JPH06142496A - Production and apparatus for production of particle of which surface is coated with superfine particle - Google Patents

Production and apparatus for production of particle of which surface is coated with superfine particle

Info

Publication number
JPH06142496A
JPH06142496A JP3308175A JP30817591A JPH06142496A JP H06142496 A JPH06142496 A JP H06142496A JP 3308175 A JP3308175 A JP 3308175A JP 30817591 A JP30817591 A JP 30817591A JP H06142496 A JPH06142496 A JP H06142496A
Authority
JP
Japan
Prior art keywords
particles
base material
coated
ultrafine particles
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3308175A
Other languages
Japanese (ja)
Other versions
JP3179821B2 (en
Inventor
Yukiyoshi Yamada
幸良 山田
Tadashi Fuyuki
正 冬木
Satoshi Akiyama
聡 秋山
Yoshiaki Hamada
美明 濱田
Eisuke Kuroda
英輔 黒田
Kaoru Umeya
薫 梅屋
Tadakatsu Nabeya
忠克 鍋谷
Yukio Sumida
幸雄 隅田
Etsuo Toyama
悦夫 遠山
Kenichi Kimura
健一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIDE KK
Nisshin Seifun Group Inc
Original Assignee
RIIDE KK
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIDE KK, Nisshin Seifun Group Inc filed Critical RIIDE KK
Priority to JP30817591A priority Critical patent/JP3179821B2/en
Publication of JPH06142496A publication Critical patent/JPH06142496A/en
Application granted granted Critical
Publication of JP3179821B2 publication Critical patent/JP3179821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the strength of adhesion of particles, to keep a base material free from thermal damage, and to make the coverage and grain sizes of superfine particles controllable by changing the position where the material particles of a base material to be coated are introduced into the flow of the superfine particles of the formed material according to purposes. CONSTITUTION:The superfine particle raw materials introduced from a superfine particle raw material supplying device D are released together with carrier gas flow to the lower part of a plasma torch A and evaporates by coming into contact with plasma flames. On the other hand, the base raw material particles supplied from a base raw material supplying device E are carried in the carrier gas flow and are released through a base material supplying nozzle G into a reaction zone B. This base material supplying nozzle G has a temp. detector at its front end so that the position of the nozzle G can be adjusted while the temp. of the base material supplying position is decided. The temp. distribution within the reaction zone reacts depends largely on plasma generating conditions, etc. The base material particles are supplied to the temp. region suitable for coating and efficient coating is possible according to this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機材料または金属材
料の母材粒子の表面が無機材料または金属材料の超微粒
子で被覆された粒子を製造する方法および装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing particles in which base particles of an inorganic material or a metal material are coated with ultrafine particles of the inorganic material or the metal material.

【0002】[0002]

【従来の技術】無機材料または金属材料の粉体を焼結し
て焼結成形体を製造するに当たって、焼結温度を低下さ
せることや成形体の物性を向上させることの目的のため
に、上記の粉体に焼結助剤を添加して焼結することはこ
の技術分野においてしばしば行われている。
2. Description of the Related Art In the production of a sintered compact by sintering a powder of an inorganic material or a metal material, the above-mentioned purpose has been used for the purpose of lowering the sintering temperature and improving the physical properties of the compact. It is often practiced in this technical field to add a sintering aid to a powder and sinter it.

【0003】この焼結助剤にはこれ迄に種々のものが用
いられているが、本発明者らはさきに無機材料の粉体に
超微粒子化した助剤を添加することによって粉体と助剤
との反応性を高め、焼結特性を改良し、得られる焼結成
形体の物性をきわめて向上させうることを見出して特許
出願を行った(特願昭63−68037号参照)。
Various kinds of sintering aids have been used so far, but the present inventors have prepared powders by adding ultrafine particles of the aid to the powder of an inorganic material. A patent application was filed (see Japanese Patent Application No. 63-68037), finding that the reactivity with an auxiliary agent can be improved, the sintering characteristics can be improved, and the physical properties of the obtained sintered compact can be extremely improved.

【0004】この本発明者らによる出願方法は、焼結す
べき無機粉体に別途に製造した超微粒子化した助剤を添
加して焼結成形体を製造するものであって、焼結成分と
して二成分を混合して用いるものである。従ってこの方
法では二成分の均質な混合が必要であるが、超微粒子化
した助剤は凝集する傾向が強いため、高度の分散状態を
保ちつつ二成分の混合を行うに当たってはきわめて慎重
な取り扱いを要する他に、別途に調製した二つの成分を
別々に用意する必要がある。
The method of application by the present inventors is to produce a sintered compact by adding a separately produced ultrafine particle auxiliary agent to the inorganic powder to be sintered. It is used by mixing two components. Therefore, this method requires homogeneous mixing of the two components, but since the ultrafine particle auxiliary agent has a strong tendency to aggregate, extremely careful handling is required when mixing the two components while maintaining a highly dispersed state. Besides, it is necessary to separately prepare two separately prepared components.

【0005】従って、焼結すべき粉体に助剤を超微粒子
の形で合体して一体化することができるならば上記した
二成分の混合における困難を回避しうるばかりか、粉体
材料の取り扱いを単純化することができ、かくして焼結
体の製造をきわめて容易化し、かつ均質で高品質の焼結
体を得ることができるとの着想の許に研究の結果、無機
材料または金属材料の超微粒子で表面が被覆された無機
材料または金属材料の粒子と、その製造方法の発明を完
成して特許出願を行った(特願平1−75016号およ
び特開平3−75302号参照)。
Therefore, if the auxiliaries can be combined and integrated into the powder to be sintered in the form of ultrafine particles, not only the difficulties in mixing the two components mentioned above can be avoided, but also the powder material With the idea that it is possible to simplify handling, thus making it extremely easy to produce a sintered body, and obtaining a homogeneous and high-quality sintered body, as a result of research, it was found that The inventors have completed inventions of particles of an inorganic material or a metal material, the surfaces of which are coated with ultrafine particles, and a method for producing the particles, and filed a patent application (see Japanese Patent Application No. 1-75016 and Japanese Patent Application Laid-Open No. 3-75302).

【0006】この無機材料または金属材料の超微粒子で
表面が被覆された無機材料または金属材料の粒子は、気
相法によって生成された無機材料または金属材料の超微
粒子が含まれる流れの中に被覆されるべき無機材料また
は金属材料の粒子を導入し、上記の超微粒子と上記の被
覆されるべき粒子とを流動状態において接触させること
によって得られるものである。
The particles of the inorganic material or the metal material, the surface of which is coated with the ultrafine particles of the inorganic material or the metal material, are coated in the flow containing the ultrafine particles of the inorganic material or the metal material produced by the vapor phase method. It is obtained by introducing particles of an inorganic material or a metal material to be treated, and bringing the above ultrafine particles and the above-mentioned particles to be coated into contact with each other in a fluid state.

【0007】[0007]

【発明が解決しようとする課題】ところで、無機材料ま
たは金属材料の母材粒子を無機材料または金属材料の超
微粒子で被覆する場合、両粒子の付着強度を向上させる
手段の一つとして母材粒子をより高温領域に供給してこ
の付着強度の向上の目的を達成することが考慮される。
By the way, when the base material particles of the inorganic material or the metal material are coated with the ultrafine particles of the inorganic material or the metal material, the base material particles are one of the means for improving the adhesion strength of both particles. Is supplied to a higher temperature region to achieve the purpose of improving the bond strength.

【0008】また上記とは逆に、無機材料または金属材
料の母材が無機材料または金属材料の超微粒子による被
覆時において熱損傷を受けやすい材料である場合、例え
ば母材がダイヤモンド粒子である場合などでは母材が熱
損傷を受けない温度領域に供給する必要がある。
On the contrary to the above, when the base material of the inorganic material or the metal material is a material that is easily damaged by heat when the inorganic material or the metal material is coated with the ultrafine particles, for example, when the base material is the diamond particles. For example, it is necessary to supply the base material in a temperature range where the base material is not damaged by heat.

【0009】更にまた、無機材料または金属材料の母材
に被覆される超微粒子の量は両粒子の接触時間と相関関
係があり、従ってまた生成する被覆粒子の粒径は接触時
間に依存することになり、超微粒子の被覆量と粒径のコ
ントロールのためには母材粒子の反応帯域中の滞留時間
の調節が必要となる。
Furthermore, the amount of the ultrafine particles coated on the base material of the inorganic material or the metal material is correlated with the contact time of both particles, and thus the particle size of the coated particles produced also depends on the contact time. Therefore, in order to control the coating amount of ultrafine particles and the particle size, it is necessary to adjust the residence time of the base material particles in the reaction zone.

【0010】[0010]

【課題を解決するための手段】上記した課題を解決する
ために本発明者は鋭意研究の結果、生成した無機材料ま
たは金属材料の超微粒子の流れの中へこの超微粒子で被
覆すべき母材の無機材料または金属材料粒子の導入位置
を目的に応じて変更しうるようにすることで上記の課題
が達成しうることを見出して本発明を完成したのであ
る。
In order to solve the above problems, as a result of intensive research by the present inventor, the base material to be coated with the ultrafine particles in the flow of the ultrafine particles of the produced inorganic material or metal material. The present invention has been completed by finding that the above-mentioned problems can be achieved by making it possible to change the introduction position of the inorganic material or metal material particles according to the purpose.

【0011】すなわち本発明は、気相法により無機材料
または金属材料の超微粒子の流れを生成させ、この超微
粒子の流れの中にこの超微粒子で表面を被覆しようとす
る無機材料または金属材料の母材粒子を導入し、超微粒
子と母材の粒子とを互いに流動状態で接触させて母材粒
子の表面を超微粒子で被覆する方法において、母材粒子
の導入位置を変更しうるようにした上記の方法に関す
る。
That is, according to the present invention, a flow of ultrafine particles of an inorganic material or a metal material is generated by a gas phase method, and the surface of the inorganic material or the metal material to be coated with the ultrafine particles is generated in the flow of the ultrafine particles. In the method of introducing the base material particles and bringing the ultrafine particles and the particles of the base material into contact with each other in a fluid state to coat the surface of the base material particles with the ultrafine particles, the introduction position of the base material particles can be changed. Regarding the above method.

【0012】更にまた本発明は、気相法により無機材料
または金属材料の超微粒子の流れを生成させる装置と、
この超微粒子の流れの中にこの超微粒子で表面を被覆し
ようとする無機または金属材料の母材粒子を導入し、も
って超微粒子と母材粒子とを互いに流動状態で接触せし
めるようにした装置とから成り、該母材粒子の装入装置
は母材粒子の導入位置を変更しうるように構成された、
無機材料または金属材料の母材粒子の表面が無機材料ま
たは金属材料の超微粒子で被覆された粒子を製造する装
置にも関するものである。
Still further, the present invention provides an apparatus for producing a flow of ultrafine particles of an inorganic material or a metallic material by a vapor phase method,
Introducing into the flow of ultrafine particles base particles of an inorganic or metallic material whose surface is to be coated with the ultrafine particles, so that the ultrafine particles and the base material particles can be brought into contact with each other in a fluidized state. The charging device for the base material particles is configured to change the introduction position of the base material particles,
The present invention also relates to an apparatus for producing particles in which the surface of base material particles of an inorganic material or a metal material is coated with ultrafine particles of an inorganic material or a metal material.

【0013】上記した母材粒子の導入位置の変更は種々
の技術的手段で達成することができ、その1つに本発明
の実施のための装置において、プラズマ焔中に供給され
た無機材料または金属材料がプラズマ焔の高温度によっ
て蒸発して生成される無機材料または金属材料の超微粒
子の流れと、この超微粒子で表面を被覆する無機または
金属材料とが接触する帯域(この帯域を反応帯域と呼ぶ
ことにする)中への該無機または金属材料の導入のため
のノズルの位置を、反応帯内で調節可能に構成したもの
とすることや、また超微粒子の流れに導入すべき母材の
導入口を複数個あらかじめ装置に装着しておき、所望の
目的達成のために任意の1つまたは複数の母材導入口か
ら母材を導入し、他の導入口は使用しないやり方で母材
を導入することで達成できる。
The above-mentioned change of the introduction position of the base material particles can be achieved by various technical means, and one of them is, in the apparatus for carrying out the present invention, the inorganic material or the inorganic material supplied in the plasma flame. A zone in which a flow of ultrafine particles of an inorganic material or a metal material produced by evaporation of a metal material due to high temperature of plasma flame and an inorganic or metal material coating the surface with the ultrafine particles (the reaction zone The position of the nozzle for introducing the inorganic or metallic material into the reaction zone is adjustable, and the base material to be introduced into the flow of ultrafine particles. A plurality of inlets of the base material are attached to the device in advance, and the base material is introduced from any one or a plurality of base material inlets to achieve the desired purpose, and the other inlets are not used. By introducing It can be formed.

【0014】上記した本発明を図面によって更に詳細に
説明することにする。
The present invention described above will be described in more detail with reference to the drawings.

【0015】図1は母材供給ノズルが可動式に構成され
た本発明装置についてのものである。図中、Aはプラズ
マトーチ部分、Bは石英二重管で構成された反応帯域
部、Cはステンレス二重管で構成されたチャンバー部、
Dは超微粒子原料供給装置、Eは母材原料供給装置、F
は製品回収部そしてGは可動式の母材供給ノズルであ
る。
FIG. 1 shows an apparatus of the present invention in which a base material supply nozzle is movably constructed. In the figure, A is a plasma torch part, B is a reaction zone part composed of a quartz double tube, C is a chamber part composed of a stainless double tube,
D is an ultrafine particle raw material feeder, E is a base material raw material feeder, F
Is a product recovery unit and G is a movable base material supply nozzle.

【0016】プラズマトーチAは内径44mm、長さ15
0mmの石英管(1)を主体とし、外側に高周波発振用のコ
イル(2)が取りつけられ、その外側には冷却用の外套管
(3)が設けられている。プラズマトーチの上部には噴出
方向が接線方向、軸方向および半径方向のガス噴出口
(4)、(5)、(6)が設けられ、この噴出口にガスの供給
源(7)、(8)、(9)からアルゴン30l/分が供給され
る。この噴出ガスは印加された高周波電源4MHz、40K
VAによってプラズマ化され、プラズマトーチ内でプラズ
マ焔を形成する。
Plasma torch A has an inner diameter of 44 mm and a length of 15
Mainly consists of a 0 mm quartz tube (1), a coil (2) for high frequency oscillation is attached to the outside, and a jacket tube for cooling is attached to the outside.
(3) is provided. Gas outlets in the tangential, axial and radial directions above the plasma torch
(4), (5) and (6) are provided, and 30 l / min of argon is supplied to the jet outlets from gas supply sources (7), (8) and (9). This jetted gas is a high frequency power source of 4MHz, 40K
It is turned into plasma by VA and forms a plasma flame in the plasma torch.

【0017】超微粒子原料供給装置Dから導入される超
微粉粒子原料は矢印で示される搬送ガス流と共にプラズ
マトーチAの下部に放出され、プラズマ焔と接触して気
化する。超微粒子原料がガス体、例えばメタンガスであ
る場合は、Dを経ないで搬送ガス流と一緒にしてメタン
ガスは導入される。一方母材原料供給装置Eから供給さ
れる母材原料粒子は矢印で示される搬送ガス流に担持さ
れて可動式の母材供給ノズルを経て反応帯域B内に放出
される。この母材供給ノズルは外径φ6、内径φ4のス
テンレス製ノズルでノズル先端に温度検出器を備え母材
供給位置の温度を測定しながらノズルの位置の調節がで
きるようになっている。
The ultrafine particle raw material introduced from the ultrafine particle raw material supply device D is discharged to the lower part of the plasma torch A together with the carrier gas flow indicated by the arrow, and is contacted with the plasma flame to be vaporized. When the ultrafine particle raw material is a gas body, for example, methane gas, methane gas is introduced without passing through D together with the carrier gas flow. On the other hand, the base material raw material particles supplied from the base material raw material supply device E are carried by the carrier gas flow indicated by the arrow and discharged into the reaction zone B through the movable base material supplying nozzle. This base material supply nozzle is a stainless steel nozzle having an outer diameter of φ6 and an inner diameter of φ4, and a temperature detector is provided at the tip of the nozzle so that the nozzle position can be adjusted while measuring the temperature at the base material supply position.

【0018】反応帯域内の温度分布はプラズマ発生条
件、キャリアガスの流量、種類、コイル形状、チャンバ
ー形状等に大きく依存する。この装置を用いればコーテ
ィングに適した温度領域に母材粒子を供給することがで
き、効率的なコーティングができる。
The temperature distribution in the reaction zone greatly depends on plasma generation conditions, carrier gas flow rate, type, coil shape, chamber shape and the like. By using this device, the base material particles can be supplied to a temperature range suitable for coating, and efficient coating can be performed.

【0019】また図2は母材の導入口を複数個あらかじ
め装置に装着した本発明の装置の他の一つの態様を示す
ものである。図面中、A〜F、1〜9の意味は図2にお
けるものと同一である。この図の装置では母材は母材原
料供給装置Eから導入されるが、管路は例えばバルブ1
0〜12を備えた多岐管路になっており、バルブ10〜
12の操作によって導入された母材は搬送ガス流と共に
任意の反応帯域中の位置に装入することができる。この
図面では母材導入口を4個所としたが、これよりも少な
い数または多い数のものとすることも可能であり、更に
個々の導入口を夫々の母材原料供給装置Eと直結させて
も良い。
FIG. 2 shows another embodiment of the apparatus of the present invention in which a plurality of base material inlets are preliminarily attached to the apparatus. In the drawing, the meanings of A to F and 1 to 9 are the same as those in FIG. In the apparatus shown in this figure, the base material is introduced from the base material raw material supply device E, but the conduit is, for example, the valve 1
It is a manifold line with 0 to 12 valves 10
The matrix introduced by operation 12 can be charged at any location in the reaction zone with the carrier gas stream. In this drawing, there are four base material inlets, but it is also possible to use a smaller number or a larger number than this, and further connect each inlet directly to each base material feed device E. Is also good.

【0020】本発明によって、超微粒子で表面が被覆さ
れた無機材料または金属材料が得られるが、この超微粒
子で表面が被覆される母材の無機材料または金属材料と
しては、耐火物またはセラミックスと呼ばれる総ての無
機物質、例えば、酸化物であるAl23、ZrO2、S
iO2、BeO、MgO、CaOなど、窒化物であるS
34、AlN、BNなど、炭化物であるSiC、WC
など、ほう素化物であるBP、BNなど、種々の粘土鉱
物、例えば、カオリン、モンモリロナイト、ベントナイ
ト、バーミキュライトなど、各種のフェライトなどの磁
性材料、単体元素、例えば、ダイヤモンド、黒鉛など、
単体金属例えばSi、Ni、Co、W、Ti、Al、C
u、Feなど、および金属間化合物および合金、例えば
Fe−Ni−Si合金、Fe−Cr−Al合金、Fe−
Cr−Mo合金、Fe−Ni−Cr合金、Ni−Cr合
金などの材料並びにこれらの材料を複合したものの粉末
が挙げられる。
According to the present invention, an inorganic material or a metal material whose surface is coated with ultrafine particles can be obtained. As the inorganic material or metal material of the base material whose surface is coated with the ultrafine particles, a refractory or a ceramic is used. All inorganic substances called, eg oxides Al 2 O 3 , ZrO 2 , S
S that is a nitride such as iO 2 , BeO, MgO, and CaO
i 3 N 4 , AlN, BN, and other carbides such as SiC and WC
Etc., various clay minerals such as BP and BN that are boride, for example, kaolin, montmorillonite, bentonite, vermiculite, various magnetic materials such as ferrite, simple elements, for example, diamond, graphite, etc.
Simple metals such as Si, Ni, Co, W, Ti, Al, C
u, Fe, etc., and intermetallic compounds and alloys, such as Fe-Ni-Si alloys, Fe-Cr-Al alloys, Fe-
Materials such as Cr-Mo alloys, Fe-Ni-Cr alloys, Ni-Cr alloys, etc., and powders of a composite of these materials can be mentioned.

【0021】これらの超微粒子で表面が被覆される無機
または金属材料の粒子は通常0.1μm〜100μmの
範囲の粒径を有する粉体であって、殊に1μm〜10μ
mの範囲のものが取り扱い操作上好ましい。
The particles of the inorganic or metallic material whose surface is coated with these ultrafine particles are usually powders having a particle size in the range of 0.1 μm to 100 μm, especially 1 μm to 10 μm.
Those in the range of m are preferable in terms of handling operation.

【0022】上記した無機材料または金属材料の粒子の
表面を被覆する超微粒子の構成成分は、得られる超微粒
子で表面が被覆された粒子に対して希望される性質およ
び機能に応じて、表面が被覆されるべき粒子とは同一で
あるかまたは異なった種々の無機材料または金属材料で
あって、これらの具体例としては、種々の無機物質、例
えば酸化物であるAl23、SiO2、ZrO2、Y
23、CaOなど、窒化物であるSi34、AlN、B
Nなど、炭化物であるWC、SiCなど、ほう素化物で
あるBP、BNなど、単体金属、例えばSi、Al、N
i、Co、Cu、Fe、Ti、Wなど、単体非金属物
質、例えばC、Bなど、および金属間化合物および合金
の種々のもの、並びにこれらの材料を複合したものなど
が挙げられる。
The constituents of the ultrafine particles for coating the surface of the particles of the above-mentioned inorganic material or metal material have a surface which depends on the desired properties and functions of the obtained particles coated with the surface. and be coated particles is a variety of inorganic materials or metallic materials or different are identical, as these embodiments, various inorganic materials, Al 2 O 3, for example oxides, SiO 2, ZrO 2 , Y
2 O 3 , CaO and other nitrides such as Si 3 N 4 , AlN and B
N, etc., carbides such as WC, SiC, etc., boronides, such as BP, BN, etc., elemental metals such as Si, Al, N
Examples include simple nonmetallic substances such as i, Co, Cu, Fe, Ti, and W, such as C and B, and various intermetallic compounds and alloys, and composites of these materials.

【0023】本発明は上記した構成によって、無機また
は金属材料の母材粒子を無機または金属材料の超微粒子
で被覆する場合、両粒子の付着強度を調節し、また母材
粒子が熱損傷を受けやすい材料である場合における熱損
傷の防止、および被覆される超微粒子の量を両粒子の接
触時間の調節によって制御することができた。
According to the present invention, when the base material particles of the inorganic or metal material are coated with the ultrafine particles of the inorganic or metal material, the adhesion strength of both particles is adjusted and the base material particles are damaged by heat by the above-mentioned constitution. The prevention of thermal damage in the case of easy materials and the amount of ultrafine particles coated could be controlled by adjusting the contact time of both particles.

【0024】以下に本発明を実施例によって説明する
が、これらの実施例によって本発明が限定されるもので
はない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 この実施例は図1に記載の装置を用いて行った。この実
施例ではダイヤモンド粒子(40〜60μm)に銀超微
粒子を被覆した。プラズマはコイル2に4MHz、40KVA
の高周波電流を印加し、プラズマガスとしてアルゴンを
30l/minの流量で7、8および9からプラズマトー
チAに流入させて発生させた。
Example 1 This example was carried out using the apparatus described in FIG. In this example, diamond particles (40 to 60 μm) were coated with ultrafine silver particles. Plasma is 4MHz in coil 2, 40KVA
Was applied to the plasma torch A from 7, 8 and 9 at a flow rate of 30 l / min to generate plasma gas.

【0026】超微粒子原料供給装置Dから原料の金属銀
(粒径2μm)を1.3g/minの供給量でキャリアガス
のアルゴン7l/minに担持させて供給した。
From the ultrafine particle raw material supply device D, raw material metallic silver (particle size: 2 μm) was supplied at a supply rate of 1.3 g / min while being carried by 7 l / min of argon as a carrier gas.

【0027】一方母材粒子のダイヤモンド(粒径40〜
60μm)は母材原料供給装置Eより4.0g/minの供
給量でキャリアガスのアルゴン11l/minに担持させ
て供給した。
On the other hand, the base material diamond (particle size 40 to 40
60 μm) was supplied from the base material raw material supply device E while being supported on the carrier gas argon of 11 l / min at a supply amount of 4.0 g / min.

【0028】 母材供給位置はノズルの位置の調節によって、 :コイルより200mm下方(温度約2000℃) :コイルより250mm下方(温度約1000℃) :コイルより300mm下方(温度約500℃) とした。By adjusting the position of the nozzle, the base material supply position is set to: 200 mm below the coil (temperature about 2000 ° C.): 250 mm below the coil (temperature about 1000 ° C.): 300 mm below the coil (temperature about 500 ° C.) .

【0029】このようにして銀を被覆したダイヤモンド
をFから取り出し、これをX線回折により分析した。
The diamond thus coated with silver was removed from F and analyzed by X-ray diffraction.

【0030】の被覆ダイヤモンドにはグラファイトの
ピークが認められ、およびの被覆ダイヤモンドには
グラファイトのピークが認められなかった。このことか
らのものは熱により母材ダイヤモンドが損傷を受けて
いることが分かる。
A graphite peak was observed in the coated diamond of (1) and a graphite peak was not observed in the coated diamond of (3). From this, it can be seen that the base material diamond is damaged by heat.

【0031】また、電子顕微鏡で母材と銀超微粒子のぬ
れ性を観察したところ、:接触角θ=45°、:θ
=80°、:θ=110°であることが分かりのも
ののぬれ性が最も大であることが分かった。
When the wettability of the base material and the ultrafine silver particles was observed with an electron microscope, the contact angle was θ = 45 °, and the contact angle was θ.
It was found that the wettability of the thing which was found to be = 80 °,: θ = 110 ° was the largest.

【0032】実施例2 この実施例も図1に記載の装置を用いて行った。この実
施例では窒化けい素にY23を被覆した。プラズマはコ
イル2に4MHz、40KVAの高周波電流を印加し、プラズ
マガスとしてアルゴンを10l/min、酸素を10l/m
inの流量で7、8および9からプラズマトーチA内に流
入させて発生させた。
Example 2 This example was also performed using the apparatus described in FIG. In this example, silicon nitride was coated with Y 2 O 3 . For plasma, a high-frequency current of 4 MHz and 40 KVA was applied to the coil 2, and 10 l / min of oxygen and 10 l / m of oxygen were used as plasma gas.
It was generated by flowing it into the plasma torch A from 7, 8 and 9 at a flow rate of in.

【0033】超微粒子原料供給装置Dから単体のイット
リウムY(粒径100μm)を0.3g/minの供給量で
キャリアガスのアルゴン7l/minに担持させて供給し
た。
Yttrium Y (particle size: 100 μm) as a simple substance was supplied from the ultrafine particle raw material supply device D while being supported on 7 l / min of argon as a carrier gas at a supply amount of 0.3 g / min.

【0034】一方母材粒子の窒化ケイ素Si34(粒径
1μm)を2.1g/minの供給量でキャリアガスのアル
ゴン18l/minに担持させて供給した。
On the other hand, the base material particles of silicon nitride Si 3 N 4 (particle size 1 μm) were supplied while being supported on argon of carrier gas at a rate of 2.1 g / min.

【0035】 母材供給位置はノズルの位置の調節によって、 :コイルより下方450mm(温度約1800℃) :コイルより下方550mm(温度約1000℃) :コイルより下方650mm(温度約500℃) とした。By adjusting the position of the nozzle, the base material supply position is set to: 450 mm below the coil (temperature about 1800 ° C.): 550 mm below the coil (temperature about 1000 ° C.): 650 mm below the coil (temperature about 500 ° C.) .

【0036】このようにして酸化イットリウムY23
被覆した窒化ケイ素を下から取り出し、これをX線回折
により分析したところ、の被覆窒化ケイ素には酸化ケ
イ素のピークが認められたが、、では酸化ケイ素の
ピークは認められなかった。このことからでは窒化ケ
イ素は熱損傷して酸化ケイ素となったことが分かる。
When the silicon nitride coated with yttrium oxide Y 2 O 3 was taken out from the bottom and analyzed by X-ray diffraction, a peak of silicon oxide was observed in the coated silicon nitride. No peak of silicon oxide was observed. From this, it can be seen that silicon nitride was thermally damaged to be silicon oxide.

【0037】また、電子顕微鏡により被覆された超微粒
子の粒径を測定したところ、では25〜10nm、で
は30〜15nm、では60〜30nmであることが分か
った。
The particle size of the coated ultrafine particles was measured by an electron microscope and found to be 25 to 10 nm, 30 to 15 nm, and 60 to 30 nm.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の1つの具体例を
示す図。
FIG. 1 illustrates one embodiment of an apparatus for practicing the present invention.

【図2】本発明を実施するための装置の他の1つの具体
例を示す図。
FIG. 2 is a diagram showing another specific example of the apparatus for carrying out the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冬木 正 埼玉県入間郡大井町緑ヶ丘2−23−16 (72)発明者 秋山 聡 埼玉県川越市稲荷町17−22 沢田コーポ 202 (72)発明者 濱田 美明 埼玉県川越市末広町3−4−8 (72)発明者 黒田 英輔 埼玉県川越市西小仙波町2−16−4 (72)発明者 梅屋 薫 宮城県仙台市太白区八木山本町1−30−13 (72)発明者 鍋谷 忠克 神奈川県鎌倉市山ノ内1095−21 (72)発明者 隅田 幸雄 宮城県亘理郡亘理町吉田字中原55−520 (72)発明者 遠山 悦夫 新潟県北蒲原郡紫雲寺町大字真野原外3418 (72)発明者 木村 健一 宮城県仙台市太白区八木山本町2−33−5 グレイス八木山502号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Tadashi 2-23-16 Midorigaoka, Oi-cho, Iruma-gun, Saitama (72) Inventor Satoshi Akiyama 17-22 Inari-cho, Kawagoe-shi, Saitama 202 (72) Inventor Miaki Hamada 3-4-8 Suehiro-cho, Kawagoe-shi, Saitama (72) Inventor Eisuke Kuroda 2-16-4 Nishikosenba-cho, Kawagoe-shi, Saitama (72) Inventor Kaoru Umeya Yagiyamamoto-cho, Taishiro-ku, Sendai-shi, Miyagi 1-30-13 (72) Inventor Tadakatsu Nabeya 1095-21 Yamanouchi, Kamakura, Kanagawa Prefecture (72) Inventor Yukio Sumida 55-520 Nakahara Yoshida, Watari Town, Watari District, Miyagi Prefecture Inventor Etsuo Toyama Kitakanbara District, Niigata Prefecture 3418 Manohara, Shiunji-cho, Oita, Japan (72) Kenichi Kimura 2-33-5 Yagiyamahonmachi, Taihaku-ku, Sendai City, Miyagi Prefecture Grace Yagiyama No.502

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相法により無機材料または金属材料の
超微粒子の流れを生成させ、この超微粒子の流れの中に
この超微粒子で表面を被覆しようとする無機材料または
金属材料の母材粒子を導入し、超微粒子と母材の粒子と
を互いに流動状態で接触させて母材粒子の表面を超微粒
子で被覆する方法において、母材粒子の導入位置を変更
しうるようにした上記の方法。
1. A base material particle of an inorganic material or a metal material, wherein a flow of ultrafine particles of an inorganic material or a metal material is generated by a vapor phase method, and the surface of the ultrafine particles is coated with the ultrafine particles in the flow of the ultrafine particles. In the method of coating the surface of the base material particles with the ultrafine particles by bringing the ultrafine particles and the particles of the base material into contact with each other in a fluidized state, the method of changing the introduction position of the base material particles .
【請求項2】 気相法により無機材料または金属材料の
超微粒子の流れを生成させる装置と、この超微粒子の流
れの中にこの超微粒子で表面を被覆しようとする無機ま
たは金属材料の母材粒子を導入し、もって超微粒子と母
材粒子とを互いに流動状態で接触せしめるようにした装
置とから成り、該母材粒子の装入装置は母材粒子の導入
位置を変更しうるように構成された、無機材料または金
属材料の母材粒子の表面が無機材料または金属材料の超
微粒子で被覆された粒子を製造する装置。
2. An apparatus for generating a flow of ultrafine particles of an inorganic material or a metal material by a vapor phase method, and a base material of an inorganic or metal material whose surface is to be coated with the ultrafine particles in the flow of the ultrafine particles. And a device adapted to bring the ultrafine particles and the base material particles into contact with each other in a fluidized state, and the base material particle charging device is configured to change the introduction position of the base material particles. An apparatus for producing particles in which the surface of base material particles of an inorganic material or a metal material is coated with ultrafine particles of an inorganic material or a metal material.
JP30817591A 1991-11-25 1991-11-25 Method and apparatus for producing particles whose surface is coated with ultrafine particles Expired - Lifetime JP3179821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30817591A JP3179821B2 (en) 1991-11-25 1991-11-25 Method and apparatus for producing particles whose surface is coated with ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30817591A JP3179821B2 (en) 1991-11-25 1991-11-25 Method and apparatus for producing particles whose surface is coated with ultrafine particles

Publications (2)

Publication Number Publication Date
JPH06142496A true JPH06142496A (en) 1994-05-24
JP3179821B2 JP3179821B2 (en) 2001-06-25

Family

ID=17977812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30817591A Expired - Lifetime JP3179821B2 (en) 1991-11-25 1991-11-25 Method and apparatus for producing particles whose surface is coated with ultrafine particles

Country Status (1)

Country Link
JP (1) JP3179821B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434600B1 (en) * 2002-01-24 2004-06-04 학교법인 중앙대학교 reactor for manufacturing TiO2/SiO2 composite particle and method for manufacturing TiO2/SiO2 composite particle using the same
WO2010146680A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Method and apparatus for producing magnetic powder
US8435477B2 (en) 1997-07-21 2013-05-07 Nanogram Corporation Dispersions of submicron doped silicon particles
US8632702B2 (en) 2007-01-03 2014-01-21 Nanogram Corporation Silicon/germanium particle inks, doped particles, printing and processes for semiconductor applications
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
US9000083B2 (en) 2001-08-03 2015-04-07 Nanogram Corporation Silicon nanoparticle dispersions
US9175174B2 (en) 2000-10-17 2015-11-03 Nanogram Corporation Dispersions of submicron doped silicon particles
US9199435B2 (en) 2001-01-26 2015-12-01 Nanogram Corporation Dispersions of silicon nanoparticles
US9475695B2 (en) 2013-05-24 2016-10-25 Nanogram Corporation Printable inks with silicon/germanium based nanoparticles with high viscosity alcohol solvents

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435477B2 (en) 1997-07-21 2013-05-07 Nanogram Corporation Dispersions of submicron doped silicon particles
US9175174B2 (en) 2000-10-17 2015-11-03 Nanogram Corporation Dispersions of submicron doped silicon particles
US9199435B2 (en) 2001-01-26 2015-12-01 Nanogram Corporation Dispersions of silicon nanoparticles
US9448331B2 (en) 2001-01-26 2016-09-20 Nanogram Corporation Dispersions of blends of silicon nanoparticles and silica nanoparticles
US9000083B2 (en) 2001-08-03 2015-04-07 Nanogram Corporation Silicon nanoparticle dispersions
KR100434600B1 (en) * 2002-01-24 2004-06-04 학교법인 중앙대학교 reactor for manufacturing TiO2/SiO2 composite particle and method for manufacturing TiO2/SiO2 composite particle using the same
US8632702B2 (en) 2007-01-03 2014-01-21 Nanogram Corporation Silicon/germanium particle inks, doped particles, printing and processes for semiconductor applications
WO2010146680A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Method and apparatus for producing magnetic powder
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
US9006720B2 (en) 2010-06-29 2015-04-14 Nanogram Corporation Silicon/germanium nanoparticles and inks having low metal contamination
US9475695B2 (en) 2013-05-24 2016-10-25 Nanogram Corporation Printable inks with silicon/germanium based nanoparticles with high viscosity alcohol solvents

Also Published As

Publication number Publication date
JP3179821B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US5489449A (en) Coated particles of inorganic or metallic materials and processes of producing the same
JP7263004B2 (en) Plasma equipment for the production of high-quality spherical powders at high capacities
JP3100084B2 (en) Ultrafine particle manufacturing equipment
US4812166A (en) Process for producing ultrafine particles of metals, metal compounds and ceramics and apparatus used therefor
CA2595872C (en) Induction plasma synthesis of nanopowders
JP2001115248A (en) Method and equipment for thermal spraying, and powder passage device
JP5342176B2 (en) Fine powder ceramics impact sintering coating method
JP3179821B2 (en) Method and apparatus for producing particles whose surface is coated with ultrafine particles
JP2916198B2 (en) Method for producing particles whose surface is coated with ultrafine particles
JP5073851B2 (en) Fine powder ceramics impact sintering coating method
JP2024016078A (en) A cost-effective production method for large quantities of ultrafine spherical powder using thruster-assisted plasma atomization
JPS58171502A (en) Pulverized composite powder of ceramic and metal
US5939151A (en) Method and apparatus for reactive plasma atomization
JP3193746B2 (en) Improvement of method for producing particles whose surface is coated with ultrafine particles and apparatus therefor
JP4057948B2 (en) Method for producing nano-WC powder by atmospheric pressure gas phase reaction
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JP2883665B2 (en) Method for coating the surface of particles with ultrafine particles
US20090042716A1 (en) High Temperature Reactor for the Poduction of Nanophase WC/CO Powder
JPH0681002A (en) Whisker coated with superfine particle, sintered compact containing the whisker and their production
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JPH08224462A (en) Reactor
JP2992166B2 (en) Method of forming sprayed carbide film
JPH0686926A (en) Preparation of particle wherein surface is coated with superfine particle
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JP2023073285A (en) Plasma apparatus for the production of high quality spherical powder at high capacity

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11