JPH0614535B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0614535B2
JPH0614535B2 JP59180447A JP18044784A JPH0614535B2 JP H0614535 B2 JPH0614535 B2 JP H0614535B2 JP 59180447 A JP59180447 A JP 59180447A JP 18044784 A JP18044784 A JP 18044784A JP H0614535 B2 JPH0614535 B2 JP H0614535B2
Authority
JP
Japan
Prior art keywords
region
tunnel injection
gate
channel
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180447A
Other languages
Japanese (ja)
Other versions
JPS6159877A (en
Inventor
潤一 西澤
薫 本谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP59180447A priority Critical patent/JPH0614535B2/en
Priority to GB08519851A priority patent/GB2163002B/en
Priority to FR858512117A priority patent/FR2569056B1/en
Priority to DE19853528562 priority patent/DE3528562A1/en
Publication of JPS6159877A publication Critical patent/JPS6159877A/en
Priority to GB08723051A priority patent/GB2194677B/en
Priority to US07/147,656 priority patent/US4870469A/en
Publication of JPH0614535B2 publication Critical patent/JPH0614535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はトンネル注入型静電誘導トランジスタを用いた
半導体集積回路に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor integrated circuit using a tunnel injection type static induction transistor.

〔先行技術とその問題点〕[Prior art and its problems]

静電誘電型トランジスタ(以下、SITと略す)は、ゲ
ート領域とゲート領域の間で空乏層がつながって生じて
いる電位障壁の高さを変化させてソース領域・ドレイン
領域の間の電流を制御するトランジスタである。このと
き、電位の制御が空乏層の静電容量を通して行われるこ
とから、バイポーラトランジスタにおけるベース層の蓄
積容量がないものに相当し、FETと比べてみても非常
に高速、低雑音で動作するという優れた特性を有してい
る。
An electrostatic dielectric transistor (hereinafter abbreviated as SIT) controls the current between a source region and a drain region by changing the height of a potential barrier generated by connecting a depletion layer between gate regions. It is a transistor. At this time, since the control of the potential is performed through the capacitance of the depletion layer, it corresponds to a bipolar transistor having no storage capacitance in the base layer, and operates at very high speed and low noise as compared with an FET. It has excellent characteristics.

しかし、従来のSITはソース領域・ドレイン領域間、
特にソース領域・ゲート領域間の寸法が割合と大きな構
造になっていたため、キャリアが結晶格子の散乱を受
け、上限周波数が制限される問題点があった。
However, in the conventional SIT, between the source region and the drain region,
In particular, since the size between the source region and the gate region is relatively large, the carriers are scattered by the crystal lattice, and there is a problem that the upper limit frequency is limited.

このような問題点を除去するために、キャリアが結晶格
子の散乱を受けずに熱電子速度で動くことのできる熱電
子放射型SITが先に本願発明者等よって提案された。
この熱電子放射型SITによれば、例えば、GaAsを
用いた場合、電位障壁の幅Wgを0.1μmとしたとき
に、しゃ断周波数fcは780GHz程度にもなり、従
来に比べて上限周波数が高められ、素子の高速化が達成
される。
In order to eliminate such a problem, the present inventors previously proposed a thermionic emission type SIT in which carriers can move at a thermoelectron velocity without being scattered by a crystal lattice.
According to this thermionic emission type SIT, for example, when GaAs is used and the width Wg of the potential barrier is 0.1 μm, the cut-off frequency fc becomes about 780 GHz, and the upper limit frequency is higher than that of the conventional one. Therefore, the speedup of the device is achieved.

しかし、更に高速のトランジスタを得ようとしたとき、
上記熱電子放射型SITではしゃ断周波数が高々800
Hz程度であり、それ以上の高速化を図ることが困難で
あった。
However, when trying to get a faster transistor,
In the thermionic emission type SIT, the cutoff frequency is at most 800.
It was about Hz, and it was difficult to achieve higher speed.

また、従来の半導体集積回路はソース電極・ゲート電
極、ドレイン電極への配線が複雑となり、その取付けに
多くのスペースを要し、高集積化が困難であった。
Further, in the conventional semiconductor integrated circuit, the wiring to the source electrode / gate electrode and the drain electrode is complicated, a lot of space is required for the attachment, and high integration is difficult.

〔発明の目的〕[Object of the Invention]

本発明は、更に高速にして高集積化が容易な半導体集積
回路を提供することを目的とする。
It is an object of the present invention to provide a semiconductor integrated circuit which can be further increased in speed and easily integrated.

〔本発明の概要〕[Outline of the present invention]

本発明は、真性或いは半絶縁性基板の一部に第1導電型
の高不純物密度領域よりなる第1ドレイン領域を設け、
その第1ドレイン領域上に第1チャンネル領域、第1導
電型の第1トンネル注入領域及び第2導電型の第1ソー
ス領域を縦型に、また、前記第1チャンネル領域に接触
して前記第1チャンネル領域よりも禁制帯幅の大きい半
導体で第1ゲート領域を形成すると共に、真の第1ゲー
ト領域と第1ソース領域間の寸法をキャリアの平均自由
行程以下にしてノーマリオフ型の駆動用トンネル注入型
静電誘導トランジスタを形成する一方、この駆動用トン
ネル注入型静電誘導トランジスタに隣接する領域には前
記第1ドレイン領域を第2ソース領域としてこの第2ソ
ース領域上に第2チャンネル領域、第1導電型の第2ト
ンネル注入領域及び第2導電型の第2ドレイン領域を縦
型に、また、前記第2チャンネル領域に接触して前記第
2チャンネル領域よりも禁制帯幅の大きい半導体を用い
て前記第1ゲート領域よりも薄型の第2ゲート領域を形
成してノーマリオン型とした負荷抵抗用静電誘導トラン
ジスタを形成し、前記駆動用トンネル注入型静電誘導ト
ランジスタの第1ゲート領域に接して形成される電極に
信号入力端子、前記第1ソース領域に接して形成される
電極に接地端子、前記第1ドレイン領域に接して形成さ
れる電極に出力端子、更に前記負荷抵抗用静電誘導トラ
ンジスタの前記第2ドレイン領域に接して形成される電
極に電源端子をそれぞれ設けて集積回路を構成したこと
を特徴とする。
The present invention provides a first drain region formed of a high-concentration impurity region of the first conductivity type in a part of an intrinsic or semi-insulating substrate,
A first channel region, a first conduction type first tunnel injection region, and a second conduction type first source region are vertically formed on the first drain region, and are in contact with the first channel region. The first gate region is formed of a semiconductor having a forbidden band width larger than that of the one-channel region, and the dimension between the true first gate region and the first source region is set to be equal to or smaller than the mean free path of carriers, so that a normally-off type driving tunnel is formed. An injection static induction transistor is formed, and a second channel region is formed on the second source region with the first drain region as a second source region in a region adjacent to the driving tunnel injection static induction transistor. The second tunnel injection region of the first conductivity type and the second drain region of the second conductivity type are vertically formed, and are in contact with the second channel region from the second channel region. A second gate region thinner than the first gate region is formed by using a semiconductor having a larger forbidden band width to form a normally-on type static induction transistor for load resistance, and the tunnel injection type for driving is formed. The electrode formed in contact with the first gate region of the static induction transistor has a signal input terminal, the electrode formed in contact with the first source region has a ground terminal, and the electrode formed in contact with the first drain region has an electrode. An integrated circuit is configured by providing a power supply terminal on each of the output terminal and an electrode formed in contact with the second drain region of the load resistance static induction transistor.

〔発明の実施例〕Example of Invention

本願発明者等が提案したトンネル注入型SITのしゃ断
周波数fcは次式で与えられる。
The cutoff frequency fc of the tunnel injection type SIT proposed by the inventors of the present application is given by the following equation.

ここで、τはトンネル遷移時間である。 Here, τ is the tunnel transition time.

トンネル遷移時間τは次式で与えられる。The tunnel transition time τ is given by the following equation.

ここで、 はプランク定数hを2πで除したもの(1.0546×
10-34J・sec)、Eはトンネル接合の電界強度、
aは格子定数である。
here, Is Planck's constant h divided by 2π (1.0546 ×
10-34 J · sec), E is the electric field strength of the tunnel junction,
a is a lattice constant.

格子定数aとしてGaAsの5.6533Åとしたとき
に、電界強度を106V/cm、5×106V/cm、1×1
7V/cmとしたときのfcは前記(1)、(2)式よ
りそれぞれ1.37×1013Hz、6.83×1013
z、1.37×1014Hzとなり、しゃ断周波数は10
0THz程度にもなる。この値は本願発明者等が先に提
案した熱電子放射型SITのおおよそ100倍位であっ
て、熱電子注入よりも量子効果に基づくトンネル注入型
を用いれば、SITのしゃ断周波数fcを非常に高くし
得ることがわかる。
When the lattice constant a is 5.6533Å of GaAs, the electric field strength is 10 6 V / cm, 5 × 10 6 V / cm, 1 × 1.
The fc at 0 7 V / cm is 1.37 × 10 13 Hz and 6.83 × 10 13 H from the equations (1) and (2), respectively.
z, 1.37 × 10 14 Hz, cutoff frequency is 10
It can be as high as 0 THz. This value is about 100 times that of the thermionic emission type SIT previously proposed by the inventors of the present application, and if the tunnel injection type based on the quantum effect rather than thermionic injection is used, the cut-off frequency fc of the SIT will be extremely high. You can see that it can be raised.

トンネル注入は雑音が小さいという特徴と、小さな電圧
で大きな電流が得られるので、gm(相互コンダクタン
ス)を大きくし易く電流駆動能力が高いという特徴があ
る。また、トンネル注入は温度上昇につれてよく生起す
るという特徴と有しているので、冷却する必要もないと
いうことになる。以上のことからトンネル注入型SIT
は、集積回路用のトランジスタとして優れていることが
わかる。
The tunnel injection has a feature that noise is small, and a large current can be obtained at a small voltage, so that gm (mutual conductance) can be easily increased and a current driving capability is high. In addition, since tunnel injection has a characteristic that it often occurs as the temperature rises, it means that cooling is not necessary. From the above, tunnel injection type SIT
Are excellent as transistors for integrated circuits.

以下、このトンネル注入型SITを用いた集積回路につ
いて説明する。
Hereinafter, an integrated circuit using this tunnel injection type SIT will be described.

第1図は本発明の一実施例に係る半導体集積回路の断面
図を示したものである。図において、1は真性半導体な
いしは半絶縁生のGaAs基板、2はドレイン領域とな
るべきn+領域、3はチャンネル領域のn層、4はトン
ネル注入層となるべく形成されたn+領域、5はトンネ
ル注入層となるべく形成されたp+領域でソース領域と
なるもの、6はGaAsよりも禁制帯幅の大きいGa1
−xAlxAsまたGa1−xAlxAs1−yPy等の
ヘテロ接合ゲート領域で、トンネル注入層となるp+
-領域に接して設けられているチャンネル領域3に接
して設ける。
FIG. 1 is a sectional view of a semiconductor integrated circuit according to an embodiment of the present invention. In the figure, 1 is an intrinsic semiconductor or semi-insulating GaAs substrate, 2 is an n + region that should be a drain region, 3 is an n layer of a channel region, 4 is an n + region formed to be a tunnel injection layer, and 5 is A p + region which is formed as a tunnel injection layer and serves as a source region, and 6 is Ga 1 having a larger forbidden band width than GaAs.
-XAlxAs or Ga 1 -xAlxAs 1 -yPy, etc. In the heterojunction gate region, p + − serving as a tunnel injection layer
It is provided in contact with the channel region 3 provided in contact with the n region.

このチャンネル領域3中のソース領域近傍には電位障壁
のピークが生じるが、これを真のゲート領域とよんでい
る。チャンネル長(チャンネル領域中のソース領域とド
レイン領域間の寸法)が短い場合は、この真のゲート領
域の生じる位置は殆どドレイン電圧には影響されること
なく、ほぼソース領域5近傍にできる。従って、実質的
にソース領域5とゲート領域6との間の距離、即ちn+
トンネル注入領域4の厚みを平均自由行程以下にするこ
とにより、真のゲート領域とソース領域6間の寸法をキ
ャリアの平均自由行程以下とすることができ、また、こ
れによりトンネル注入構造の駆動SITが得られる。
A peak of the potential barrier occurs near the source region in the channel region 3, which is called a true gate region. When the channel length (the dimension between the source region and the drain region in the channel region) is short, the position where the true gate region is generated can be almost near the source region 5 without being affected by the drain voltage. Therefore, substantially the distance between the source region 5 and the gate region 6, that is, n +
By setting the thickness of the tunnel injection region 4 to be equal to or smaller than the mean free path, the dimension between the true gate region and the source region 6 can be set to be equal to or smaller than the mean free path of carriers. Is obtained.

この第1図の左側に形成される駆動用トンネル注入型S
ITに隣接する領域に、前記ドレイン領域2をソース領
域とする負荷用トンネル注入型SITが形成される。3
0はチャンネル領域3と同じ材料で形成されたn層のチ
ャンネル領域、40はトンネル注入領域4と同様n+
に形成されたトンネル注入領域、50はソース領域5と
同じ材料でp+トンネル注入層となるべく形成されたド
レイン領域である。また、60はゲート領域6と同じ材
料で形成されたゲート領域であるが、ゲート領域6より
も薄く形成することによりノーマリオン動作型SITと
している。
Driving tunnel injection type S formed on the left side of FIG.
A tunnel tunneling type SIT for load having the drain region 2 as a source region is formed in a region adjacent to IT. Three
0 is an n-layer channel region made of the same material as the channel region 3, 40 is a tunnel injection region formed in the n + layer like the tunnel injection region 4, and 50 is a p + tunnel injection made of the same material as the source region 5. It is a drain region formed as a layer. Further, 60 is a gate region made of the same material as the gate region 6, but is formed to be thinner than the gate region 6 to form a normally-on operation type SIT.

9はゲート電極、10はソース電極、11は出力電極、
12は電源を供給するドレイン電極、13はSi34
SiO2、ポリイミド樹脂等の絶縁物20は入力端子、
21はソース電極に設けた接地端子、22は出力端子、
23は電源端子である。
9 is a gate electrode, 10 is a source electrode, 11 is an output electrode,
12 is a drain electrode for supplying power, 13 is Si 3 N 4 ,
The insulator 20 such as SiO 2 or polyimide resin is an input terminal,
21 is a ground terminal provided on the source electrode, 22 is an output terminal,
23 is a power supply terminal.

+層のソース領域5よりドレイン領域2までの不純物
密度分布は次のようにする。即ち、空乏層の拡がりWは
次式で与えられる。
The impurity density distribution from the source region 5 to the drain region 2 of the p + layer is as follows. That is, the spread W of the depletion layer is given by the following equation.

ここで、NA、NDはそれぞれp+層のソース領域5とn+
のトンネル注入領域4の不純物密度で均一としている。
εsは誘導率、qは単位電荷、Vbiは拡散電位、Vaは
印加電圧である。
Here, N A and N D are the source region 5 and n + of the p + layer, respectively.
The tunnel implant region 4 has a uniform impurity density.
εs is the inductivity, q is the unit charge, Vbi is the diffusion potential, and Va is the applied voltage.

n層のチャンネル領域3が空乏化するために必要な電圧
Vは次式で与えられる。
The voltage V required for depleting the channel region 3 of the n layer is given by the following equation.

ここで、Wはチャンネル長、Nはチャンネル領域の不
純物密度で均一であるとした。
Here, it is assumed that W 2 is a channel length and N is a uniform impurity density in the channel region.

+層のソース領域5の厚さWp+は次式で与えられる。The thickness Wp + of the source region 5 of the p + layer is given by the following equation.

ここで、W1はn+層のトンネル注入領域4の厚さであ
る。
Here, W 1 is the thickness of the tunnel injection region 4 of the n + layer.

(3),(4),(5)式よりp+層のソース領域5、
+層のソース領域4,n層のチャンネル領域3の不純
物密度と厚さを決めることができる。
From the expressions (3), (4), and (5), the source region 5 of the p + layer,
The impurity density and thickness of the source region 4 of the n + layer and the channel region 3 of the n layer can be determined.

例として、(1)NA=1×1020cm-3,Wp+=10
Å,ND=5×1018cm-3,W1=100Å,W2=25
0Å,N=1×1018cm(2)NA=1×1020cm-3
Wp+=15Å,ND=1×1018cm-3,W1=80Å,
N=1×1018cm,W2=75Åである。
As an example, (1) N A = 1 × 10 20 cm −3 , Wp + = 10
Å, N D = 5 × 10 18 cm -3 , W 1 = 100 Å, W 2 = 25
0Å, N = 1 × 10 18 cm (2) N A = 1 × 10 20 cm -3 ,
Wp + = 15Å, N D = 1 × 10 18 cm -3 , W 1 = 80Å,
N = 1 × 10 18 cm and W 2 = 75Å.

これからトンネル注入層の電界強度は拡散電位だけで約
1MV/cm以上となる。この電界強度と(1)式及び
(2)式からfcは1.37×1013Mz(13.7T
Hz)となり、またチャンネルn層の厚みも75〜20
0Åと薄いので、従来の熱電子放射型SITの動作限界
周波数以上の領域で動作するトランジスタが得られる。
From this, the electric field strength of the tunnel injection layer becomes about 1 MV / cm or more only by the diffusion potential. From this electric field strength and the expressions (1) and (2), fc is 1.37 × 10 13 Mz (13.7T).
Hz), and the thickness of the channel n layer is 75 to 20.
Since the thickness is as thin as 0Å, a transistor that operates in a region above the operating limit frequency of the conventional thermionic emission SIT can be obtained.

ゲートのヘテロ接合の組成はx=0.3、y=0.01
程度であり、ソース電極、出力および電源端子電極1
0,11,12はAu−Ge,Au−Ge−Ni等の合
金、ゲート電極9はAlまたはAu,W,Pt等の重金
属で形成されている。
The composition of the gate heterojunction is x = 0.3, y = 0.01
Source electrode, output and power supply terminal electrode 1
0, 11, and 12 are alloys such as Au-Ge and Au-Ge-Ni, and the gate electrode 9 is formed from Al or heavy metal such as Au, W, and Pt.

第2図は第1図の等価回路を示したものである。FIG. 2 shows an equivalent circuit of FIG.

31は第1図に示した半導体集積回路の断面図の左側に
形成された駆動用トンネル注入型SITでノーマリオフ
特性を有するもの、32は第1図の右側に形成され負荷
抵抗として用いるノーマリオン特性を有する負荷抵抗用
トンネル注入型SITの等価回路を示している。20,
21,22,23はそれぞれ入力端子、接地端子、出力
端子、電源端子である。入力端子20に印加される入力
信号が「ロー」のときは駆動用トンネル注入型SIT3
1がオフで出力端子22へは「ハイ」レベルが生じ、入
力信号が「ハイ」になると、駆動用トンネル注入型SI
T31はオンして出力端子22へは「ロー」レベルが生
じ、いわゆるインバータ動作をする。ここで、負荷抵抗
用トンネル注入型SIT32はノーマリオン動作とする
ことにより等価的に抵抗として機能させている。
Reference numeral 31 is a tunnel injection type SIT for driving formed on the left side of the cross-sectional view of the semiconductor integrated circuit shown in FIG. 1 and having a normally-off characteristic, and 32 is a normally-on characteristic formed on the right side of FIG. 1 and used as a load resistance. 2 shows an equivalent circuit of a tunnel injection type SIT for load resistance having the above. 20,
Reference numerals 21, 22, and 23 are an input terminal, a ground terminal, an output terminal, and a power supply terminal, respectively. When the input signal applied to the input terminal 20 is "low", the drive tunnel injection type SIT3
When "1" is off and a "high" level is generated at the output terminal 22 and the input signal becomes "high", the drive tunnel injection type SI
T31 is turned on, a "low" level is generated at the output terminal 22, and a so-called inverter operation is performed. Here, the load resistance tunnel injection type SIT 32 functions as a resistance equivalently by the normally-on operation.

このように本実施例の集積回路は、トンネル注入型SI
Tが縦型構造であるので、チヤンネル長を容易に100
0Å以下にでき、更に上部に形成されるソース電極、ゲ
ート電極への配線が容易であることによって、ソース電
極、ゲート電極、ドレイン電極の微細配線を要するFE
TないしはHEMTによる集積回路に比べて製造が容易
となる。そめに配線部分に要する面積をおおよそ2/3
に減らせる結果、高集積化が実現できるようになる。
As described above, the integrated circuit of the present embodiment is a tunnel injection type SI.
Since T has a vertical structure, the channel length can be easily set to 100.
FE which requires a fine wiring of the source electrode, the gate electrode, and the drain electrode because it can be made 0 Å or less and the wiring to the source electrode and the gate electrode formed on the upper portion is easy.
It is easier to manufacture than an integrated circuit using T or HEMT. The area required for the wiring part is approximately 2/3
As a result, high integration can be realized.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、ノーマリオフ特性の駆動
用トンネル注入型SITにノーマリオン特性の負荷用ト
ンネル注入型SITを直列に接続した集積回路を形成す
るようにしたので、わざわざ別に抵抗を作ること無く同
じ工程で効率よく集積回路が形成できる上、遮断周波数
が出願人が先に提案した熱電子放射型SITよりも非常
に高速の半導体集積回路が容易に得られる。
As described above, according to the present invention, the driving tunnel injection type SIT having the normally-off characteristic and the load tunnel injection type SIT having the normally-on characteristic are connected in series to form an integrated circuit. In this way, an integrated circuit can be efficiently formed in the same process without using the semiconductor device, and a semiconductor integrated circuit having a cutoff frequency much higher than that of the thermionic emission SIT proposed by the applicant can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る半導体集積回路の断面
図、第2図はその等価回路図である。 1……基板、2……駆動用トンネル注入型SITのドレ
イン領域兼負荷抵抗用トンネル注入型SITのソース領
域、3、30……チヤンネル領域、4、40……トンネ
ル注入領域、5……ソース領域、50……ドレイン領
域、6、60……ゲート領域、20……入力端子、21
……接地端子、22……出力端子、23……電源端子。
FIG. 1 is a sectional view of a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram thereof. 1 ... Substrate, 2 ... Drain region of driving tunnel injection type SIT and source region of load injection tunnel injection type SIT, 3, 30 ... Channel region, 4, 40 ... Tunnel injection region, 5 ... Source Area, 50 ... drain area, 6, 60 ... gate area, 20 ... input terminal, 21
...... Grounding terminal, 22 …… Output terminal, 23 …… Power supply terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本谷 薫 宮城県仙台市米ヶ袋2丁目1番9号406 (56)参考文献 特開 昭57−186374(JP,A) 昭和50年電気四学会連合大会講演論文集 第537〜540頁 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Motoya 2-9-9 Yonegabukuro, Sendai-shi, Miyagi 406 (56) Reference JP-A-57-186374 (JP, A) Proceedings of the Federation Conference, pp. 537-540

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真性或いは半絶縁性基板の一部に第1導電
型の高不純物密度領域よりなる第1ドレイン領域を設
け、その第1ドレイン領域上に第1チャンネル領域、第
1導電型の第1トンネル注入領域及び第2導電型の第1
ソース領域を縦型に、また、前記第1チャンネル領域に
接触して前記第1チャンネル領域よりも禁制帯幅の大き
い半導体で第1ゲート領域を形成すると共に、真の第1
ゲート領域と第1ソース領域間の寸法をキャリアの平均
自由行程以下にしてノーマリオフ型の駆動用トンネル注
入型静電誘導トランジスタを形成する一方、この駆動用
トンネル注入型静電誘導トランジスタに隣接する領域に
は前記第1ドレイン領域を第2ソース領域としてこの第
2ソース領域上に第2チャンネル領域、第1導電型の第
2トンネル注入領域及び第2導電型の第2ドレイン領域
を縦型に、また、前記第2チャンネル領域に接触して前
記第2チャンネル領域よりも禁制帯幅の大きい半導体を
用いて前記第1ゲート領域よりも薄型の第2ゲート領域
を形成してノーマリオン型とした負荷抵抗用トンネル注
入型静電誘導トランジスタを形成し、前記駆動用トンネ
ル注入型静電誘導トランジスタの第1ゲート領域に接し
て形成される電極に信号入力端子、前記第1ソース領域
に接して形成される電極に接地端子、前記第1ドレイン
領域に接して形成される電極に出力端子、更に前記負荷
抵抗用トンネル注入型静電誘導トランジスタの前記第2
ドレイン領域に接して形成される電極に電源端子をそれ
ぞれ設けて集積回路を構成したことを特徴とする半導体
集積回路。
1. A first drain region formed of a high impurity density region of the first conductivity type is provided in a part of an intrinsic or semi-insulating substrate, and a first channel region and a first conductivity type are provided on the first drain region. First tunnel injection region and first of second conductivity type
The source region is formed vertically, and the first gate region is formed by contacting the first channel region with a semiconductor having a forbidden band width larger than that of the first channel region.
A region between the gate region and the first source region is equal to or smaller than the mean free path of carriers to form a normally-off driving tunnel injection static induction transistor, and a region adjacent to the driving tunnel injection static induction transistor. A second channel region, a second tunnel injection region of the first conductivity type, and a second drain region of the second conductivity type are vertically formed on the second source region using the first drain region as a second source region. A normally-on type load is formed by contacting the second channel region and forming a second gate region thinner than the first gate region by using a semiconductor having a forbidden band width larger than that of the second channel region. An electrode that forms a tunnel injection static induction transistor for resistance and is formed in contact with the first gate region of the drive tunnel injection static induction transistor. A signal input terminal, a ground terminal for an electrode formed in contact with the first source region, an output terminal for an electrode formed in contact with the first drain region, and the tunnel injection static induction transistor for load resistance. Second
A semiconductor integrated circuit comprising an electrode formed in contact with a drain region, each of which is provided with a power supply terminal to form an integrated circuit.
【請求項2】特許請求の範囲第1項記載において、チャ
ンネルGaAs、ゲート領域がGa1−xAlAsな
いしGa1−xAlxAs1-yyで形成されてなる半導
体集積回路。
2. A semiconductor integrated circuit according to claim 1, wherein the channel GaAs and the gate region are formed of Ga 1-x Al x As or Ga 1-x Al x As 1-y P y .
JP59180447A 1984-08-08 1984-08-31 Semiconductor integrated circuit Expired - Lifetime JPH0614535B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59180447A JPH0614535B2 (en) 1984-08-31 1984-08-31 Semiconductor integrated circuit
GB08519851A GB2163002B (en) 1984-08-08 1985-08-07 Tunnel injection static induction transistor and its integrated circuit
FR858512117A FR2569056B1 (en) 1984-08-08 1985-08-07 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND INTEGRATED CIRCUIT COMPRISING SUCH A TRANSISTOR
DE19853528562 DE3528562A1 (en) 1984-08-08 1985-08-08 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND COMPREHENSIVE INTEGRATED CIRCUIT
GB08723051A GB2194677B (en) 1984-08-08 1987-10-01 Tunnel injection static induction transistor integrated circuit
US07/147,656 US4870469A (en) 1984-08-08 1988-01-25 Tunnel injection type static transistor and its integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180447A JPH0614535B2 (en) 1984-08-31 1984-08-31 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6159877A JPS6159877A (en) 1986-03-27
JPH0614535B2 true JPH0614535B2 (en) 1994-02-23

Family

ID=16083387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180447A Expired - Lifetime JPH0614535B2 (en) 1984-08-08 1984-08-31 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0614535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411774A (en) * 1987-07-06 1989-01-17 Honda Motor Co Ltd Running gear
KR101874414B1 (en) * 2012-04-05 2018-07-04 삼성전자주식회사 High side gate driver, switching chip, and power device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186374A (en) * 1981-05-12 1982-11-16 Semiconductor Res Found Tunnel injection type travelling time effect semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和50年電気四学会連合大会講演論文集第537〜540頁

Also Published As

Publication number Publication date
JPS6159877A (en) 1986-03-27

Similar Documents

Publication Publication Date Title
US4364072A (en) Static induction type semiconductor device with multiple doped layers for potential modification
US4907053A (en) Semiconductor integrated circuit
US4994872A (en) Insulated gate static induction transistor and integrated circuit including same
US5631483A (en) Power device integrated structure with low saturation voltage
JPS6352475B2 (en)
JPH0439770B2 (en)
US4839703A (en) High speed and power transistor
US4317127A (en) Static induction transistor and integrated circuit utilizing same
US5032880A (en) Semiconductor device having an interposing layer between an electrode and a connection electrode
US5359220A (en) Hybrid bipolar/field-effect power transistor in group III-V material system
JPH0230588B2 (en)
US5117268A (en) Thermionic emission type static induction transistor and its integrated circuit
US4700213A (en) Multi-drain enhancement JFET logic (SITL) with complementary MOSFET load
US5086330A (en) Bipolar semiconductor switching device
US4870469A (en) Tunnel injection type static transistor and its integrated circuit
US4903091A (en) Heterojunction transistor having bipolar characteristics
JPH11168099A (en) Semiconductor device
JPH0614535B2 (en) Semiconductor integrated circuit
JPH0680832B2 (en) Semiconductor device
US4178603A (en) Schottky transistor with low residual voltage
US4450468A (en) Gallium arsenide ISL gate with punched-through bipolar driver transistor
Nishizawa Junction field-effect devices
JP3107325B2 (en) Semiconductor coupled superconducting element
JPH0614534B2 (en) Semiconductor integrated circuit
JPH045274B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term