminum alloy

Info

Publication number
JPH06145921A
JPH06145921A JP4293229A JP29322992A JPH06145921A JP H06145921 A JPH06145921 A JP H06145921A JP 4293229 A JP4293229 A JP 4293229A JP 29322992 A JP29322992 A JP 29322992A JP H06145921 A JPH06145921 A JP H06145921A
Authority
JP
Japan
Prior art keywords
aluminum alloy
powder
temperature
forging
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4293229A
Other languages
Japanese (ja)
Other versions
JP3368600B2 (en
Inventor
Katsuyoshi Kondo
勝義 近藤
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29322992A priority Critical patent/JP3368600B2/en
Publication of JPH06145921A publication Critical patent/JPH06145921A/en
Application granted granted Critical
Publication of JP3368600B2 publication Critical patent/JP3368600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To efficiently and economically produce a high heat resisting strength aluminum alloy, at the time of subjecting rapidly solidified aluminum powder to compacting by a hot forging method, by optimizing the heat history in the compacting stage. CONSTITUTION:Rapidly solidified aluminum alloy powder contg., by weight, 4 to 12% iron, and the balance inevitable impurities is prepd. The rapidly solidified aluminum alloy powder is preliminarily formed at the ordinary temp. or to <=300 deg.C to obtain a green compact. The temp. of the green compact is raised to a forging temp. of 450 to 540 deg.C. The green compact is forged in a state in which it is held at the forging temp. for 6 to 20min so that, as intermetallic compounds, Al3Fe which is a stable phase and Al3Fe4 and Al6Fe which are metastable phases can be formed and the metastable phases and stable phase can be present in a ratio of (5:5) to (8:2) in the comparison of the diffraction X-ray intensity in an X-ray diffraction method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐熱強度アルミニウ
ム合金の製造方法に関し、特に急冷凝固アルミニウム合
金粉末を熱間鍛造法により成形固化することで高耐熱強
度アルミニウム合金を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high heat resistant aluminum alloy, and more particularly to a method for producing a high heat resistant aluminum alloy by compacting and solidifying rapidly solidified aluminum alloy powder by a hot forging method. is there.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
のアルミニウム合金の製造方法として溶解鋳造法があ
る。この方法によれば、アルミニウム(Al)合金の耐
熱性を向上させる元素(遷移金属系元素;鉄(Fe)、
ニッケル(Ni)、クロム(Cr)など)は粗大な金属
間化合物を形成するために高々1%程度しか添加できず
耐熱性などの効果が限られていた。最も耐熱性があると
されているJIS規格合金は2618あるいはその改良
合金であるが、かかる合金でも180℃以上の温度域で
は十分な強度を有していない。
2. Description of the Related Art As a conventional method for producing an aluminum alloy, there is a melt casting method. According to this method, an element (transition metal-based element; iron (Fe), which improves the heat resistance of the aluminum (Al) alloy,
Since nickel (Ni), chromium (Cr), etc. form a coarse intermetallic compound, only about 1% at most can be added, and effects such as heat resistance were limited. The JIS standard alloy that is said to have the highest heat resistance is 2618 or an improved alloy thereof, but even such an alloy does not have sufficient strength in the temperature range of 180 ° C or higher.

【0003】一方、粉末冶金法は急冷凝固法を用いるこ
とで上記の遷移金属合金元素を多量に添加しても、微細
でかつ均一な組織を有する分散強化合金粉末を得ること
が可能である。特にこの場合、急冷凝固速度を大きくす
ることによって、より組織が微細になり、かつ優れた特
性が得られることが知られている。しかしながら、急冷
凝固アルミニウム粉末合金では、このようにして得られ
た粉末を一旦固化する必要があるが、粉末表面が硬質な
酸化アルミニウム皮膜に覆われているため、この皮膜が
粉末同士の結合を阻害する。したがって、粉末を加熱す
ることで粉末が塑性変形できる程度にまで軟化させた
後、塑性加工を与えて表面酸化皮膜を分断・破壊し、粉
末同士を結合させて固化する必要がある。
On the other hand, in the powder metallurgy method, it is possible to obtain a dispersion strengthened alloy powder having a fine and uniform structure even if a large amount of the above transition metal alloy element is added by using a rapid solidification method. In particular, in this case, it is known that the structure becomes finer and excellent characteristics can be obtained by increasing the rapid solidification rate. However, in the rapidly solidified aluminum powder alloy, it is necessary to once solidify the powder obtained in this way, but since the powder surface is covered with a hard aluminum oxide film, this film inhibits the binding between the powders. To do. Therefore, it is necessary to heat the powder to soften the powder to such an extent that it can be plastically deformed, and then to subject the surface oxide film to fragmentation / breakage by applying plastic working to bond and solidify the powders.

【0004】固化方法には、熱間押出法と熱間鍛造法と
がある。熱間押出法においては、加熱した粉末の押出加
工時に、その粉末に十分な塑性変形を与えて酸化皮膜を
分断・破壊し、強固な粉末同士の結合が得られるように
十分に大きな押出比を設定する必要がある。このように
大きな押出比を設定した場合、押出加工により得られる
粉末成形体の寸法が大きくなる。このため、粉末成形後
の予備加熱時において、その粉末成形体の内部まで均一
に昇温するには予備加熱時間が長くなる。ところが、こ
のように高温での予備加熱時間が長くなると、急冷凝固
法によって得られた微細な組織が合金元素の拡散によっ
て分解し、次第に粗大化して特性が劣化するといった問
題があり、必ずしも高耐熱強度の優れた材料が実現され
ていなかった。
The solidification method includes a hot extrusion method and a hot forging method. In the hot extrusion method, when the heated powder is extruded, a sufficiently large extrusion ratio is applied so as to give sufficient plastic deformation to the powder to divide / break the oxide film and obtain a strong bond between the powders. Must be set. When such a large extrusion ratio is set, the size of the powder compact obtained by extrusion becomes large. Therefore, in the preheating after the powder molding, the preheating time becomes long in order to uniformly raise the temperature inside the powder compact. However, when the preheating time at high temperature becomes long in this way, there is a problem that the fine structure obtained by the rapid solidification method is decomposed by the diffusion of alloying elements and gradually coarsens to deteriorate the characteristics. Materials with excellent strength have not been realized.

【0005】一方、熱間鍛造法においては、大きな塑性
流動を与えずに加圧・圧縮することにより粉末粒子が塑
性変形して粉末同士が結合できるように、十分に高い温
度にまで加熱する必要がある。この加熱温度が十分に高
くない場合には、粉末粒子が十分に結合しないために粉
末粒界で割れが生じ、十分に強固な固化ができない。こ
のように熱間鍛造法においても十分に高い温度で加熱す
る必要があるため、急冷凝固法によって得られた微細組
織が合金元素の拡散によって分解し、次第に粗大化して
特性が劣化するといった問題が生じる。
On the other hand, in the hot forging method, it is necessary to heat the powder particles to a sufficiently high temperature so that the powder particles are plastically deformed by pressing and compressing without giving a large plastic flow so that the powder particles can be bonded to each other. There is. If the heating temperature is not sufficiently high, the powder particles are not sufficiently bonded, so that cracks occur at the powder grain boundaries, and sufficient solidification cannot be achieved. Since it is necessary to heat at a sufficiently high temperature even in the hot forging method as described above, there is a problem that the fine structure obtained by the rapid solidification method is decomposed by the diffusion of alloying elements and gradually coarsens to deteriorate the characteristics. Occurs.

【0006】これに対して、アルミニウム粉末合金部材
の製造方法の一例が、特開昭63−60265号公報に
提案されている。上記公報に提案された方法では、まず
粉末粒子表面に吸着している水分の除去を目的として、
大気雰囲気中での粉末成形体の熱処理工程を導入してい
る。しかしながら、除去された水分が再度アルミニウム
と反応して粉末表面に強固な酸化アルミニウム皮膜を生
成して粉末同士の結合を阻止することになる。また、粉
末表面に存在する酸化皮膜を十分に破壊して粉末同士を
結合させるため粉末成形体を加熱処理した後、予備的な
熱間密閉型鍛造を経てから合計2回の熱間鍛造を実施し
ている。このことから、上記公報に提案された製造方法
においては、工程が繁雑となり経済的に問題がある。
On the other hand, an example of a method for manufacturing an aluminum powder alloy member is proposed in Japanese Patent Laid-Open No. 63-60265. In the method proposed in the above publication, first, for the purpose of removing the water adsorbed on the surface of the powder particles,
The heat treatment process of the powder compact in the atmosphere is introduced. However, the removed water reacts with aluminum again to form a strong aluminum oxide film on the powder surface and prevent the powder particles from binding to each other. Also, after the heat treatment of the powder compact to sufficiently break the oxide film existing on the powder surface and bond the powders together, a total of two hot forgings are carried out after preliminary heat-sealed die forging. is doing. Therefore, in the manufacturing method proposed in the above publication, the process is complicated and there is an economical problem.

【0007】本発明は、上記のような問題点を解決する
ためになされたもので、熱間鍛造法により急冷凝固アル
ミニウム合金粉末を成形固化する際、粉末の塑性変形を
可能とし、粉末同士を強固に結合させ、かつ急冷凝固法
によって得られた微細組織の分解・粗大化を防止できる
高耐熱強度アルミニウム合金の製造方法を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and when the rapidly solidified aluminum alloy powder is compacted and solidified by the hot forging method, the powder can be plastically deformed, and the powders can be separated from each other. It is an object of the present invention to provide a method for producing a high heat-resistant strength aluminum alloy which can be firmly bonded and can prevent decomposition and coarsening of a fine structure obtained by a rapid solidification method.

【0008】[0008]

【課題を解決するための手段および作用】上記目的を達
成するため、本発明の高耐熱強度アルミニウム合金の製
造方法は、以下の工程を備えている。
In order to achieve the above object, the method for producing a high heat resistant aluminum alloy of the present invention comprises the following steps.

【0009】まず鉄を4重量%以上12重量%以下含有
し、残部が不可避的不純物である急冷凝固アルミニウム
合金粉末を準備する。そして急冷凝固アルミニウム合金
粉末を常温以上300℃以下の温度で予備成形すること
により粉末成形体を得る。そして粉末成形体を450℃
以上540℃以下の鍛造温度に昇温する。そして金属間
化合物として安定相であるAl3 Feと、準安定相であ
るAl13Fe4 およびAl6 Feとが形成され、かつX
線回折法における回折X線強度の比較において準安定相
と安定相とが5:5〜8:2の割合で存在するように、
鍛造温度で6分以上20分以下の間、保持した状態で粉
末成形体を鍛造する。
First, a rapidly solidified aluminum alloy powder containing 4% to 12% by weight of iron and the balance being inevitable impurities is prepared. Then, the rapidly solidified aluminum alloy powder is preformed at a temperature from room temperature to 300 ° C. to obtain a powder compact. And the powder compact is 450 ° C.
The temperature is raised to a forging temperature of 540 ° C. or less. Then, Al 3 Fe which is a stable phase as an intermetallic compound and Al 13 Fe 4 and Al 6 Fe which are metastable phases are formed, and X
In the comparison of the diffracted X-ray intensities in the line diffraction method, the metastable phase and the stable phase are present at a ratio of 5: 5 to 8: 2,
The powder compact is forged while being held at the forging temperature for 6 minutes or more and 20 minutes or less.

【0010】Al−Fe系を母合金とする合金の安定
相、すなわち平衡相は状態図からも明らかなようにAl
3 Feなる金属間化合物である。しかし、この合金を急
冷凝固させて得られる準安定相は、急冷凝固速度が極め
て大きい場合にはAl6 Fe、中間的な場合にはAl13
Fe4 となる。
The stable phase, that is, the equilibrium phase, of the alloy containing Al-Fe as the master alloy is Al as shown in the phase diagram.
3 Fe is an intermetallic compound. However, the metastable phase obtained by rapid solidification of this alloy is Al 6 Fe when the rapid solidification rate is extremely high, and Al 13 Fe when it is intermediate.
It becomes Fe 4 .

【0011】本発明者らは、種々の実験・検討の結果、
通常のアトマイズ法で得られる粉末ではAl3 Feが少
なく、準安定相であるAl6 Fe、Al13Fe4 の2相
が大半を示すこと、そしてこの準安定相は加熱保持によ
って次第に安定相のAl3 Feに変化することを確認し
た。
As a result of various experiments and examinations, the present inventors
The powder obtained by the usual atomization method has a small amount of Al 3 Fe, and most of the two metastable phases, Al 6 Fe and Al 13 Fe 4 , show that the metastable phase gradually becomes stable when heated. It was confirmed to change to Al 3 Fe.

【0012】そしてさらに、本発明者らは、急冷凝固法
で得られた合金粉末中の準安定相が高温下での加熱保持
における熱履歴(温度、時間、昇温速度)によって次第
に安定相に変化するため、その熱履歴を最適化すること
で著しく強度、靭性ならびに熱安定性に優れた高耐熱強
度アルミニウム合金を効率よく製造できることを見出し
た。
Furthermore, the inventors of the present invention have found that the metastable phase in the alloy powder obtained by the rapid solidification method gradually becomes a stable phase due to the thermal history (temperature, time, rate of temperature increase) during heating and holding at high temperature. It has been found that by optimizing its heat history, it is possible to efficiently produce a high heat resistant aluminum alloy having excellent strength, toughness and thermal stability.

【0013】以下、本発明の高耐熱強度アルミニウム合
金の製造方法において、熱履歴を規定する各条件につい
て説明する。
In the following, in the method for producing a high heat resistant strength aluminum alloy of the present invention, each condition for defining the heat history will be described.

【0014】粉末を、たとえば型押しで予備成形する際
の温度は、通常、常温である。しかし、急冷凝固アルミ
ニウム合金粉末は硬質であるため、成形性が良好でない
場合や低加圧力で成形しなければならない場合などにお
いては、300℃まで昇温して粉末を軟化させた後、型
押し成形が行なわれる。ただし、300℃を越えると粉
末表面が酸化するため、後工程の熱間鍛造性を低下させ
ることから型押し成形の温度は300℃以下に設定する
必要がある。
The temperature at which the powder is preformed by, for example, embossing is usually room temperature. However, since the rapidly solidified aluminum alloy powder is hard, when the moldability is not good or when it is necessary to mold with a low pressure, after heating up to 300 ° C to soften the powder, Molding is performed. However, if the temperature exceeds 300 ° C., the powder surface is oxidized and the hot forgeability in the subsequent step is deteriorated. Therefore, it is necessary to set the temperature of the embossing molding to 300 ° C. or lower.

【0015】粉末成形体を鍛造温度で所定時間保持する
予備加熱において、鍛造温度は合金粉末中の析出相の形
態を支配することから粉末を固化する際における最重要
因子である。つまり、鍛造温度が450℃以上540℃
以下である場合、優れた強度・靭性および耐熱性を確保
することができる。
In the preheating for holding the powder compact at the forging temperature for a predetermined time, the forging temperature controls the morphology of the precipitation phase in the alloy powder and is therefore the most important factor in solidifying the powder. That is, the forging temperature is 450 ° C or higher and 540 ° C.
When it is below, excellent strength / toughness and heat resistance can be secured.

【0016】鍛造温度が540℃を越えると、優れた性
質を有する準安定相が分解し、次第に粗大化するために
強度・靭性さらには耐熱性が低下する。
When the forging temperature exceeds 540 ° C., the metastable phase having excellent properties is decomposed and gradually coarsened, so that strength / toughness and heat resistance are deteriorated.

【0017】一方、鍛造温度が450℃よりも低い場
合、粉末が焼鈍されずに硬質であるために、鍛造時の加
圧により粉末表面の酸化皮膜が十分に分断・破壊されな
い。このため、粉末同士の結合が不十分となる。その結
果、旧粉末粒界を起点に破壊が進行しやすくなるため、
靭性(伸び)が低下するといった問題が生じる。
On the other hand, when the forging temperature is lower than 450 ° C., the powder is not annealed and is hard, so that the oxide film on the surface of the powder is not sufficiently divided and broken by the pressure applied during forging. Therefore, the bonding between the powders becomes insufficient. As a result, fracture tends to proceed from the old powder grain boundary,
There arises a problem that the toughness (elongation) is reduced.

【0018】予備加熱の加熱時間に関しては、6分未満
の場合、粉末が十分に焼鈍されずに硬質であるために鍛
造工程での加圧により粉末表面を覆う酸化皮膜の残存に
より粉末同士の結合が不十分となる。その結果、合金の
靭性(伸び)が低下する。一方、加熱時間が20分を越
える場合、優れた性質を有する急冷凝固組織が分解・粗
大化するために強度・靭性、耐熱性が低下するといった
問題が生じる。したがって、高耐熱強度アルミニウム合
金を得るための予備加熱の適正な加熱時間は6分以上2
0分以下である。
Regarding the heating time of the preheating, if the heating time is less than 6 minutes, the powder is not sufficiently annealed and is hard. Is insufficient. As a result, the toughness (elongation) of the alloy decreases. On the other hand, when the heating time exceeds 20 minutes, a rapidly solidified structure having excellent properties is decomposed and coarsened, which causes a problem that strength, toughness and heat resistance are deteriorated. Therefore, the appropriate heating time for preheating to obtain a high heat resistant strength aluminum alloy is 6 minutes or more 2
It is 0 minutes or less.

【0019】急冷凝固法により得られるAl−Fe系合
金粉末中に存在する金属間化合物では、準安定相(Al
13Fe4 、Al6 Fe)が大半を占めるが、上述したよ
うにこの準安定相は加熱により次第に安定相(Al3
e)へと変化する。そこで、本発明では、上記の熱履歴
だけではなく、準安定相、安定相(平衡相)とがマトリ
ックス中に均一に分散し、かつそれらのX線回折法によ
る回折X線強度比率が5:5〜8:2の割合で存在する
ことで合金の耐熱性が向上することを見出した。
In the intermetallic compound present in the Al--Fe alloy powder obtained by the rapid solidification method, the metastable phase (Al
13 Fe 4 , Al 6 Fe) occupy the majority, but as described above, this metastable phase gradually becomes stable (Al 3 F
e). Therefore, in the present invention, not only the above-mentioned thermal history but also the metastable phase and the stable phase (equilibrium phase) are uniformly dispersed in the matrix, and their diffracted X-ray intensity ratio by the X-ray diffraction method is 5: It has been found that the heat resistance of the alloy is improved when it is present in the ratio of 5 to 8: 2.

【0020】上記の回折X線強度比率を実現する具体的
な鉄の添加量としては、4重量%以上12重量%以下で
ある。4重量%未満であれば、準安定相が上記の比率で
存在しないために、耐熱性などの効果は不十分となる。
また、12重量%を越える場合では、粗大なAl−Fe
系金属間化合物を形成するために強度・靭性または耐熱
性が低下する。
The specific amount of iron added to achieve the above diffracted X-ray intensity ratio is 4% by weight or more and 12% by weight or less. If it is less than 4% by weight, the metastable phase does not exist in the above proportion, and the effects such as heat resistance are insufficient.
If it exceeds 12% by weight, coarse Al-Fe
Since the intermetallic compound is formed, the strength / toughness or heat resistance decreases.

【0021】上記のようにAl−Fe系急冷凝固粉末を
熱間鍛造法により成形固化する際、その固化工程におけ
る加熱履歴(温度・時間・昇温速度)を最適化するとと
もに準安定相と安定相との回折X線強度比率を5:5〜
8:2とすることによって、従来の熱間粉末押出法や2
回熱間鍛造法では得るこのできない優れた高耐熱強度ア
ルミニウム合金を効率よく製造できる。また、従来の耐
熱強度アルミニウム合金と違い、耐熱強度を向上させる
ための種々の高融点金属元素を添加する必要がないた
め、粉末自身のコストが安価となり、本発明の製法に基
づいて成形固化することにより経済的に成形することが
できる。その結果、軽量化および耐熱性が要求される自
動車用部品、たとえばコネクティングロッドやバルブガ
イド、バルブリフターなどに適用することができる。
When the Al--Fe rapidly solidified powder is compacted and solidified by the hot forging method as described above, the heating history (temperature, time, temperature rising rate) in the solidifying step is optimized and stable with the metastable phase. Diffraction X-ray intensity ratio with phase 5: 5
By 8: 2, the conventional hot powder extrusion method or 2
It is possible to efficiently manufacture such an excellent high heat-resistant strength aluminum alloy that cannot be obtained by the hot forging method. Further, unlike the conventional heat-resistant strength aluminum alloy, since it is not necessary to add various refractory metal elements for improving the heat-resistant strength, the cost of the powder itself becomes low, and it is molded and solidified based on the manufacturing method of the present invention. As a result, it can be economically molded. As a result, it can be applied to automobile parts that are required to be lightweight and heat resistant, such as connecting rods, valve guides, and valve lifters.

【0022】本発明の好ましい第1の局面によれば、急
冷凝固アルミニウム合金粉末は100μm以下の粒径で
準備される。
According to the first preferred aspect of the present invention, the rapidly solidified aluminum alloy powder is prepared with a particle size of 100 μm or less.

【0023】たとえばアトマイズ法で得られる急冷凝固
アルミニウム合金粉末の粒径が100μmを越える場
合、凝固時の冷却速度(急冷凝固速度)が小さくなる。
このため、上記の安定相と準安定相の量比が5:5〜
8:2を満足するような準安定相が生成せず、その結
果、このような粉末を固化して得られた合金の耐熱性は
著しく低下するといった問題が生じる。
For example, when the particle size of the rapidly solidified aluminum alloy powder obtained by the atomization method exceeds 100 μm, the cooling rate during solidification (rapid solidification rate) becomes small.
Therefore, the amount ratio of the stable phase and the metastable phase is 5: 5 to 5
A metastable phase satisfying 8: 2 is not generated, and as a result, there arises a problem that the heat resistance of the alloy obtained by solidifying such powder is remarkably lowered.

【0024】本発明の好ましい第2の局面によれば、粉
末成形体を鍛造温度に昇温する工程は、大気および不活
性ガスのいずれかの雰囲気中で行なわれる。粉末成形体
を、たとえば誘導加熱する際、大気および不活性ガスの
いずれの雰囲気中で加熱処理を行なっても合金の上記特
性は確保できる。
According to the second preferred aspect of the present invention, the step of raising the temperature of the powder compact to the forging temperature is carried out in an atmosphere of either air or an inert gas. When the powder compact is induction-heated, for example, the above properties of the alloy can be secured by heat treatment in either atmosphere or an inert gas atmosphere.

【0025】本発明の好ましい第4の局面によれば、粉
末成形体を鍛造温度に昇温する工程は、昇温速度が50
℃/分以上である。たとえば急速誘導加熱における昇温
速度が50℃/分よりも小さい場合、鍛造温度に昇温す
るまでの加熱時間が長くなる。このため、急冷凝固によ
り得られた準安定相の微細組織が粗大化し、その結果、
上記の回折X線強度比率を満足しなくなるため特性が低
下する。したがって、昇温速度は50℃/分以上である
ことが必要である。
According to a preferred fourth aspect of the present invention, in the step of raising the temperature of the powder compact to the forging temperature, the heating rate is 50.
℃ / minute or more. For example, when the rate of temperature increase in rapid induction heating is lower than 50 ° C./minute, the heating time until the temperature is raised to the forging temperature becomes long. Therefore, the microstructure of the metastable phase obtained by rapid solidification becomes coarse, and as a result,
Since the above diffracted X-ray intensity ratio is no longer satisfied, the characteristics deteriorate. Therefore, it is necessary that the temperature rising rate is 50 ° C./min or more.

【0026】本発明の好ましい第5の局面によれば、鍛
造温度は450℃以上500℃以下である。合金の耐熱
性が優先的に要求されるような場合、上記の準安定相を
できる限り多く残存させ、かつある程度の靭性(伸び)
を持たせることが有効である。そのためには、粉末成形
体の鍛造温度は450℃以上500℃以下が好ましい。
According to a preferred fifth aspect of the present invention, the forging temperature is 450 ° C. or higher and 500 ° C. or lower. When heat resistance of the alloy is required preferentially, the above metastable phase is left as much as possible, and toughness (elongation) is to some extent.
Is effective. For that purpose, the forging temperature of the powder compact is preferably 450 ° C. or higher and 500 ° C. or lower.

【0027】以上述べたように本発明の製造方法によれ
ば、室温で引張り強度が35kgf/mm2 以上かつ伸
びが5〜10%、また高温の200℃での引張り強度が
30kgf/mm2 以上という従来にない格段に優れた
高耐熱強度アルミニウム合金が容易かつ安価に製造でき
る。
As described above, according to the manufacturing method of the present invention, the tensile strength at room temperature is 35 kgf / mm 2 or more and the elongation is 5 to 10%, and the tensile strength at 200 ° C. at high temperature is 30 kgf / mm 2 or more. It is possible to easily and inexpensively manufacture a highly heat-resistant aluminum alloy, which is extremely superior to the conventional ones.

【0028】[0028]

【実施例】表1に示す組成・粒度を有する急冷凝固アル
ミニウム合金粉末を表2に示す種々の条件に基づき、熱
間鍛造法により10×55×10mm形状に固化した場
合の特性(強度・靭性、高温強度および析出相の比率)
を同表2に示す。
EXAMPLES Characteristics of rapidly solidified aluminum alloy powder having the composition and grain size shown in Table 1 and solidified into a 10 × 55 × 10 mm shape by hot forging under the various conditions shown in Table 2 (strength / toughness). , High temperature strength and precipitation phase ratio)
Are shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】なお、型押し成形および鍛造時の加圧力は
6t/cm2 であり、また合金の200℃での強度は、
試料を200℃にて100時間加熱保持後、引張り試験
を行なったときのデータである。合金中の準安定相と安
定相との比率はX線回折法により得られたその回折強度
の相対比である。
The pressure applied during stamping and forging was 6 t / cm 2 , and the strength of the alloy at 200 ° C. was
It is data when a tensile test was performed after the sample was heated and held at 200 ° C. for 100 hours. The ratio of metastable phase to stable phase in the alloy is the relative ratio of its diffraction intensities obtained by X-ray diffractometry.

【0032】表2に示す番号1〜10は、本発明例であ
り、本発明の製造方法により得られる合金は、強度・靭
性および高温強度に優れており、また合金中の準安定相
と安定相との比率は目標とする範囲内にある。
Nos. 1 to 10 shown in Table 2 are examples of the present invention. The alloy obtained by the production method of the present invention is excellent in strength / toughness and high temperature strength, and is stable with metastable phases in the alloy. The ratio with the phase is within the target range.

【0033】一方、表2に示す番号11〜19は比較例
であり、番号11の試料では、鉄含有量が12重量%を
越えるためその金属間化合物が粗大化して靭性が低下す
る。
On the other hand, Nos. 11 to 19 shown in Table 2 are comparative examples, and in the sample No. 11, the iron content exceeds 12% by weight, so that the intermetallic compound becomes coarse and the toughness decreases.

【0034】番号12の試料では、合金の耐熱性を向上
させる鉄の含有量が4重量%未満のため高温での強度が
低下する。
In the sample of No. 12, the iron content for improving the heat resistance of the alloy is less than 4% by weight, so that the strength at high temperature decreases.

【0035】番号13の試料では、粉末粒径が100μ
mよりも大きいため十分な急冷凝固組織が得られず、耐
熱性が低下する。
In the sample of No. 13, the powder particle size is 100 μm.
Since it is larger than m, a sufficient rapidly solidified structure cannot be obtained and heat resistance is lowered.

【0036】番号14の試料では、加熱温度が450℃
よりも低いため粉末同士の結合が不十分となり、靭性が
低下する。
Sample No. 14 had a heating temperature of 450 ° C.
Since it is lower than that, the bonding between the powders becomes insufficient and the toughness decreases.

【0037】番号15の試料では、加熱温度が540℃
よりも高いため準安定相が分解・粗大化して耐熱性が低
下する。
Sample No. 15 had a heating temperature of 540 ° C.
Since it is higher than the above, the metastable phase decomposes and coarsens, and the heat resistance decreases.

【0038】番号16の試料では、加熱温度が6分未満
であるため粉末同士の結合が不十分となり、靭性が低下
する。
In the sample of No. 16, since the heating temperature is less than 6 minutes, the bonding between the powders becomes insufficient and the toughness decreases.

【0039】番号17の試料では、加熱時間が20分を
越えるため準安定相が分解・粗大化して耐熱性が低下す
る。
In the sample of No. 17, since the heating time exceeds 20 minutes, the metastable phase decomposes and coarsens, and the heat resistance decreases.

【0040】番号18の試料では、加熱時の昇温速度が
50℃/分よりも小さいために長時間の加熱処理が必要
となり、準安定相の分解・粗大化により耐熱性が低下す
る。
In the sample of No. 18, the heating rate during heating is smaller than 50 ° C./minute, so that heat treatment is required for a long time, and the heat resistance decreases due to decomposition and coarsening of the metastable phase.

【0041】番号19の試料では、型押し成形時の温度
が300℃を越えるため粉末表面の酸化が進行して強固
な粉末同士の結合が得られず、その結果靭性が低下す
る。
In the sample of No. 19, the temperature at the time of embossing exceeds 300 ° C., the oxidation of the powder surface progresses, and a strong bond between the powders cannot be obtained, resulting in a decrease in toughness.

【0042】[0042]

【発明の効果】Al−Fe系急冷凝固粉末を熱間鍛造法
により成形固化する際、その固化工程における加熱履歴
(温度・時間・昇温速度)を最適化するとともに準安定
相と安定相との回折X線強度比率を5:5〜8:2とす
ることによって、従来の熱間粉末押出法や2回熱間鍛造
法では得ることのできない優れた高耐熱強度アルミニウ
ム合金を効率よく製造できる。また、従来の高耐熱強度
アルミニウム合金と違い、耐熱強度を向上させるための
種々の高融点金属元素を添加する必要がないため、粉末
自身のコストが安価となり、本発明の製法に基づいて成
形固化することにより経済的に製造することができる。
その結果、軽量化および耐熱性が要求される自動車用部
品、たとえばコネクティングロッドやバルブガイド、バ
ルブリフターなどに適用することができる。
[Effects of the Invention] When the Al-Fe system rapidly solidified powder is compacted and solidified by the hot forging method, the heating history (temperature, time, temperature rising rate) in the solidification step is optimized and the metastable phase and stable phase are formed. By setting the diffracted X-ray intensity ratio to 5: 5 to 8: 2, an excellent high heat-resistant aluminum alloy that cannot be obtained by the conventional hot powder extrusion method or double hot forging method can be efficiently produced. . Further, unlike the conventional high heat-resistant strength aluminum alloy, since it is not necessary to add various refractory metal elements for improving the heat resistance, the cost of the powder itself is low, and the solidification is performed based on the manufacturing method of the present invention. By doing so, it can be manufactured economically.
As a result, it can be applied to automobile parts that are required to be lightweight and heat resistant, such as connecting rods, valve guides, and valve lifters.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄を4重量%以上12重量%以下含有
し、残部が不可避的不純物である急冷凝固アルミニウム
合金粉末を準備する工程と、 前記急冷凝固アルミニウム合金粉末を常温以上300℃
以下の温度で予備成形することにより粉末成形体を得る
工程と、 前記粉末成形体を450℃以上540℃以下の鍛造温度
に昇温する工程と、 金属間化合物として安定相であるAl3 Feと、準安定
相であるAl13Fe4およびAl6 Feとが形成され、
かつX線回折法における回折X線強度の比較において前
記準安定相と前記安定相とが5:5〜8:2の割合で存
在するように、前記鍛造温度で6分以上20分以下の
間、保持した状態で前記粉末成形体を鍛造する工程とを
備えた、高耐熱強度アルミニウム合金の製造方法。
1. A step of preparing a rapidly solidified aluminum alloy powder containing iron in an amount of 4 wt% to 12 wt% and the balance being inevitable impurities.
A step of obtaining a powder compact by preforming at the following temperature, a step of raising the powder compact to a forging temperature of 450 ° C. or higher and 540 ° C. or lower, and a stable phase Al 3 Fe as an intermetallic compound , Al 13 Fe 4 and Al 6 Fe which are metastable phases are formed,
And in the forging temperature between 6 minutes and 20 minutes so that the metastable phase and the stable phase exist in a ratio of 5: 5 to 8: 2 in the comparison of the diffracted X-ray intensities in the X-ray diffraction method. And a step of forging the powder compact while holding the powder compact, the method for producing a high heat-resistant strength aluminum alloy.
【請求項2】 前記急冷凝固アルミニウム合金粉末を1
00μm以下の粒径で準備することを特徴とする、請求
項1に記載の高耐熱強度アルミニウム合金の製造方法。
2. The rapidly solidified aluminum alloy powder is added to 1
The method for producing a high heat-resistant aluminum alloy according to claim 1, wherein the aluminum alloy is prepared with a grain size of 00 μm or less.
【請求項3】 前記粉末成形体を前記鍛造温度に昇温す
る工程は、大気および不活性ガスのいずれかの雰囲気中
で行なわれることを特徴とする、請求項1および2のい
ずれかに記載の高耐熱強度アルミニウム合金の製造方
法。
3. The method according to claim 1, wherein the step of raising the temperature of the powder compact to the forging temperature is performed in an atmosphere of either air or an inert gas. Method for producing high heat resistant aluminum alloy of.
【請求項4】 前記粉末成形体を前記鍛造温度に昇温す
る工程は、前記粉末成形体を昇温速度50℃/分以上で
昇温することを含む請求項1、2および3のいずれかに
記載の高耐熱強度アルミニウム合金の製造方法。
4. The method according to claim 1, wherein the step of raising the temperature of the powder compact to the forging temperature includes raising the temperature of the powder compact at a temperature rising rate of 50 ° C./min or more. A method for producing a high heat-resistant strength aluminum alloy according to.
【請求項5】 前記鍛造温度は、450℃以上500℃
以下であることを特徴する、請求項1、2、3および4
のいずれかに記載の高耐熱強度アルミニウム合金の製造
方法。
5. The forging temperature is 450 ° C. or higher and 500 ° C.
Claims 1, 2, 3 and 4 characterized in that
A method for producing a high heat-resistant strength aluminum alloy according to any one of 1.
JP29322992A 1992-10-30 1992-10-30 Manufacturing method of high heat resistant aluminum alloy Expired - Fee Related JP3368600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29322992A JP3368600B2 (en) 1992-10-30 1992-10-30 Manufacturing method of high heat resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29322992A JP3368600B2 (en) 1992-10-30 1992-10-30 Manufacturing method of high heat resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPH06145921A true JPH06145921A (en) 1994-05-27
JP3368600B2 JP3368600B2 (en) 2003-01-20

Family

ID=17792103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29322992A Expired - Fee Related JP3368600B2 (en) 1992-10-30 1992-10-30 Manufacturing method of high heat resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JP3368600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123258A1 (en) * 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
US8151436B2 (en) 2003-12-22 2012-04-10 Honda Motor Co., Ltd. Method of forming member, valve guide and method of forming the same, and method of forming tubular member
WO2020008809A1 (en) * 2018-07-02 2020-01-09 住友電気工業株式会社 Aluminum alloy material and method for manufacturing aluminum alloy material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151436B2 (en) 2003-12-22 2012-04-10 Honda Motor Co., Ltd. Method of forming member, valve guide and method of forming the same, and method of forming tubular member
WO2008123258A1 (en) * 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
EP2130935A1 (en) * 2007-03-26 2009-12-09 National Institute for Materials Science Sintered binary aluminum alloy powder, and method for production thereof
US7976775B2 (en) 2007-03-26 2011-07-12 National Institute For Materials Science Sintered binary aluminum alloy powder sintered material and method for production thereof
EP2130935A4 (en) * 2007-03-26 2012-08-15 Nat Inst For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
JP5665037B2 (en) * 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same
WO2020008809A1 (en) * 2018-07-02 2020-01-09 住友電気工業株式会社 Aluminum alloy material and method for manufacturing aluminum alloy material
CN112189057A (en) * 2018-07-02 2021-01-05 住友电气工业株式会社 Aluminum alloy material and method for producing aluminum alloy material

Also Published As

Publication number Publication date
JP3368600B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US4435213A (en) Method for producing aluminum powder alloy products having improved strength properties
EP0535593B1 (en) Method of manufacturing sintered aluminum alloy parts
JP2008231536A (en) Magnesium alloy, and method for manufacturing magnesium alloy member
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
JP3845035B2 (en) Method for manufacturing piston for internal combustion engine and piston for internal combustion engine
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JP3368600B2 (en) Manufacturing method of high heat resistant aluminum alloy
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
US4992117A (en) Heat resistant aluminum alloy excellent in tensile strength, ductility and fatigue strength
WO2005054529A1 (en) Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
JPS61213358A (en) Production of al alloy having improved properties
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JP3355673B2 (en) Heat-resistant aluminum alloy and method for producing the same
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JPH07278714A (en) Aluminum powder alloy and its production
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPH0565568B2 (en)
JP2672834B2 (en) Aluminum alloy member with high strength and excellent forgeability
JP2917999B2 (en) Method for producing high-strength aluminum alloy compact
JPH0813056A (en) Production of superplastic hypereutectic aluminum-silicon powder metallurgy alloy
JPH04323342A (en) Transition element added powdery aluminum alloy and its production
JPH10265918A (en) Aluminum alloy
JPH06145864A (en) Production of heat resistant aluminum alloy for automotive engine and parts made of heat resistant aluminum alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021015

LAPS Cancellation because of no payment of annual fees