JP3073612B2 - Board removal method - Google Patents

Board removal method

Info

Publication number
JP3073612B2
JP3073612B2 JP29167192A JP29167192A JP3073612B2 JP 3073612 B2 JP3073612 B2 JP 3073612B2 JP 29167192 A JP29167192 A JP 29167192A JP 29167192 A JP29167192 A JP 29167192A JP 3073612 B2 JP3073612 B2 JP 3073612B2
Authority
JP
Japan
Prior art keywords
order
plan
planing
slab
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29167192A
Other languages
Japanese (ja)
Other versions
JPH06142724A (en
Inventor
浩一 松田
ワトソン ブルース
和夫 能勢
酒井  茂
主計 佐々木
喜雄 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29167192A priority Critical patent/JP3073612B2/en
Publication of JPH06142724A publication Critical patent/JPH06142724A/en
Application granted granted Critical
Publication of JP3073612B2 publication Critical patent/JP3073612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は板取り方法に係り,詳し
くは金属等の複数のスラブから複数の注文を最適に取り
合わせる材料板取り方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet removing method, and more particularly, to a material sheet removing method for optimally combining a plurality of orders from a plurality of slabs of metal or the like.

【0002】[0002]

【従来の技術】従来,複数のスラブに複数の注文を充当
して板取り計画を作成するに際しては,計画作成担当者
が,与えられた複数のスラブと注文の情報から,これら
の組み合わせを試行錯誤的に求め,板取りをしていた。
2. Description of the Related Art Conventionally, in preparing a planing plan by allocating a plurality of orders to a plurality of slabs, a plan creator tries a combination of the slabs and a plurality of orders based on given information of the slabs. She was trying to make mistakes and took a plank.

【0003】[0003]

【発明が解決しようとする課題】上記したような従来の
人間が試行錯誤的に組み合わせを求めて板取り計画を作
成する板取り方法では,以下のような問題があった。 (1)板取り計画に用いる情報量が非常に多いため,ス
ラブと注文との組み合わせ数は膨大なものとなるが,人
手により求められる組み合わせ数には限度がある。 (2)また,板取りに対する制約条件も多く,上記求め
られた組み合わせの中からこの条件を満足するものを見
つけるに手間がかかる。 (3)更に,最終的な板取りの最適性を評価することが
困難である。 本発明は,このような従来の技術における課題を解決す
るために板取り方法を改良し,実用に耐えうる短かい時
間で最適な板取り計画を作成し得る板取り方法を提供す
ることを目的とするものである。
However, the above-mentioned conventional board-cutting method in which a person obtains a combination by trial and error and prepares a board-cutting plan has the following problems. (1) The number of combinations of slabs and orders is enormous because the amount of information used for the planing is extremely large, but the number of combinations required by hand is limited. (2) In addition, there are many constraints on stripping, and it takes time to find a combination that satisfies this condition from the combinations obtained above. (3) Further, it is difficult to evaluate the optimality of the final board removal. An object of the present invention is to improve a board removing method in order to solve such problems in the conventional technology, and to provide a board removing method capable of creating an optimal board removing plan in a short time that can be practically used. It is assumed that.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,複数の板材の各々に1以上の注文を充当し
て板取り計画を作成するに際し,上記板材の使用順と該
板材への上記注文の充当順とをシミュレーテッド・アニ
ーリング法により組み替えて各々の組み合わせについて
の板取り計画を作成し,上記各板取り計画について該板
取りに対する所定の条件に基づく評価関数を適用して最
適な板取り計画を決定してなる板取り方法として構成さ
れている。上記所定の条件には,上記板材の廃却部分の
面積が最小になること,生産性,上記注文の納期,古い
板材はなるべく早く使うなどの条件が含まれる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a method of applying a plate to each of a plurality of plates, which is applied to one or more orders. By rearranging the order of application of the order to the above by the simulated annealing method, creating a planing plan for each combination, and applying an evaluation function based on predetermined conditions for the planing for each planing plan. It is configured as a board removal method that determines an optimal board removal plan. The predetermined conditions include such conditions as minimizing the area of the discarded portion of the plate material, productivity, the delivery date of the order, and using the old plate material as soon as possible.

【0005】[0005]

【作用】本発明によれば,複数の板材の各々に1以上の
注文を充当して板取り計画を作成するに際し,上記板材
の使用順と該板材への上記注文の充当順とをシミュレー
テッド・アニーリング法により組み替えて,各々の組み
合わせについての板取り計画が作成される。そして,上
記各板取り計画について該板取りに対する所定の条件に
基づく評価関数を適用して最適な板取り計画が決定され
る。即ち,上記板材の使用順と上記注文の充当順との組
み合わせを迅速に求めることができ,またこの組み合わ
せの中から上記条件を満足するものを容易に見つけ出す
ことができる。このため,歩留り等が向上し,組み合わ
せ作成時間を短縮できる。更に,最終的な板取りの最適
性を客観的に評価することができる。その結果,実使用
に耐えうる短かい時間で最適な板取り計画を作成し得る
板取り方法を得ることができる。
According to the present invention, in order to allocate one or more orders to each of a plurality of plate materials and create a plate-cutting plan, the order in which the plate materials are used and the order in which the order is allocated to the plate materials are simulated.・ Sheet plan is prepared for each combination by rearranging by the annealing method. Then, an optimal planing plan is determined for each planing plan by applying an evaluation function based on predetermined conditions for the planing. That is, a combination of the order of use of the plate materials and the order of application of the order can be quickly obtained, and a combination that satisfies the above condition can be easily found from the combination. For this reason, the yield and the like can be improved, and the time for creating a combination can be reduced. Furthermore, it is possible to objectively evaluate the optimality of the final board removal. As a result, it is possible to obtain a board removing method that can create an optimal board removing plan in a short time that can withstand actual use.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る板取り方法による板
取り計画の作成手順を示すフローチャート(a),
(b),図2はスラブと注文との各仕様及びこれらの組
み合わせ内容を示す図表,図3は本実施例の板取り方法
による板取り計画図である。本実施例における板取り問
題とは,複数のスラブS(板材に相当)に複数の注文0
を最適に充当する問題である。ここで最適とは,板取り
計画の作成に際し,スラブSの廃却部分の面積が最小に
なるということに加え,生産性,注文0の納期,古いス
ラブSはなるべく早く使うなどの条件を最も満足させる
ことを意味する。また,この板取り問題は,以下の特徴
を持っている。 (1)注文0におけるスラブSの形状は同一(矩形)で
あるが,長さ×厚み×幅×鋼種の属性があり,種類がか
なり多い。 (2)1つの注文0に複数の鋼種のスラブSが充当可能
である。 (3)決まったサイズの材料から注文0を充当するので
はなく,スラブSを圧延して材料をつくるので材料のサ
イズは可変である。 (4)注文0の同一材料内での並び方には制約がある
(例えば,先頭の注文より幅の大きい注文は取れな
い)。 (5)同じ材料からは同じ厚みの注文0しかとれない。 (6)上記(2)の裏返しで,注文0がとれる材料は鋼
種により制限される。 このような問題は,スラブSに注文0を充当(スラブS
と注文0との組み合わせを決定)し,スラブS内での注
文0の配置を決定する組み合わせ最適問題であり,特に
上記(1)〜(3)の理由で大規模な解空間を持つ問題
であるといえる。このため,本実施例では大規模組み合
わせ最適問題の解法として有力であるシミュレーテッド
・アニーリング法(Simulated Annealing Algorithm )
(以下SAと略す)を用いる。即ち,SAにより焼き鈍
しを行う金属にみたてた問題の解候補を変化させる所謂
遷移を行いつつ最適解を求める。 実際の問題に適用す
る場合,スラブSの数が約200,注文0の数が約96
0と非常に多く,同時にすべてのデータを用いて最適解
を求めるのは計算時間の面で実用的ではない。従って,
解空間を狭めるために,データをある基準でグループ化
し,それぞれのグループに対し,SAを適用するものと
した。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiment is an example embodying the present invention and is not intended to limit the technical scope of the present invention. FIG. 1 is a flowchart (a) showing a procedure for creating a board removal plan by the board removal method according to one embodiment of the present invention;
(B), FIG. 2 is a table showing the specifications of the slab and the order and the contents of their combination, and FIG. 3 is a plan view of the planing method according to the present embodiment. The sheet removing problem in the present embodiment means that a plurality of orders 0 are assigned to a plurality of slabs S (corresponding to a sheet material).
Is a problem that is optimally applied. Here, “optimal” means that the area of the discarded portion of the slab S is minimized when creating the planing plan, and that conditions such as productivity, the delivery date of order 0, and the use of the old slab S as soon as possible are the most important. Means to satisfy. This stripping problem has the following features. (1) The shape of the slab S in order 0 is the same (rectangular), but has attributes of length × thickness × width × steel type, and there are quite many types. (2) A plurality of steel slabs S can be allocated to one order 0. (3) The size of the material is variable because the slab S is rolled to make the material, instead of allocating order 0 from a material of a fixed size. (4) There is a restriction on the order of the order 0 within the same material (for example, an order having a width larger than the first order cannot be taken). (5) Only the order 0 of the same thickness can be obtained from the same material. (6) Materials that can be ordered 0 by turning over (2) above are limited by steel type. To solve such a problem, the order 0 is allocated to the slab S (the slab S
And the order 0) are determined, and the arrangement of the order 0 in the slab S is determined. In particular, the problem has a large solution space due to the reasons (1) to (3). It can be said that there is. For this reason, in this embodiment, a simulated annealing method (Simulated Annealing Algorithm), which is a powerful method for solving a large-scale combinatorial optimal problem,
(Hereinafter abbreviated as SA). That is, the optimal solution is obtained while performing a so-called transition that changes the solution candidate of the problem viewed on the metal to be annealed by SA. When applied to an actual problem, the number of slabs S is about 200 and the number of orders 0 is about 96
It is impractical in terms of calculation time to find the optimal solution using all data at the same time as 0, which is very large. Therefore,
In order to narrow the solution space, the data was grouped based on a certain criterion, and SA was applied to each group.

【0007】以下,本実施例に係る板取り方法による板
取り計画の作成手順について図1(a),(b)を参照
してステップS1,S2,…の順に説明する。図1
(a)に示す如く,本実施例では,まずスラブSと注文
0の各データを入力し(S1),グループ化する(S
2)。グループ化の方法としては,例えば以下の2つの
方法,を適用する。 注文0を使用可能鋼種の共通なものでグループ化する
方法 上記の方法によるグループ化で分類したものをさら
に板取りグループ化する方法 上記の方法は注文0の数の少ないグループができるた
め計算時間は少なくなるが,探索空間を狭めすぎると最
適解を見逃す可能性がある。逆に,上記の方法は最適
解を見逃す可能性は少ないが,計算時間が上記の方法
よりはかかる。グループ番号i=1として初期設定(S
3)後,SAによるグループiの最適化を行う(S
4)。以下,このステップS4の内容を図1(b)を参
照して,より具体的に説明する。SAでは,まず初期温
度T0を設定する(S11)。初期温度T0はSAによ
る収束計算を行うためのパラメータの一種である温度T
の初期値であり,焼き鈍しを行う金属にみたてた問題の
解候補の変化,即ち遷移をおこすのに充分な値とする必
要がある。次に,SAでは問題の解候補を固定長の文字
列からなるコードxで表す。ここでは,コードxはスラ
ブSの使用順を表す前半コードと注文0の充当順を表す
後半コードからなるものとした。例えば,図2(a),
(b)に示すようにスラブSの数が6,注文0の数が7
の場合,次のような13桁のコードで解候補を表現す
る。 このコードxに対応するスラブSと注文0との組み合わ
せは図2(c)のようになる。このコードxの近傍Sx
(コードxとただ1つスラブSの使用順又は注文0の充
当順だけが異なるコード群)の中からランダムに新しい
コードである所謂遷移候補x′を選択し生成する(S1
2)。この遷移候補x′の作成アルゴリズムは例えば2
つのスラブSの使用順又は注文0の充当順をランダムに
入れ替えるものである。
Hereinafter, a procedure for preparing a board removal plan by the board removal method according to the present embodiment will be described in the order of steps S1, S2,... With reference to FIGS. FIG.
As shown in (a), in this embodiment, first, data of a slab S and an order 0 are input (S1), and grouped (S1).
2). As a grouping method, for example, the following two methods are applied. The method of grouping order 0 with common steel types that can be used. The method of further grouping the groups classified by the grouping by the above method into the board-cutting group. If the search space is too narrow, the optimal solution may be missed. Conversely, the above method is less likely to miss the optimal solution, but requires more computation time than the above method. Initially set as group number i = 1 (S
3) Then, the group i is optimized by the SA (S
4). Hereinafter, the content of step S4 will be described more specifically with reference to FIG. In SA, the initial temperature T0 is set (S11). The initial temperature T0 is a temperature T which is a kind of parameter for performing convergence calculation by SA.
Must be set to a value sufficient to change the solution candidate of the problem viewed from the metal to be annealed, that is, to cause a transition. Next, in SA, the solution candidate of the problem is represented by a code x composed of a fixed-length character string. Here, the code x is composed of a first half code indicating the order of use of the slab S and a second half code indicating the order of application of the order 0. For example, FIG.
As shown in (b), the number of slabs S is 6, and the number of orders 0 is 7
In the case of, the solution candidate is represented by the following 13-digit code. The combination of the slab S corresponding to the code x and the order 0 is as shown in FIG. Neighborhood Sx of this code x
A so-called transition candidate x ', which is a new code, is randomly selected and generated from among (a code group that differs from the code x only in the order in which the slab S is used or the order in which the order 0 is applied) (S1).
2). The algorithm for creating this transition candidate x 'is, for example, 2
The order in which the two slabs S are used or the order in which the order 0 is applied is randomly changed.

【0008】このようにして作られたコードx及び遷移
候補x′が表すスラブSの使用順,注文0の充当順に対
し,板厚の制約や鋼種の制約,先頭の板幅を最大にする
という制約を満たす,スラブSと注文0との組み合わせ
を求める。このとき材料の長さは,先頭の注文のサイズ
によって決定されるので,これも考慮にいれてスラブS
と注文0との組み合わせを求める。そして,これらの組
み合わせについて図3に示すような板取り計画を作成す
る。図3では,スラブSの幅方向について最大2枚取り
とし,2枚取りとするか否かは注文0の幅により決定し
ている。このような板取り計画の最適性を評価するため
に以下の評価関数E1を求める(S13)。 E1=Σ(Cai+Cbi+Ai*Cci) …(1) ただし, E1:評価関数の総和 Ca:ブロック内の廃却分のロス量 Cb:切断に要する段取りに要するロス時間 Cc:ブロック外の廃却分のロス量 A :30/スラブの古さ(スラブS製造後の経過日
数) ここで,ブロックとは同じ幅の注文が続いて配置される
長さを表し,設備上の制約からブロックの最小値はあら
かじめ決られている。図3はブロック,Ca,Ccの関
係,及びCbの例を表している。また,係数Aはブロッ
ク外の廃却分Ccに対する重みの役割になっており,ブ
ロック外の廃却分Ccの面積が等しい場合は,古いスラ
ブSを用いる方が係数Aおよび評価関数E1は小さくな
ることがわかる。そして,コードxと遷移候補x′間で
のコードの組み替えである遷移の前後での評価関数E1
の変化Δを計算する(S14)。この評価関数E1の変
化Δに基づいて遷移候補x′を受け入れるか拒絶するか
を判定する(S15)。即ち,遷移候補x′が生成され
たとき,確率P(Δ)で現在の状態xはx′に変更され
る。これを「遷移候補を受け入れる」あるいは「遷移を
行う」という。逆に,確率1−P(Δ)で現在の候補を
捨て去る。これを「遷移候補を拒絶する」という。ここ
で,P(Δ)は次式で表されるものとする。 P(Δ)=1,ifΔ≦0 …(2a) P(Δ)=exp(−Δ/T),ifΔ>0 …(2b) もし,遷移候補x′が受け入れられなかった場合は,再
びSxからランダムにx′を選ぶことを繰り返す。個々
で確率P(Δ)で受け入れるというステップには,区間
(0,1)での一様乱数rを利用する。即ち,rがP
(Δ)より小さければ遷移候補x′を受け入れ,大きけ
れば拒絶することにすれば良い。上記(2b)式を見れ
ばわかるように,評価関数E1が改悪になる場合(Δ>
0の場合)でもある確率で遷移候補x′を受け入れるの
がSAの特徴である。このため,極小解からの脱出が可
能となっている。このような遷移を温度Tにおける平衡
条件が達成されるまで繰り返す(S16)。そして,平
衡が達成されれば(終了条件を満足する(S17)ま
で)温度Tを更新して(S18),ステップS12〜S
18を繰り返す。このようにして除々に温度Tを下げて
いって終了条件が満たされた時,評価関数E1が最小化
されて最適の板取り計画が得られる。
In the order of use of the slab S represented by the code x and the transition candidate x 'thus created, and the order of application of the order 0, the constraint on the thickness and the type of steel, and the maximum width of the leading plate are considered. A combination of slab S and order 0 that satisfies the constraint is determined. At this time, the length of the material is determined by the size of the first order.
And the combination of order 0 and. Then, a planing plan as shown in FIG. 3 is created for these combinations. In FIG. 3, a maximum of two sheets are taken in the width direction of the slab S, and whether or not to take two sheets is determined by the width of the order 0. The following evaluation function E1 is determined in order to evaluate the optimality of such a planing plan (S13). E1 = Σ (Cai + Cbi + Ai * Cci) (1) where E1: the sum of the evaluation functions Ca: the loss amount of the waste within the block Cb: the loss time required for the setup required for cutting Cc: the waste amount of the waste outside the block Loss A: 30 / age of slab (elapsed days after manufacturing slab S) Here, the block represents the length in which orders of the same width are placed successively. It is predetermined. FIG. 3 shows an example of the relationship between blocks, Ca and Cc, and Cb. Further, the coefficient A plays a role of a weight for the discarded portion Cc outside the block, and when the discarded portion Cc outside the block has the same area, the coefficient A and the evaluation function E1 are smaller when the old slab S is used. It turns out that it becomes. Then, the evaluation function E1 before and after the transition, which is the rearrangement of the code between the code x and the transition candidate x '.
Is calculated (S14). It is determined whether to accept or reject the transition candidate x 'based on the change Δ of the evaluation function E1 (S15). That is, when the transition candidate x 'is generated, the current state x is changed to x' with the probability P (Δ). This is referred to as "accepting a transition candidate" or "performing a transition." Conversely, the current candidate is discarded with the probability 1-P (Δ). This is called "rejecting transition candidates". Here, P (Δ) is represented by the following equation. P (Δ) = 1, ifΔ ≦ 0 (2a) P (Δ) = exp (−Δ / T), ifΔ> 0 (2b) If the transition candidate x ′ is not accepted, Sx is returned again. And randomly selecting x 'from. In the step of individually accepting with the probability P (Δ), a uniform random number r in the section (0, 1) is used. That is, r is P
If it is smaller than (Δ), the transition candidate x ′ is accepted, and if it is larger, it is rejected. As can be seen from the above equation (2b), when the evaluation function E1 is deteriorated (Δ>
It is a feature of the SA that the transition candidate x 'is accepted with a certain probability even in the case of 0). For this reason, it is possible to escape from the minimum solution. Such a transition is repeated until the equilibrium condition at the temperature T is achieved (S16). Then, when the equilibrium is achieved (until the termination condition is satisfied (S17)), the temperature T is updated (S18), and the steps S12 to S12 are performed.
Repeat 18. In this way, when the temperature T is gradually lowered and the termination condition is satisfied, the evaluation function E1 is minimized, and an optimal planing plan is obtained.

【0009】上記アルゴリズム中の初期温度T0の設定
方法,各温度における平衡条件の判定条件,温度Tの更
新方法,終了条件の判定としては例えばKirkpatrick,Hu
ang等,周知のアニーリング・スケジュールが用いられ
る。このようなSAによるグループiの最適化(S4)
終了後,グループiにおける最適な板取り計画結果を示
すコードx″を評価関数E1″と共に出力する(S
5)。i=i+1とする(S6)。上記ステップS4〜
S6を全てのグループについて繰り返す(S7)。以上
のようにして全グループについて焼き鈍しを行う金属に
みたてたスラブSの使用順と注文0の充当順とを表すコ
ードxを遷移させることにより最適な板取り計画を決定
することができる。即ち,スラブSの使用順と注文0の
充当順との組み合わせを迅速に求めることができ,また
この組み合わせの中から条件を満足するものを容易に見
つけ出すことができる。このため,歩留り等が向上し,
組み合わせ作成時間を短縮できる。更に,最終的な板取
りの最適性を客観的に評価することができる。その結
果,実用的な時間の範囲内で最適な板取り計画を作成し
得る板取り方法を得ることができる。尚,上記実施例で
は,スラブSの板取りについて適用したが,実使用に際
してはスラブSを圧延した材料の板取りについても同様
に適用可能である。尚,上記実施例で用いた評価関数E
1に代えて,状況に応じて例えば以下のような式で表さ
れる評価関数E2,E3,E4を用いても良い。(1)
注文0の納期を考慮する必要がある場合 E2=(1+NP/TNO)Σ(Cai+Cbi+Ai*Cci) …(3) ここで,NP:製造しなかった納期の迫っている注文
(mustオーダ)の数 (mustオーダの設定は納期で設定可能) TNO:グループ内の総注文数 (2)スラブSの古いものから使用する必要がない場合 E3=Σ(Cai+Cbi+Cci) …(4) (3)納期と歩留とのバランスを調整したい場合 E4=Σ(Cai+Cbi+Cci+NP) …(5) 更に,上記(1),(3),(4),(5)式の第1〜
第3項のCa,Cb,Ccに各々重みWa,Wb,Wc
を乗じても良い。
In the above algorithm, the setting method of the initial temperature T0, the determination condition of the equilibrium condition at each temperature, the updating method of the temperature T, and the determination of the termination condition are, for example, Kirkpatrick, Hu
A known annealing schedule such as ang is used. Optimization of group i by such SA (S4)
After the end, the code x "indicating the optimum planing plan result in the group i is output together with the evaluation function E1" (S
5). i = i + 1 is set (S6). Step S4 and above
S6 is repeated for all groups (S7). As described above, an optimal board removal plan can be determined by transiting the code x representing the order of use of the slabs S and the order of apportionment of the order 0 for the metal to be annealed for all groups. That is, a combination of the order of use of the slabs S and the order of application of the order 0 can be quickly obtained, and a combination satisfying the condition can be easily found from this combination. For this reason, the yield etc. are improved,
Combination creation time can be reduced. Furthermore, it is possible to objectively evaluate the optimality of the final board removal. As a result, it is possible to obtain a planing method capable of creating an optimum planing plan within a practical time range. In the above-described embodiment, the present invention is applied to the plate cutting of the slab S. However, in actual use, the present invention can be similarly applied to the plate cutting of a material obtained by rolling the slab S. Note that the evaluation function E used in the above embodiment was used.
In place of 1, an evaluation function E2, E3, E4 represented by the following equation, for example, may be used depending on the situation. (1)
When it is necessary to consider the delivery date of order 0 E2 = (1 + NP / TNO) c (Cai + Cbi + Ai * Cci) (3) where, NP: the number of orders (must order) that are not manufactured and whose delivery date is approaching (must order) (Must order can be set by delivery date.) TNO: Total number of orders in group (2) When it is not necessary to use old slab S, E3 = Σ (Cai + Cbi + Cci) ... (4) (3) Delivery date and yield To adjust the balance with E4 = Σ (Cai + Cbi + Cci + NP) (5) Further, the first to third expressions in the above equations (1), (3), (4) and (5)
Weights Wa, Wb, and Wc are assigned to Ca, Cb, and Cc of the third term, respectively.
May be multiplied.

【0010】[0010]

【発明の効果】本発明に係る板取り方法は,上記したよ
うに構成されているため,焼き鈍しを行う金属にみたて
たスラブの使用順と注文の充当順とを表わすコードを遷
移させることにより最適な板取り計画を決定することが
できる。即ち,スラブの使用順と注文の充当順との組み
合わを迅速に求めることができ,またこの組み合わせの
中から条件を満足するものを容易に見つけ出すことがで
きる。このため,歩留り等が向上し,組み合わせ作成時
間を短縮できる。更に,最終的な板取りの最適性を客観
的に評価することができる。その結果,実用に耐えうる
短かい時間で最適な板取り計画を作成し得る板取り方法
を得ることができる。
Since the sheet removing method according to the present invention is configured as described above, the code representing the order of use of the slabs and the order of application of the slabs to the metal to be annealed is changed. An optimal planing plan can be determined. That is, a combination of the order of use of the slabs and the order of application of the order can be quickly obtained, and a combination satisfying the conditions can be easily found from the combination. For this reason, the yield and the like can be improved, and the time for creating a combination can be reduced. Furthermore, it is possible to objectively evaluate the optimality of the final board removal. As a result, it is possible to obtain a board removing method that can create an optimal board removing plan in a short time that can withstand practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る板取り方法による板
取り計画の作成手順を示すフローチャート(a),
(b)。
FIG. 1 is a flowchart (a) showing a procedure for creating a board removal plan by a board removal method according to an embodiment of the present invention;
(B).

【図2】 スラブと注文との各仕様及びこれらの組み合
わせ内容を示す図表。
FIG. 2 is a table showing specifications of a slab and an order and contents of a combination thereof.

【図3】 本実施例の板取り方法による板取り計画図。FIG. 3 is a plan view of the board removing method according to the board removing method of the embodiment.

【符号の説明】[Explanation of symbols]

S…スラブ(板材に相当) 0…注文 x,x′,x″…コード(又は遷移候補) E1,E1′,E1″…評価関数 SA…シミュレーテッド・アニーリング法 S: slab (corresponding to plate material) 0: order x, x ', x "... code (or transition candidate) E1, E1', E1" ... evaluation function SA: simulated annealing method

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能勢 和夫 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 酒井 茂 兵庫県加古川市金沢町1番地 株式会社 神戸製鋼所 加古川製鉄所内 (72)発明者 佐々木 主計 兵庫県加古川市金沢町1番地 株式会社 神戸製鋼所 加古川製鉄所内 (72)発明者 富田 喜雄 兵庫県加古川市金沢町1番地 株式会社 神戸製鋼所 加古川製鉄所内 (58)調査した分野(Int.Cl.7,DB名) B21B 37/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuo Nose 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Shigeru Sakai Kanazawa, Kakogawa-shi, Hyogo No. 1 in Kobe Steel, Ltd.Kakogawa Works (72) Inventor Sasaki Main Budget No. 1, Kanazawa-cho, Kakogawa, Hyogo Prefecture Kobe Steel, Ltd. Company Kobe Steel Works Kakogawa Works (58) Field surveyed (Int. Cl. 7 , DB name) B21B 37/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の板材の各々に1以上の注文を充当
して板取り計画を作成するに際し,上記板材の使用順と
該板材への上記注文の充当順とをシミュレーテッド・ア
ニーリング法により組み替えて各々の組み合わせについ
ての板取り計画を作成し,上記各板取り計画について該
板取りに対する所定の条件に基づく評価関数を適用して
最適な板取り計画を決定してなる板取り方法。
1. A method for allocating one or more orders to each of a plurality of plate materials to prepare a plate-cutting plan, the order in which the plate materials are used and the order in which the orders are applied to the plate materials are determined by a simulated annealing method. A planing method in which a planing plan is created for each combination by rearrangement, and an optimal planing plan is determined for each planing plan by applying an evaluation function based on predetermined conditions for the planing.
JP29167192A 1992-10-29 1992-10-29 Board removal method Expired - Lifetime JP3073612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29167192A JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29167192A JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Publications (2)

Publication Number Publication Date
JPH06142724A JPH06142724A (en) 1994-05-24
JP3073612B2 true JP3073612B2 (en) 2000-08-07

Family

ID=17771925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29167192A Expired - Lifetime JP3073612B2 (en) 1992-10-29 1992-10-29 Board removal method

Country Status (1)

Country Link
JP (1) JP3073612B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360864B2 (en) 2003-04-15 2009-11-11 新日鉄ソリューションズ株式会社 Information processing apparatus, information processing system, information processing method, and program thereof
JP4887341B2 (en) * 2008-09-30 2012-02-29 国立大学法人 東京大学 Information processing apparatus, information processing apparatus control method, and program
IN2014DN07781A (en) * 2012-03-23 2015-05-15 Hitachi Ltd
JP2015035006A (en) 2012-04-26 2015-02-19 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Information processing device for discriminating coupling result of a plurality of elements, program, and method
JP6146398B2 (en) * 2014-11-27 2017-06-14 Jfeスチール株式会社 Boarding method
JP6409990B1 (en) * 2018-02-01 2018-10-24 オムロン株式会社 Information processing apparatus and program

Also Published As

Publication number Publication date
JPH06142724A (en) 1994-05-24

Similar Documents

Publication Publication Date Title
JP3073612B2 (en) Board removal method
EP0459689B1 (en) Automated resource allocation cutting stock arrangement using random cut patterns
Yuen et al. Establishing the optimality of sequencing heuristics for cutting stock problems
US5974355A (en) Automatic time series pattern creating method
JP3073613B2 (en) Board removal method
JPH0796311A (en) Blank layout method
JP2002304426A (en) Product assortment method, product assortment processing device, computer program and recording medium
Trzaskalik Bipolar sorting and ranking of multistage alternatives
JP6070594B2 (en) Slab knitting method and slab knitting apparatus including deformed steel plate
JP3039348B2 (en) Production planning method and board removal method
EP1615092A1 (en) Information processing device, information processing system, information processing method and recording medium
JP2778915B2 (en) Production schedule creation device
Fang et al. A genetic algorithm approach to hot strip mill rolling scheduling problems
JPH06149850A (en) Product material and order reserving method/system
JPH11338938A (en) Work flow control method using filtering function
JPH086630A (en) Production schedule generating device
JPH09300180A (en) Method and system of combining
JP4268141B2 (en) Database replication program and database replication apparatus
JP2005228165A (en) Method for managing storage of intermediate product and program, and recording medium
JPH07236955A (en) Casting-rolling operation plan preparation method and device therefor
JP3341614B2 (en) Rolling sequence determination method in rolling mill
JP6193182B2 (en) Process load adjustment method, process load adjustment program, and process load adjustment apparatus
CN113052460B (en) Method and device for determining stacking position of plates
JPH11245142A (en) Method and device for making production plan
JP3102422B2 (en) Production planning system, production planning method, and recording medium recording production planning program

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13