JPS6159877A - Semiconductor integrate circuit - Google Patents

Semiconductor integrate circuit

Info

Publication number
JPS6159877A
JPS6159877A JP59180447A JP18044784A JPS6159877A JP S6159877 A JPS6159877 A JP S6159877A JP 59180447 A JP59180447 A JP 59180447A JP 18044784 A JP18044784 A JP 18044784A JP S6159877 A JPS6159877 A JP S6159877A
Authority
JP
Japan
Prior art keywords
channel
integrated circuit
gate
drain
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59180447A
Other languages
Japanese (ja)
Other versions
JPH0614535B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Kaoru Mototani
本谷 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59180447A priority Critical patent/JPH0614535B2/en
Priority to GB08519851A priority patent/GB2163002B/en
Priority to FR858512117A priority patent/FR2569056B1/en
Priority to DE19853528562 priority patent/DE3528562A1/en
Publication of JPS6159877A publication Critical patent/JPS6159877A/en
Priority to GB08723051A priority patent/GB2194677B/en
Priority to US07/147,656 priority patent/US4870469A/en
Publication of JPH0614535B2 publication Critical patent/JPH0614535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT

Abstract

PURPOSE:To facilitate high integration at a high speed by connecting a signal input terminal with the gate of a tunnel junction SIT formed of a semiconductor having forbidden band larger at a gate than a channel, a ground terminal withe the source, an output terminal with a drain, and further a resistor with the drain, and providing a power terminal. CONSTITUTION:In a tunnel junction static induction transistor having a semiconductor region 3 to become a channel, a source region 5 and a drain region 2 having tunnel junction regions 4, 5 formed in contact with both sides of the channel, and a gate region 6 formed in contact with part of the channel, a signal input terminal 20 is connected with the gate 6, a ground terminal 21 is connected with the source 5, an output terminal 22 is connected with the drain 2, and a power terminal 23 is connected through a resistor 7 with the drain 2 to form an integrated circuit. Thus, since an integrated circuit in which a tunnel injector SIT and a load resistor are connected in series is formed, an ultrahigh speed, a low power consumption, low noise and high integration semiconductor integrated circuit is obtained at room temperature operation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はトンネル注入型静電誘導トランジスタを用いた
半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit using a tunnel injection type static induction transistor.

[先行技術とその問題点コ Ilplルミ誘導型トランジスタ下、 SITと略す)
は。
[Prior art and its problems] Ilpl lumi-induced transistor (abbreviated as SIT)
teeth.

ゲートとゲートの間で空乏層がつながって生じている電
位障壁の高さを変化させてソース・ドレイン間の電流を
制御するトランジスタである。このとき、a!位の制御
が空乏層の静電容量を通して行なわれることがら、バイ
ポーラトランジスタにおけるベース層の蓄積容量がない
ものに相当し。
This is a transistor that controls the current between the source and drain by changing the height of the potential barrier created by connecting the depletion layers between the gates. At this time, a! Since the level is controlled through the capacitance of the depletion layer, this corresponds to a bipolar transistor without the storage capacitance of the base layer.

FETと比べてみても非常に高速、低雑音で動作すると
いう優れた特性を有している。
Compared to FETs, they have excellent characteristics of operating at extremely high speeds and with low noise.

しかし、従来のSITはソース・ドレイン間、特にソー
ス・ゲート間の寸法が割合と大きな構造になっていたた
め、キャリアが結晶格子の散乱を受け、上限周波数が制
限される問題点があった。
However, the conventional SIT has a structure in which the dimensions between the source and the drain, particularly between the source and the gate, are relatively large, so that carriers are scattered by the crystal lattice, which limits the upper limit frequency.

このような問題点を除去するために、キャリアが結晶格
子の散乱を受けずに熱電子速度で動くことのできる熱電
子放射型SITが先に本願発明者等によって提案された
。この熱電子放射型SITによれば、例えば、GaAs
を用いた場合、電位障壁の幅Wgを0.1μmとしたと
きに、しゃ断周波数fcは780GHz程度にもなり、
従来に比べて上限周波数が高められ、素子の高速化が達
成される。
In order to eliminate such problems, the inventors of the present invention previously proposed a thermionic emission type SIT in which carriers can move at thermionic velocity without being subjected to scattering by the crystal lattice. According to this thermionic emission type SIT, for example, GaAs
When using , when the potential barrier width Wg is 0.1 μm, the cutoff frequency fc is about 780 GHz,
The upper limit frequency is increased compared to the conventional technology, and the speed of the device is increased.

しかし、更に高速のトランジスタを得ようとしたとき、
上記熱電子放射型SITではしゃ断周波数が高々800
G)Iz程度であり、それ以上の高速化を図ることが困
難であった。
However, when trying to obtain even faster transistors,
In the thermionic emission type SIT mentioned above, the cutoff frequency is at most 800.
G) It was about Iz, and it was difficult to achieve higher speed.

また、従来の半導体集積回路はソース・ゲート。Also, conventional semiconductor integrated circuits are source-gate.

ドレインの配線が複雑となり、その取付けに多くのスペ
ースを要し、高集積化が困難であった。
Drain wiring became complicated and required a lot of space for installation, making it difficult to achieve high integration.

[発明の目的] 本発明は、更に高速にして高集積化が容易な半導体集積
回路を提供することを目的とする。
[Object of the Invention] It is an object of the present invention to provide a semiconductor integrated circuit that can be made faster and more easily integrated.

[発明の概要コ このため本発明は、ゲートをチャンネルよりも禁制帯幅
の大きい半導体で構成したトンネル注入型SITのゲー
トに信号入力端子、ソースに接地端子1、ドレインに出
力端子、更にドレインに抵抗を接続して電源端子を設け
て集積回路を構成したことを特徴としている。
[Summary of the Invention] Therefore, the present invention provides a tunnel injection type SIT in which the gate is made of a semiconductor whose forbidden band width is larger than that of the channel. It is characterized in that an integrated circuit is constructed by connecting a resistor and providing a power supply terminal.

[発明の実施例] 本願発明者等が先に提案したトンネル注入型SITのし
ゃ断周波数fcは次式で与えられる。
[Embodiments of the Invention] The cutoff frequency fc of the tunnel injection type SIT previously proposed by the inventors of the present application is given by the following equation.

fc=            ・・・・・・(1)2
πτ ここで、ではトンネル遷移時間である。
fc= ・・・・・・(1)2
πτ Here, is the tunnel transition time.

トンネル遷移時間は次式で与えられる。The tunnel transition time is given by the following equation.

gEa       °−°−(2) ここで、にはブランク定数りを2πで除したもの(1,
0546X10−34J−sec)、Eはトンネル接合
の電界強度、aは格子定数である。
gEa °−°−(2) Here, is the blank constant divided by 2π (1,
0546 x 10-34 J-sec), E is the electric field strength of the tunnel junction, and a is the lattice constant.

格子定数aとしてGaAsのs、6533Aとしたとき
に。
When the lattice constant a is s of GaAs and 6533A.

電界強度を10’ V/ca、5X10’ V/cm、
lXl0’ V/c+nとしたときのfcは前記(1)
 、 (2)式よりそれぞれ1.37XlO”  3 
Hz、6.83X1013 Hz、1.37X10″ 
1)1zとなり、しゃ断周波数はIQOT)Iz程度に
もなる。
Electric field strength is 10' V/ca, 5X10' V/cm,
When lXl0' V/c+n, fc is the above (1)
, (2), each 1.37XlO" 3
Hz, 6.83X1013 Hz, 1.37X10''
1) 1z, and the cutoff frequency is about IQOT)Iz.

この値は本願発明者等が先に提案した熱電子放射型SI
Tのおおよそ100倍位であって、熱電子注入よりも量
子効果に基づくトンネル注入を用いれば、SITのしゃ
断周波数fcを非常に高くし得ることがわかる。
This value is based on the thermionic emission type SI proposed earlier by the inventors.
It can be seen that the cutoff frequency fc of the SIT can be made very high by using tunnel injection which is approximately 100 times T and is based on quantum effects rather than hot electron injection.

トンネル注入は雑音が小さいという特徴と、小さな電圧
で大きな電流が得られるので、go+(相互コンダクタ
ンス)を大きくし易く電流駆動能力が高いという特徴が
ある。また、トンネル注入は温度上昇につれてよく生起
するという特徴を有しているので、冷却する必要もない
ということになる。
Tunnel injection has the characteristics of low noise, and because a large current can be obtained with a small voltage, it is easy to increase go+ (mutual conductance) and has a high current driving ability. Further, since tunnel injection has the characteristic that it occurs more frequently as the temperature rises, there is no need for cooling.

以上のことからトンネル注入型SITは、集積回路用の
トランジスタとして優れていることがわかる。
From the above, it can be seen that the tunnel injection type SIT is excellent as a transistor for integrated circuits.

以下、このトンネル注入型SITを用いた集積回路につ
いて説明する。
An integrated circuit using this tunnel injection type SIT will be explained below.

第1図は本発明の一実施例に係る半導体集積回路の断面
図を示したものである。図において、1は真性半導体な
いしは半絶縁性のGaAs基板、2はドレインとなるべ
きn中領域、3はチャンネルのn層、4はトンネル注入
層となるべく形成されたn+領領域5はトンネル注入層
とななるべく形成されたp+領領域ソース領域となるも
の、6はGaAsよりも禁制帯幅の大きいGa1−xA
QxAsまたはGa s −xAQxAs s −yP
y等のへテロ接合ゲート領域。
FIG. 1 shows a cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention. In the figure, 1 is an intrinsic semiconductor or semi-insulating GaAs substrate, 2 is an n-type region to become a drain, 3 is an n-type channel layer, and 4 is an n+ region formed to be a tunnel injection layer 5 is a tunnel injection layer. 6 is Ga1-xA which has a larger forbidden band width than GaAs.
QxAs or Ga s -xAQxAs s -yP
Heterojunction gate region such as y.

7は抵抗負荷となるn領域、8はn領域7の抵抗負荷へ
の電極となるn中領域、9はゲート電極、10はソース
電極、11は出力電極、12は電源を供給する電極、1
3はSi3N4.SiO2,ポリイミド樹脂等の絶縁物
、20は入力端子、21はソース端子で接地点、22は
出力端子、23は電源端子である。
7 is an n region that serves as a resistive load, 8 is an n middle region that is an electrode for the resistive load of n region 7, 9 is a gate electrode, 10 is a source electrode, 11 is an output electrode, 12 is an electrode that supplies power, 1
3 is Si3N4. An insulator such as SiO2 or polyimide resin, 20 is an input terminal, 21 is a source terminal and a ground point, 22 is an output terminal, and 23 is a power supply terminal.

ソースのp中層5よりドレインまでの不純物導度分布は
次のようにすればよい、即ち、空乏層の拡がりは次式で
与えられる。
The impurity conductivity distribution from the p-middle layer 5 of the source to the drain may be determined as follows, that is, the spread of the depletion layer is given by the following equation.

ここで、NA、NDはそれぞれP+十層とn+十層の不
純密度で均一であるとしている。15は誘電率、qは単
位電荷、Vbiは拡散電位、Vaは印加電圧である。
Here, NA and ND are assumed to have uniform impurity densities of 10 P+ layers and 10 n+ layers, respectively. 15 is a dielectric constant, q is a unit charge, Vbi is a diffusion potential, and Va is an applied voltage.

チャンネルの0M3が空乏化するために必要な電圧Vは
次式で与えられる。
The voltage V required to deplete 0M3 of the channel is given by the following equation.

ここで、W2はチャンネルの長さ、Nはチャンネルの不
純物密度で均一であるとした。
Here, W2 is the length of the channel, and N is the impurity density of the channel, which is uniform.

p中層5の厚さWP+は次式で与えられる。The thickness WP+ of the p-type intermediate layer 5 is given by the following equation.

ここで、W+はn中層4の厚さである。Here, W+ is the thickness of the n-middle layer 4.

(3) 、 (4) 、 (5)式より2十層5.n÷
層4.チャンネルの1層3の不純物密度と厚さを決める
ことができる。
From equations (3), (4), and (5), 20 layers5. n÷
Layer 4. The impurity density and thickness of layer 3 of the channel can be determined.

例として、 (1) N A :lX102’ (Jl
−’ 、 Wp”=10人r No=5X10” Cm
−’ 、Wt=100A。
As an example, (1) N A :lX102' (Jl
-', Wp”=10 peopler No=5X10” Cm
-', Wt=100A.

W 2 =250A、 N=IX10” ’ cm、(
2)NA=IX10” ’ arr −’ + W’p
÷=15A、 N D =1xxo1gan−’ 、 
Wt =soA、 N=IX101” 0111. W
2 =75人である。
W 2 = 250A, N = IX10'' cm, (
2) NA=IX10"'arr-'+W'p
÷=15A, N D =1xxo1gan-',
Wt=soA, N=IX101” 0111.W
2 = 75 people.

ゲートのへテロ接合の組成はx = 0 、3、y=o
、ot程度であり、ソース、出力および電源端子の電極
10.11.12はAu−Ge、Au−Go−Ni等の
合金、ゲート電極9はAQまたはAu、W、PL等の重
金属、7は抵抗で1012〜10”am−’程度の不純
物密度を有する。
The composition of the gate heterojunction is x = 0, 3, y = o
, ot, the source, output and power terminal electrodes 10, 11 and 12 are made of an alloy such as Au-Ge or Au-Go-Ni, the gate electrode 9 is made of AQ or a heavy metal such as Au, W, or PL, and 7 is made of an alloy such as Au-Ge or Au-Go-Ni. It has an impurity density of about 1012 to 10"am-' in terms of resistance.

第2図は第1図の等価回路を示したものである。FIG. 2 shows an equivalent circuit of FIG. 1.

30はトンネル注入型SITでノーマリオフ特性を有す
るもの、31は前記トンネル注入型5IT30の負荷抵
抗、 20,21,22.23はそれぞれ入力端子、接
地端子、出力端子、電源端子である。入力がローのとき
はトンネル注入型5IT30がオフで出力端子22へは
ハイレベルが生じ、入力がハイになると、トンネル注入
型SITはオンして出力端子22へはローレベルが生じ
、いわゆるインバータ動作をする。ここで、流れる電流
はトンネル注入型SITのオン抵抗が小さいので、おお
よそ負荷抵抗31の値によって決定される0例えば、v
DDが0.1■で負荷抵抗が100にΩであれば、電流
はおおよそ1μ^となる。
30 is a tunnel injection type SIT having normally-off characteristics, 31 is a load resistance of the tunnel injection type 5IT 30, and 20, 21, 22, and 23 are an input terminal, a ground terminal, an output terminal, and a power supply terminal, respectively. When the input is low, the tunnel injection type 5IT30 is off and a high level is generated at the output terminal 22. When the input is high, the tunnel injection type SIT is turned on and a low level is generated at the output terminal 22, resulting in so-called inverter operation. do. Here, since the on-resistance of the tunnel injection type SIT is small, the flowing current is approximately determined by the value of the load resistance 31, for example, 0.
If DD is 0.1■ and the load resistance is 100Ω, the current will be approximately 1μ^.

第3図は本発明の別の実施例を示したもので、負荷抵抗
をディプレッションモードのトンネル注入型SITで構
成したものである。ここでは負荷となるトランジスタの
ゲート領域40をノーマリオフのトランジスタよりも薄
く形成して、ノーマリオン動作とすることにより等価的
に抵抗としているので、特に第1図のように抵抗を作る
ことなしに。
FIG. 3 shows another embodiment of the present invention, in which the load resistor is constructed of a depletion mode tunnel injection type SIT. Here, the gate region 40 of the transistor serving as a load is formed thinner than that of a normally-off transistor, and is operated in normally-on operation, thereby equivalently serving as a resistor, so that there is no need to create a resistor as shown in FIG.

インバータ動作をさせることができる。Inverter operation is possible.

ゲート領域40は直接ソース領域5および4のn+層へ
接触していてもかまわない、   ′負荷抵抗としての
トランジスタは、トンネル注入型SITの他に、熱電子
放射型SIT、通常のSITまたはFETであってもよ
い。
The gate region 40 may be in direct contact with the n+ layer of the source regions 5 and 4. 'The transistor serving as the load resistor may be a thermionic emission type SIT, a normal SIT, or a FET in addition to a tunnel injection type SIT. There may be.

第4図は、第3図の等価回路を示したものである。FIG. 4 shows an equivalent circuit of FIG. 3.

32はノーマリオン型のトランジスタによる抵抗である
。このインバータ回路の動作は第2図に述べた回路と同
様であるので、詳しい説明は省略する。
32 is a resistor made of a normally-on type transistor. Since the operation of this inverter circuit is similar to the circuit described in FIG. 2, detailed explanation will be omitted.

以上の実施例では、ヘテロ接合型のゲート構造のものを
示したが、絶縁ゲート、ショットキーゲート、pn接合
ゲートであってもよいことは言う迄もない。
In the above embodiments, a heterojunction type gate structure is shown, but it goes without saying that an insulated gate, a Schottky gate, or a pn junction gate may be used.

このように本実施例の集積回路は、トンネル注入型SI
Tが縦型構造であるので、チャンネル長を容易に100
0Å以下にでき、更に上部に形成されるソース、ゲート
の配線が容易であることによって。
In this way, the integrated circuit of this embodiment is a tunnel injection type SI
Since T has a vertical structure, the channel length can be easily reduced to 100
The thickness can be reduced to 0 Å or less, and the wiring for the source and gate formed on the top is easy.

ソース、ゲート、ドレインの微細配線を要するFETな
いしはHEMTによる集積回路に比べて製造が容易とな
る。そのために配線部分に要する面積をおおよそ2/3
に減らせる結果、高集積化が実現できるようになる。
It is easier to manufacture than integrated circuits using FETs or HEMTs, which require fine wiring for sources, gates, and drains. Therefore, the area required for the wiring part is approximately 2/3
As a result, high integration can be realized.

尚1以上の実施例において、電源、アース、入出力の配
線は、プレーナ構造、絶縁物を介した2NI配線等の周
知の技術を用いることができる。材料はGaAsに限ら
ず、SL 、 InP 、 InAa 、 InSbま
たはII−Vl族の化合物半導体でもよい、また、 H
gTe、CdTeとHg I−xcdxTeとの組み合
わせによることもできることは勿論である。
In one or more embodiments, power supply, ground, and input/output wiring may use well-known techniques such as a planar structure or 2NI wiring via an insulator. The material is not limited to GaAs, but may also be SL, InP, InAa, InSb or II-Vl group compound semiconductors, or H
Of course, it is also possible to use a combination of gTe, CdTe and HgI-xcdxTe.

また、前記の集積回路は、本発明者等の開発による分子
層ないしは光分子層エピタキシャル成長法、あるいは、
気相成長、液相成長、MOCVD法。
Further, the above-mentioned integrated circuit can be produced using a molecular layer or photomolecular layer epitaxial growth method developed by the present inventors, or
Vapor phase growth, liquid phase growth, MOCVD method.

MBE法、イオン注入、拡散、フォトリングラフィ。MBE method, ion implantation, diffusion, photolithography.

プラズマエツチング、化学エツチング、更には。Plasma etching, chemical etching, and even.

各種の真空蒸着法の組み合わせ等により形成できる。It can be formed by a combination of various vacuum deposition methods.

[発明の効果] 以上のように本発明によれば、トンネル注入型SITと
負荷抵抗を直列接続した集積回路を形成する。ようにし
たので、超高速、低消費電力、低雑音な室温動作で高集
積化可能な半導体集積回路が得られる。
[Effects of the Invention] As described above, according to the present invention, an integrated circuit in which a tunnel injection type SIT and a load resistor are connected in series is formed. As a result, it is possible to obtain a semiconductor integrated circuit that is ultra-high speed, has low power consumption, operates at room temperature with low noise, and can be highly integrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る半導体集積回路の断面
図、第2図はその等価回路、第3図は本発明の他の実施
例に係る半導体集積回路の断面図。 第4図はその等価回路である。 1・・・基板、2・・・ ドレ°イン、3・・・チャン
ネル、5・・・ ソース、4,5・・・ トンネル注入
領域、6・・・ゲート、20・・・入力端子、21・・
・接地端子。 22・・・出力端子、23・・・1!源端子。 第1図 第2図
FIG. 1 is a cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention, FIG. 2 is an equivalent circuit thereof, and FIG. 3 is a cross-sectional view of a semiconductor integrated circuit according to another embodiment of the present invention. FIG. 4 shows its equivalent circuit. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Drain, 3... Channel, 5... Source, 4, 5... Tunnel injection region, 6... Gate, 20... Input terminal, 21・・・
・Ground terminal. 22...output terminal, 23...1! source terminal. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)チャンネルとなる半導体領域と、このチャンネル
の両側に接触して形成されるトンネル注入領域を有する
ソース領域およびドレイン領域と、前記チャンネルの一
部に接触して形成されたゲート領域を具備したトンネル
注入型静電誘導トランジスタのゲートに信号入力端子、
ソースに接地端子、ドレインに出力端子、更にそのドレ
インに抵抗を介して電源端子をそれぞれ設けて集積回路
を構成したことを特徴とする半導体集積回路。
(1) A semiconductor region serving as a channel, a source region and a drain region having tunnel injection regions formed in contact with both sides of the channel, and a gate region formed in contact with a part of the channel. A signal input terminal is connected to the gate of the tunnel injection type static induction transistor.
1. A semiconductor integrated circuit characterized in that the integrated circuit is configured by providing a ground terminal at a source, an output terminal at a drain, and a power supply terminal at the drain via a resistor.
(2)特許請求の範囲第1項記載において、前記ゲート
領域が前記チャンネルよりも禁制帯幅の大きい半導体よ
り形成される半導体集積回路。
(2) A semiconductor integrated circuit according to claim 1, wherein the gate region is formed of a semiconductor having a larger forbidden band width than the channel.
(3)特許請求の範囲第1項または第2項記載において
、前記抵抗をノーマリオン型のトランジスタより形成し
て成る半導体集積回路。
(3) A semiconductor integrated circuit according to claim 1 or 2, wherein the resistor is formed of a normally-on transistor.
(4)特許請求の範囲第2項または第3項記載において
、チャンネルがGaAs、ゲート領域がGa_1_−_
xAl_xAsないしはGa_1_−_xAl_xAs
_1_−_yP_yで形成されて成る半導体集積回路。
(4) In claim 2 or 3, the channel is made of GaAs and the gate region is made of Ga_1_-_
xAl_xAs or Ga_1_-_xAl_xAs
A semiconductor integrated circuit formed of _1_-_yP_y.
JP59180447A 1984-08-08 1984-08-31 Semiconductor integrated circuit Expired - Lifetime JPH0614535B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59180447A JPH0614535B2 (en) 1984-08-31 1984-08-31 Semiconductor integrated circuit
GB08519851A GB2163002B (en) 1984-08-08 1985-08-07 Tunnel injection static induction transistor and its integrated circuit
FR858512117A FR2569056B1 (en) 1984-08-08 1985-08-07 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND INTEGRATED CIRCUIT COMPRISING SUCH A TRANSISTOR
DE19853528562 DE3528562A1 (en) 1984-08-08 1985-08-08 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND COMPREHENSIVE INTEGRATED CIRCUIT
GB08723051A GB2194677B (en) 1984-08-08 1987-10-01 Tunnel injection static induction transistor integrated circuit
US07/147,656 US4870469A (en) 1984-08-08 1988-01-25 Tunnel injection type static transistor and its integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180447A JPH0614535B2 (en) 1984-08-31 1984-08-31 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6159877A true JPS6159877A (en) 1986-03-27
JPH0614535B2 JPH0614535B2 (en) 1994-02-23

Family

ID=16083387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180447A Expired - Lifetime JPH0614535B2 (en) 1984-08-08 1984-08-31 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0614535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411774A (en) * 1987-07-06 1989-01-17 Honda Motor Co Ltd Running gear
JP2013220016A (en) * 2012-04-05 2013-10-24 Samsung Electronics Co Ltd High side gate driver, switching chip, and power device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186374A (en) * 1981-05-12 1982-11-16 Semiconductor Res Found Tunnel injection type travelling time effect semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186374A (en) * 1981-05-12 1982-11-16 Semiconductor Res Found Tunnel injection type travelling time effect semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411774A (en) * 1987-07-06 1989-01-17 Honda Motor Co Ltd Running gear
JP2013220016A (en) * 2012-04-05 2013-10-24 Samsung Electronics Co Ltd High side gate driver, switching chip, and power device

Also Published As

Publication number Publication date
JPH0614535B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
US5479033A (en) Complementary junction heterostructure field-effect transistor
JP5520215B2 (en) Improved power switching transistor
US4994872A (en) Insulated gate static induction transistor and integrated circuit including same
US8629509B2 (en) High voltage insulated gate bipolar transistors with minority carrier diverter
US6303410B1 (en) Methods of forming power semiconductor devices having T-shaped gate electrodes
US4484207A (en) Static induction transistor and semiconductor integrated circuit using hetero-junction
JPH09129751A (en) Semiconductor structure for transistor and circuit
JPH0357614B2 (en)
US5359220A (en) Hybrid bipolar/field-effect power transistor in group III-V material system
EP0334006A1 (en) Stacked channel heterojunction fet
US20200075584A1 (en) Conductivity Modulated Drain Extended MOSFET
EP0615292A1 (en) Insulated gate bipolar transistor
US3355637A (en) Insulated-gate field effect triode with an insulator having the same atomic spacing as the channel
JPS63141375A (en) Insulated gate field effect transistor
US4903091A (en) Heterojunction transistor having bipolar characteristics
US5723349A (en) Process for manufacturing a high conductivity insulated gate bipolar transistor integrater structure
US6531748B2 (en) Semiconductor power component with a reduced parasitic bipolar transistor
Ueda et al. A new vertical double diffused MOSFET—the self-aligned terraced-gate MOSFET
JPS6159877A (en) Semiconductor integrate circuit
JPS6228586B2 (en)
EP0093557A2 (en) High-speed complementary semiconductor integrated circuit
JPS62199049A (en) Semiconductor device
JP2553673B2 (en) Field effect transistor
US9935628B2 (en) FET—bipolar transistor combination, and a switch comprising such a FET—bipolar transistor combination
JPS6329836B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term