JPH06142724A - Blank layout method - Google Patents

Blank layout method

Info

Publication number
JPH06142724A
JPH06142724A JP29167192A JP29167192A JPH06142724A JP H06142724 A JPH06142724 A JP H06142724A JP 29167192 A JP29167192 A JP 29167192A JP 29167192 A JP29167192 A JP 29167192A JP H06142724 A JPH06142724 A JP H06142724A
Authority
JP
Japan
Prior art keywords
order
planing
plan
blank layout
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29167192A
Other languages
Japanese (ja)
Other versions
JP3073612B2 (en
Inventor
Koichi Matsuda
浩一 松田
Watoson Buruusu
ワトソン ブルース
Kazuo Nose
和夫 能勢
Shigeru Sakai
酒井  茂
Kazue Sasaki
主計 佐々木
Yoshio Tomita
喜雄 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29167192A priority Critical patent/JP3073612B2/en
Publication of JPH06142724A publication Critical patent/JPH06142724A/en
Application granted granted Critical
Publication of JP3073612B2 publication Critical patent/JP3073612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To provide a blank layout method which can create an optimum blank layout plan in a short time capable of enduring practical use. CONSTITUTION:When one or more orders 0 are appropriated to each of plural slabs S to create the blank layout plan, this blank layout method is so constituted that the sequence of use of the slabs S and the appropriating sequence of the order 0 to the slabs S are recombined by the simulated annealing method SA, a blank layout plan about each combination code (x) is prepared and an evalution function E1 based on a prescribed condition is applied to this blank layout plan to determine the optimum blank layout plan. The optimum blank layout plan can be created by this constitution in the short time capable of enduring practical use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板取り方法に係り,詳し
くは金属等の複数のスラブから複数の注文を最適に取り
合わせる材料板取り方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate removing method, and more particularly to a material removing method for optimally combining a plurality of orders from a plurality of slabs such as metal.

【0002】[0002]

【従来の技術】従来,複数のスラブに複数の注文を充当
して板取り計画を作成するに際しては,計画作成担当者
が,与えられた複数のスラブと注文の情報から,これら
の組み合わせを試行錯誤的に求め,板取りをしていた。
2. Description of the Related Art Conventionally, when a planing plan is created by allocating a plurality of orders to a plurality of slabs, a person in charge of planning prepares a combination of the plurality of slabs and the order information provided. I was erroneously asking for it, and was cutting it.

【0003】[0003]

【発明が解決しようとする課題】上記したような従来の
人間が試行錯誤的に組み合わせを求めて板取り計画を作
成する板取り方法では,以下のような問題があった。 (1)板取り計画に用いる情報量が非常に多いため,ス
ラブと注文との組み合わせ数は膨大なものとなるが,人
手により求められる組み合わせ数には限度がある。 (2)また,板取りに対する制約条件も多く,上記求め
られた組み合わせの中からこの条件を満足するものを見
つけるに手間がかかる。 (3)更に,最終的な板取りの最適性を評価することが
困難である。 本発明は,このような従来の技術における課題を解決す
るために板取り方法を改良し,実用に耐えうる短かい時
間で最適な板取り計画を作成し得る板取り方法を提供す
ることを目的とするものである。
The above-described conventional planing method in which a person makes a planing plan by seeking combinations by trial and error has the following problems. (1) Since the amount of information used in the planing plan is extremely large, the number of combinations of slabs and orders becomes enormous, but the number of combinations that can be manually obtained is limited. (2) Further, there are many restrictions on the planing, and it takes time and effort to find a combination satisfying this condition from the combinations obtained above. (3) Furthermore, it is difficult to evaluate the optimality of the final planing. It is an object of the present invention to improve a planing method in order to solve the problems in the related art and to provide a planing method capable of creating an optimum planing plan in a short time that can be put to practical use. It is what

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,複数の板材の各々に1以上の注文を充当し
て板取り計画を作成するに際し,上記板材の使用順と該
板材への上記注文の充当順とをシミュレーテッド・アニ
ーリング法により組み替えて各々の組み合わせについて
の板取り計画を作成し,上記各板取り計画について該板
取りに対する所定の条件に基づく評価関数を適用して最
適な板取り計画を決定してなる板取り方法として構成さ
れている。上記所定の条件には,上記板材の廃却部分の
面積が最小になること,生産性,上記注文の納期,古い
板材はなるべく早く使うなどの条件が含まれる。
In order to achieve the above object, the present invention relates to the order of use of the plate materials and the plate materials when a plate cutting plan is prepared by applying one or more orders to each of the plate materials. The order of appropriation to the above is rearranged by a simulated annealing method to create a planing plan for each combination, and an evaluation function based on a predetermined condition for the planing is applied to each planing plan. It is configured as a planing method by determining an optimal planing plan. The predetermined conditions include conditions such that the area of the scrap portion of the plate material is minimized, productivity, delivery date of the order, and old plate material is used as soon as possible.

【0005】[0005]

【作用】本発明によれば,複数の板材の各々に1以上の
注文を充当して板取り計画を作成するに際し,上記板材
の使用順と該板材への上記注文の充当順とをシミュレー
テッド・アニーリング法により組み替えて,各々の組み
合わせについての板取り計画が作成される。そして,上
記各板取り計画について該板取りに対する所定の条件に
基づく評価関数を適用して最適な板取り計画が決定され
る。即ち,上記板材の使用順と上記注文の充当順との組
み合わせを迅速に求めることができ,またこの組み合わ
せの中から上記条件を満足するものを容易に見つけ出す
ことができる。このため,歩留り等が向上し,組み合わ
せ作成時間を短縮できる。更に,最終的な板取りの最適
性を客観的に評価することができる。その結果,実使用
に耐えうる短かい時間で最適な板取り計画を作成し得る
板取り方法を得ることができる。
According to the present invention, when one or more orders are applied to each of a plurality of plate materials to create a planing plan, the order of using the plate materials and the order of applying the orders to the plate materials are simulated.・ Changing by the annealing method, a planing plan for each combination is created. Then, an optimum evaluation plan is determined by applying an evaluation function based on a predetermined condition to each removal plan. That is, it is possible to quickly find a combination of the order of use of the plate materials and the order of application of the order, and it is possible to easily find a combination satisfying the above conditions from this combination. Therefore, the yield and the like are improved and the combination creation time can be shortened. In addition, the final planing optimality can be objectively evaluated. As a result, it is possible to obtain a planing method that can create an optimal planing plan in a short time that can withstand actual use.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る板取り方法による板
取り計画の作成手順を示すフローチャート(a),
(b),図2はスラブと注文との各仕様及びこれらの組
み合わせ内容を示す図表,図3は本実施例の板取り方法
による板取り計画図である。本実施例における板取り問
題とは,複数のスラブS(板材に相当)に複数の注文0
を最適に充当する問題である。ここで最適とは,板取り
計画の作成に際し,スラブSの廃却部分の面積が最小に
なるということに加え,生産性,注文0の納期,古いス
ラブSはなるべく早く使うなどの条件を最も満足させる
ことを意味する。また,この板取り問題は,以下の特徴
を持っている。 (1)注文0におけるスラブSの形状は同一(矩形)で
あるが,長さ×厚み×幅×鋼種の属性があり,種類がか
なり多い。 (2)1つの注文0に複数の鋼種のスラブSが充当可能
である。 (3)決まったサイズの材料から注文0を充当するので
はなく,スラブSを圧延して材料をつくるので材料のサ
イズは可変である。 (4)注文0の同一材料内での並び方には制約がある
(例えば,先頭の注文より幅の大きい注文は取れな
い)。 (5)同じ材料からは同じ厚みの注文0しかとれない。 (6)上記(2)の裏返しで,注文0がとれる材料は鋼
種により制限される。 このような問題は,スラブSに注文0を充当(スラブS
と注文0との組み合わせを決定)し,スラブS内での注
文0の配置を決定する組み合わせ最適問題であり,特に
上記(1)〜(3)の理由で大規模な解空間を持つ問題
であるといえる。このため,本実施例では大規模組み合
わせ最適問題の解法として有力であるシミュレーテッド
・アニーリング法(Simulated Annealing Algorithm )
(以下SAと略す)を用いる。即ち,SAにより焼き鈍
しを行う金属にみたてた問題の解候補を変化させる所謂
遷移を行いつつ最適解を求める。 実際の問題に適用す
る場合,スラブSの数が約200,注文0の数が約96
0と非常に多く,同時にすべてのデータを用いて最適解
を求めるのは計算時間の面で実用的ではない。従って,
解空間を狭めるために,データをある基準でグループ化
し,それぞれのグループに対し,SAを適用するものと
した。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a flowchart (a) showing a procedure for creating a planing plan by a planing method according to an embodiment of the present invention,
(B), FIG. 2 is a table showing the specifications of the slab and the order, and the contents of combination thereof, and FIG. 3 is a planing plan of the planing method according to the present embodiment. The board cutting problem in this embodiment means that a plurality of orders 0 for a plurality of slabs S (corresponding to a plate material)
Is an issue that is optimally applied to. Here, "optimum" means that in creating a planing plan, in addition to minimizing the area of the scrapped part of the slab S, productivity, delivery time of order 0, use of the old slab S as soon as possible, etc. Means to be satisfied. In addition, this planing problem has the following features. (1) The slab S in order 0 has the same shape (rectangle), but has attributes of length × thickness × width × steel type, and there are many types. (2) A slab S of a plurality of steel types can be applied to one order 0. (3) The size of the material is variable because the material is made by rolling the slab S instead of filling the order 0 from the material of a fixed size. (4) There is a restriction on how to arrange Order 0 within the same material (for example, an order wider than the first order cannot be placed). (5) Only order 0 of the same thickness can be taken from the same material. (6) In the inside out of (2) above, the materials that can be ordered 0 are limited by the steel grade. In such a problem, order 0 is applied to Slab S (Slab S
And the order 0) to determine the arrangement of the order 0 in the slab S, especially for problems with a large solution space for the reasons (1) to (3) above. It can be said that there is. For this reason, in this embodiment, a simulated annealing method, which is a powerful method for solving a large-scale combinatorial optimization problem, is used.
(Hereinafter abbreviated as SA) is used. That is, the optimum solution is obtained while performing a so-called transition in which the solution candidates of the problem considered for the metal to be annealed by SA are changed. When applied to actual problems, the number of slabs S is about 200 and the number of orders 0 is about 96.
It is not practical in terms of calculation time to find an optimum solution using all data at the same time, which is very large. Therefore,
In order to narrow the solution space, the data were grouped by a certain standard, and SA was applied to each group.

【0007】以下,本実施例に係る板取り方法による板
取り計画の作成手順について図1(a),(b)を参照
してステップS1,S2,…の順に説明する。図1
(a)に示す如く,本実施例では,まずスラブSと注文
0の各データを入力し(S1),グループ化する(S
2)。グループ化の方法としては,例えば以下の2つの
方法,を適用する。 注文0を使用可能鋼種の共通なものでグループ化する
方法 上記の方法によるグループ化で分類したものをさら
に板取りグループ化する方法 上記の方法は注文0の数の少ないグループができるた
め計算時間は少なくなるが,探索空間を狭めすぎると最
適解を見逃す可能性がある。逆に,上記の方法は最適
解を見逃す可能性は少ないが,計算時間が上記の方法
よりはかかる。グループ番号i=1として初期設定(S
3)後,SAによるグループiの最適化を行う(S
4)。以下,このステップS4の内容を図1(b)を参
照して,より具体的に説明する。SAでは,まず初期温
度T0を設定する(S11)。初期温度T0はSAによ
る収束計算を行うためのパラメータの一種である温度T
の初期値であり,焼き鈍しを行う金属にみたてた問題の
解候補の変化,即ち遷移をおこすのに充分な値とする必
要がある。次に,SAでは問題の解候補を固定長の文字
列からなるコードxで表す。ここでは,コードxはスラ
ブSの使用順を表す前半コードと注文0の充当順を表す
後半コードからなるものとした。例えば,図2(a),
(b)に示すようにスラブSの数が6,注文0の数が7
の場合,次のような13桁のコードで解候補を表現す
る。 このコードxに対応するスラブSと注文0との組み合わ
せは図2(c)のようになる。このコードxの近傍Sx
(コードxとただ1つスラブSの使用順又は注文0の充
当順だけが異なるコード群)の中からランダムに新しい
コードである所謂遷移候補x′を選択し生成する(S1
2)。この遷移候補x′の作成アルゴリズムは例えば2
つのスラブSの使用順又は注文0の充当順をランダムに
入れ替えるものである。
A procedure for creating a planing plan by the planing method according to this embodiment will be described below in the order of steps S1, S2, ... With reference to FIGS. Figure 1
As shown in (a), in this embodiment, first, each data of slab S and order 0 is input (S1) and grouped (S).
2). As the grouping method, for example, the following two methods are applied. Method of grouping Order 0 with common usable steel types Method of further grouping the items classified by the grouping by the above method The above method requires a small number of Orders 0 Although it decreases, if the search space is too narrow, the optimal solution may be missed. On the contrary, although the above method is less likely to miss the optimal solution, the calculation time is longer than that of the above method. Initial setting with group number i = 1 (S
3) After that, the group i is optimized by SA (S
4). Hereinafter, the content of step S4 will be described more specifically with reference to FIG. In SA, first, the initial temperature T0 is set (S11). The initial temperature T0 is the temperature T which is one of the parameters for performing the convergence calculation by SA.
Is an initial value of, and needs to be set to a value sufficient to cause a change, that is, a transition of a solution candidate of the problem considered in the metal to be annealed. Next, in SA, the solution candidate of the problem is represented by a code x consisting of a fixed-length character string. Here, the code x is assumed to be composed of the first half code indicating the use order of the slab S and the second half code indicating the allocation order of the order 0. For example, in FIG.
As shown in (b), the number of slabs S is 6 and the number of orders 0 is 7
In the case of, the solution candidate is expressed by the following 13-digit code. The combination of the slab S corresponding to the code x and the order 0 is as shown in FIG. Neighborhood Sx of this code x
A so-called transition candidate x ′, which is a new code, is randomly selected and generated from (a code group different from the code x in the order of use of only one slab S or the order of allocation of order 0) (S1).
2). The algorithm for creating this transition candidate x ′ is, for example, 2
The use order of one slab S or the allocation order of order 0 is randomly changed.

【0008】このようにして作られたコードx及び遷移
候補x′が表すスラブSの使用順,注文0の充当順に対
し,板厚の制約や鋼種の制約,先頭の板幅を最大にする
という制約を満たす,スラブSと注文0との組み合わせ
を求める。このとき材料の長さは,先頭の注文のサイズ
によって決定されるので,これも考慮にいれてスラブS
と注文0との組み合わせを求める。そして,これらの組
み合わせについて図3に示すような板取り計画を作成す
る。図3では,スラブSの幅方向について最大2枚取り
とし,2枚取りとするか否かは注文0の幅により決定し
ている。このような板取り計画の最適性を評価するため
に以下の評価関数E1を求める(S13)。 E1=Σ(Cai+Cbi+Ai*Cci) …(1) ただし, E1:評価関数の総和 Ca:ブロック内の廃却分のロス量 Cb:切断に要する段取りに要するロス時間 Cc:ブロック外の廃却分のロス量 A :30/スラブの古さ(スラブS製造後の経過日
数) ここで,ブロックとは同じ幅の注文が続いて配置される
長さを表し,設備上の制約からブロックの最小値はあら
かじめ決られている。図3はブロック,Ca,Ccの関
係,及びCbの例を表している。また,係数Aはブロッ
ク外の廃却分Ccに対する重みの役割になっており,ブ
ロック外の廃却分Ccの面積が等しい場合は,古いスラ
ブSを用いる方が係数Aおよび評価関数E1は小さくな
ることがわかる。そして,コードxと遷移候補x′間で
のコードの組み替えである遷移の前後での評価関数E1
の変化Δを計算する(S14)。この評価関数E1の変
化Δに基づいて遷移候補x′を受け入れるか拒絶するか
を判定する(S15)。即ち,遷移候補x′が生成され
たとき,確率P(Δ)で現在の状態xはx′に変更され
る。これを「遷移候補を受け入れる」あるいは「遷移を
行う」という。逆に,確率1−P(Δ)で現在の候補を
捨て去る。これを「遷移候補を拒絶する」という。ここ
で,P(Δ)は次式で表されるものとする。 P(Δ)=1,ifΔ≦0 …(2a) P(Δ)=exp(−Δ/T),ifΔ>0 …(2b) もし,遷移候補x′が受け入れられなかった場合は,再
びSxからランダムにx′を選ぶことを繰り返す。個々
で確率P(Δ)で受け入れるというステップには,区間
(0,1)での一様乱数rを利用する。即ち,rがP
(Δ)より小さければ遷移候補x′を受け入れ,大きけ
れば拒絶することにすれば良い。上記(2b)式を見れ
ばわかるように,評価関数E1が改悪になる場合(Δ>
0の場合)でもある確率で遷移候補x′を受け入れるの
がSAの特徴である。このため,極小解からの脱出が可
能となっている。このような遷移を温度Tにおける平衡
条件が達成されるまで繰り返す(S16)。そして,平
衡が達成されれば(終了条件を満足する(S17)ま
で)温度Tを更新して(S18),ステップS12〜S
18を繰り返す。このようにして除々に温度Tを下げて
いって終了条件が満たされた時,評価関数E1が最小化
されて最適の板取り計画が得られる。
With respect to the order of use of the slab S represented by the code x and the transition candidate x'created in this way, and the order of allocation of order 0, the plate thickness constraint, steel type constraint, and the leading plate width are maximized. Find a combination of slab S and order 0 that satisfies the constraint. At this time, the length of the material is determined by the size of the order at the beginning, and taking this into consideration, the slab S
And the combination of order 0. Then, a planing plan as shown in Fig. 3 is created for these combinations. In FIG. 3, a maximum of two slabs is taken in the width direction, and whether or not two slabs are taken is determined by the width of order 0. The following evaluation function E1 is obtained to evaluate the optimality of such a planing plan (S13). E1 = Σ (Cai + Cbi + Ai * Cci) (1) However, E1: Sum of evaluation functions Ca: Loss amount of waste within block Cb: Loss time required for setup required for cutting Cc: Waste outside block Amount of loss A: 30 / oldness of slab (number of days elapsed after manufacturing slab S) Here, a block represents a length in which orders of the same width are successively placed, and the minimum value of the block is due to equipment restrictions. It is predetermined. FIG. 3 shows an example of Cb and the relationship between blocks, Ca, and Cc. Further, the coefficient A serves as a weight for the waste Cc outside the block, and when the areas of the waste Cc outside the block are equal, the coefficient A and the evaluation function E1 are smaller when the old slab S is used. You can see. Then, the evaluation function E1 before and after the transition that is the rearrangement of the code between the code x and the transition candidate x ′
The change Δ of is calculated (S14). Based on the change Δ of the evaluation function E1, it is determined whether to accept or reject the transition candidate x ′ (S15). That is, when the transition candidate x ′ is generated, the current state x is changed to x ′ with the probability P (Δ). This is called "accept transition candidate" or "perform transition". On the contrary, the current candidate is discarded with probability 1-P (Δ). This is called "rejecting transition candidates". Here, P (Δ) is represented by the following equation. P (Δ) = 1, ifΔ ≦ 0 (2a) P (Δ) = exp (−Δ / T), ifΔ> 0 (2b) If the transition candidate x ′ is not accepted, Sx again. Repeat randomly selecting x ′ from. A uniform random number r in the interval (0, 1) is used for the step of accepting each with probability P (Δ). That is, r is P
If it is smaller than (Δ), the transition candidate x ′ is accepted, and if it is larger, it is rejected. As can be seen from the above formula (2b), when the evaluation function E1 becomes worse (Δ>
It is a feature of SA that the transition candidate x ′ is accepted with a certain probability even in the case (0). Therefore, it is possible to escape from the minimal solution. Such transition is repeated until the equilibrium condition at the temperature T is achieved (S16). If equilibrium is achieved (until the end condition is satisfied (S17)), the temperature T is updated (S18), and steps S12 to S are performed.
Repeat 18. In this way, when the temperature T is gradually lowered and the end condition is satisfied, the evaluation function E1 is minimized and the optimum planing plan is obtained.

【0009】上記アルゴリズム中の初期温度T0の設定
方法,各温度における平衡条件の判定条件,温度Tの更
新方法,終了条件の判定としては例えばKirkpatrick,Hu
ang等,周知のアニーリング・スケジュールが用いられ
る。このようなSAによるグループiの最適化(S4)
終了後,グループiにおける最適な板取り計画結果を示
すコードx″を評価関数E1″と共に出力する(S
5)。i=i+1とする(S6)。上記ステップS4〜
S6を全てのグループについて繰り返す(S7)。以上
のようにして全グループについて焼き鈍しを行う金属に
みたてたスラブSの使用順と注文0の充当順とを表すコ
ードxを遷移させることにより最適な板取り計画を決定
することができる。即ち,スラブSの使用順と注文0の
充当順との組み合わせを迅速に求めることができ,また
この組み合わせの中から条件を満足するものを容易に見
つけ出すことができる。このため,歩留り等が向上し,
組み合わせ作成時間を短縮できる。更に,最終的な板取
りの最適性を客観的に評価することができる。その結
果,実用的な時間の範囲内で最適な板取り計画を作成し
得る板取り方法を得ることができる。尚,上記実施例で
は,スラブSの板取りについて適用したが,実使用に際
してはスラブSを圧延した材料の板取りについても同様
に適用可能である。尚,上記実施例で用いた評価関数E
1に代えて,状況に応じて例えば以下のような式で表さ
れる評価関数E2,E3,E4を用いても良い。(1)
注文0の納期を考慮する必要がある場合 E2=(1+NP/TNO)Σ(Cai+Cbi+Ai*Cci) …(3) ここで,NP:製造しなかった納期の迫っている注文
(mustオーダ)の数 (mustオーダの設定は納期で設定可能) TNO:グループ内の総注文数 (2)スラブSの古いものから使用する必要がない場合 E3=Σ(Cai+Cbi+Cci) …(4) (3)納期と歩留とのバランスを調整したい場合 E4=Σ(Cai+Cbi+Cci+NP) …(5) 更に,上記(1),(3),(4),(5)式の第1〜
第3項のCa,Cb,Ccに各々重みWa,Wb,Wc
を乗じても良い。
The initial temperature T0 setting method, the equilibrium condition judging condition at each temperature, the temperature T updating method, and the ending condition judging method in the above algorithm are, for example, Kirkpatrick, Hu.
A well-known annealing schedule such as ang is used. Optimization of group i by such SA (S4)
After the completion, the code x ″ indicating the optimum planing plan result in the group i is output together with the evaluation function E1 ″ (S
5). i = i + 1 is set (S6). Step S4 ~
S6 is repeated for all groups (S7). As described above, the optimum planing plan can be determined by transitioning the code x indicating the order of use of the slabs S and the order of application of order 0, which are considered to be the metals to be annealed for all the groups. That is, it is possible to quickly find a combination of the use order of the slab S and the allocation order of the order 0, and it is possible to easily find a combination that satisfies the condition from this combination. Therefore, the yield etc. is improved,
The combination creation time can be shortened. In addition, the final planing optimality can be objectively evaluated. As a result, it is possible to obtain a planing method capable of creating an optimal planing plan within a practical time range. In addition, in the above-described embodiment, the slab S has been applied to the plate removal, but in actual use, the slab S may be applied to the plate removal of the rolled material. The evaluation function E used in the above embodiment is
Instead of 1, evaluation functions E2, E3, E4 represented by the following expressions may be used depending on the situation. (1)
When it is necessary to consider the delivery date of order 0 E2 = (1 + NP / TNO) Σ (Cai + Cbi + Ai * Cci) (3) where NP: the number of orders (must order) whose delivery date is not manufactured (must order) ( (Must order can be set by delivery date) TNO: Total number of orders in the group (2) When it is not necessary to use the oldest slab S E3 = Σ (Cai + Cbi + Cci) (4) (3) Delivery date and yield When it is desired to adjust the balance with E4 = Σ (Cai + Cbi + Cci + NP) (5) Furthermore, the first to the first of the above formulas (1), (3), (4), and (5)
Weights Wa, Wb, Wc are added to Ca, Cb, Cc of the third term, respectively.
You may multiply by.

【0010】[0010]

【発明の効果】本発明に係る板取り方法は,上記したよ
うに構成されているため,焼き鈍しを行う金属にみたて
たスラブの使用順と注文の充当順とを表わすコードを遷
移させることにより最適な板取り計画を決定することが
できる。即ち,スラブの使用順と注文の充当順との組み
合わを迅速に求めることができ,またこの組み合わせの
中から条件を満足するものを容易に見つけ出すことがで
きる。このため,歩留り等が向上し,組み合わせ作成時
間を短縮できる。更に,最終的な板取りの最適性を客観
的に評価することができる。その結果,実用に耐えうる
短かい時間で最適な板取り計画を作成し得る板取り方法
を得ることができる。
EFFECTS OF THE INVENTION Since the plate removing method according to the present invention is configured as described above, it is possible to change the codes representing the order of use of slabs and the order of application of orders of slabs, which are made of metal to be annealed. The optimal planing plan can be determined. That is, it is possible to quickly find the combination of the slab use order and the order appropriation order, and it is possible to easily find a combination that satisfies the conditions from this combination. Therefore, the yield and the like are improved and the combination creation time can be shortened. In addition, the final planing optimality can be objectively evaluated. As a result, it is possible to obtain a planing method capable of creating an optimal planing plan in a short time that can be put to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る板取り方法による板
取り計画の作成手順を示すフローチャート(a),
(b)。
FIG. 1 is a flowchart (a) showing a procedure for creating a planing plan by a planing method according to an embodiment of the present invention,
(B).

【図2】 スラブと注文との各仕様及びこれらの組み合
わせ内容を示す図表。
FIG. 2 is a chart showing specifications of slabs and orders and the contents of combination thereof.

【図3】 本実施例の板取り方法による板取り計画図。FIG. 3 is a plan view of a planing according to a planing method of the present embodiment.

【符号の説明】[Explanation of symbols]

S…スラブ(板材に相当) 0…注文 x,x′,x″…コード(又は遷移候補) E1,E1′,E1″…評価関数 SA…シミュレーテッド・アニーリング法 S ... Slab (corresponding to plate material) 0 ... Order x, x ', x "... Code (or transition candidate) E1, E1', E1" ... Evaluation function SA ... Simulated annealing method

フロントページの続き (72)発明者 酒井 茂 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 佐々木 主計 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 富田 喜雄 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内Front page continuation (72) Inventor Shigeru Sakai 1 Kanazawa-machi, Kakogawa-shi, Hyogo Kamido Steel Works, Ltd. Kakogawa Steel Works (72) Inventor Sasaki 1 Kanazawa-machi, Kakogawa-shi, Hyogo Kakogawa Steel Works, Ltd. Inside the Steel Works (72) Inventor Yoshio Tomita 1 Kanazawa Town, Kakogawa City, Hyogo Prefecture Kado Steel Works Kakogawa Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の板材の各々に1以上の注文を充当
して板取り計画を作成するに際し,上記板材の使用順と
該板材への上記注文の充当順とをシミュレーテッド・ア
ニーリング法により組み替えて各々の組み合わせについ
ての板取り計画を作成し,上記各板取り計画について該
板取りに対する所定の条件に基づく評価関数を適用して
最適な板取り計画を決定してなる板取り方法。
1. When preparing a planing plan by allocating one or more orders to each of a plurality of plate materials, the order of using the plate materials and the order of applying the order to the plate materials are simulated by a simulated annealing method. A planing method in which a planing plan for each combination is created by recombining, and an optimum planing plan is determined by applying an evaluation function based on a predetermined condition for each planing plan.
JP29167192A 1992-10-29 1992-10-29 Board removal method Expired - Lifetime JP3073612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29167192A JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29167192A JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Publications (2)

Publication Number Publication Date
JPH06142724A true JPH06142724A (en) 1994-05-24
JP3073612B2 JP3073612B2 (en) 2000-08-07

Family

ID=17771925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29167192A Expired - Lifetime JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Country Status (1)

Country Link
JP (1) JP3073612B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092855A1 (en) 2003-04-15 2004-10-28 Ns Solutions Corporation Information processing device, information processing system, information processing method and recording medium
JP2010086235A (en) * 2008-09-30 2010-04-15 Univ Of Tokyo Information processor, and control method and program for the information processor
WO2013140613A1 (en) * 2012-03-23 2013-09-26 株式会社日立製作所 Production project proposal determination method, production project proposal device and program
JP2016101590A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Blank layout method
US9639073B2 (en) 2012-04-26 2017-05-02 International Business Machines Corporation Information processing apparatus for discriminating between combined results of plurality of elements, program product and method for same
JP6409990B1 (en) * 2018-02-01 2018-10-24 オムロン株式会社 Information processing apparatus and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092855A1 (en) 2003-04-15 2004-10-28 Ns Solutions Corporation Information processing device, information processing system, information processing method and recording medium
JP2010086235A (en) * 2008-09-30 2010-04-15 Univ Of Tokyo Information processor, and control method and program for the information processor
WO2013140613A1 (en) * 2012-03-23 2013-09-26 株式会社日立製作所 Production project proposal determination method, production project proposal device and program
JPWO2013140613A1 (en) * 2012-03-23 2015-08-03 株式会社日立製作所 Production planning decision method, production planning device and program
US9639073B2 (en) 2012-04-26 2017-05-02 International Business Machines Corporation Information processing apparatus for discriminating between combined results of plurality of elements, program product and method for same
JP2016101590A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Blank layout method
JP6409990B1 (en) * 2018-02-01 2018-10-24 オムロン株式会社 Information processing apparatus and program

Also Published As

Publication number Publication date
JP3073612B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
JPH06142724A (en) Blank layout method
CN115292778A (en) Wall disassembling method, device, equipment and storage medium
JP2002304426A (en) Product assortment method, product assortment processing device, computer program and recording medium
Stainton The cutting stock problem for the stockholder of steel reinforcement bars
JPH06142725A (en) Blanking method
JP2002132327A (en) Method and system for generating production plan
JPH0796311A (en) Blank layout method
JPH0687036A (en) Device for optimizing die allocation
CA2522473C (en) Information processing apparatus, information processing system, information processing method and recording medium of the same
JP3039348B2 (en) Production planning method and board removal method
JP2984182B2 (en) Rolling mill logistics scheduling method
TW320589B (en)
EP3140706B1 (en) A method and system for quantifying the impact of features on composite components
JP2778915B2 (en) Production schedule creation device
JPH0652178A (en) Assembly line work plan generation support system
JPH086630A (en) Production schedule generating device
JPH06142768A (en) Method for deciding bending order for metallic sheet
JPS6172333A (en) Merge processing system
JPH0452222A (en) Material quality designing device for steel products
JP2008250559A (en) Method for planning production of steel bar product and manufacturing method thereof
JPH07236955A (en) Casting-rolling operation plan preparation method and device therefor
CN115222182A (en) Automatic scheduling method and system, terminal and medium suitable for rolling plan of thick plate
JPH06149914A (en) Optimum arranging method for arranging elements
JPH11245142A (en) Method and device for making production plan
Quang et al. A Hybrid Tabu Search-Based Artificial Immune Algorithm for Construction Site Layout Optimization

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13