JPH06140652A - Laminated silicon element - Google Patents

Laminated silicon element

Info

Publication number
JPH06140652A
JPH06140652A JP4288360A JP28836092A JPH06140652A JP H06140652 A JPH06140652 A JP H06140652A JP 4288360 A JP4288360 A JP 4288360A JP 28836092 A JP28836092 A JP 28836092A JP H06140652 A JPH06140652 A JP H06140652A
Authority
JP
Japan
Prior art keywords
film
silicon
carbon
polycrystalline silicon
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4288360A
Other languages
Japanese (ja)
Inventor
Fumitaka Tamura
文孝 田村
Yoshinori Okayasu
良宣 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP4288360A priority Critical patent/JPH06140652A/en
Publication of JPH06140652A publication Critical patent/JPH06140652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provided a laminated silicon element whose electrical resistance can be reduced and whose silicon film is hardly peeled off. CONSTITUTION:A laminated silicon element 20 is composed of a sheet-type carbon fiber woven cloth 21 which does not have small holes over its whole area, an SiC intermediate film 22 which is formed over the whole surface of the woven cloth 21 and a polycrystalline silicon film 23 which is formed over the whole surface of the film 22. As the woven cloth 21 does not have small holes over its whole area, an electrical resistance can be reduced and, further, the film stress of the polycrystalline silicon film 23 can be reduced by the effect of the intermediate film 22. Moreover, an ohmic junction between the woven cloth 21 and the polycrystalline silicon film 23 can be formed by the effect of the intermediate film 22. Therefore, if the laminated silicon element 20 is applied to a solar cell, etc., its photoelectric conversion efficiency can be improved and, further, as the silicon film is hardly peeled off, its physical strength can be also improved and an ohmic junction between the silicon layer and an rear electrode can be also formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系基材とこの基材
上に製膜された多結晶シリコン膜とでその主要部が構成
され、例えば、太陽電池の一部を構成するシリコン層と
裏面電極部材として一体的に適用可能なシリコン積層体
に係り、特に、その電気抵抗の低減が図れるシリコン積
層体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based base material and a polycrystalline silicon film formed on the base material, the main part of which is composed of, for example, a silicon layer forming a part of a solar cell. The present invention relates to a silicon laminated body that can be integrally applied as a back electrode member, and particularly to an improvement of a silicon laminated body that can reduce its electric resistance.

【0002】[0002]

【従来の技術】炭素系基材を適用したこの種のシリコン
積層体としては、例えば、特開昭55−73450号公
報に記載されたものが知られている。
2. Description of the Related Art As a silicon laminate of this type to which a carbon-based material is applied, for example, one described in JP-A-55-73450 is known.

【0003】すなわち、このシリコン積層体は、融解槽
に収容された融体シリコン内に一連の穴を備えた網状構
造のカーボンファイバー織布等を浸漬し、上記穴内並び
に表面に融体シリコンを充填並びに被覆すると共に、こ
の融体を結晶化させて製造された構造のものが知られて
おり、例えば、図3に示された太陽電池のシリコン層と
裏面電極部材等として一体的に適用されている。
That is, in this silicon laminate, a carbon fiber woven cloth having a net-like structure having a series of holes is dipped in the melted silicon contained in the melting tank, and the melted silicon is filled in the holes and on the surface. In addition, a structure is known in which the melt is crystallized while being coated, and the melt is crystallized. For example, it is integrally applied as a silicon layer and a back electrode member of the solar cell shown in FIG. There is.

【0004】尚、図3中、aはp型シリコン層、bはn
型シリコン層、cはITO等の反射防止層、dは櫛歯状
電極、eはオーミック性接合層、fは裏面電極をそれぞ
れ示している。
In FIG. 3, a is a p-type silicon layer and b is n.
A type silicon layer, c is an antireflection layer such as ITO, d is a comb-shaped electrode, e is an ohmic contact layer, and f is a backside electrode.

【0005】ところで、このシリコン積層体において
は、上記融体シリコンを保持しかつ結晶化させるため一
連の穴を備えた網状構造のカーボンファイバー織布等が
適用されており、このカーボンファイバー織布等が穴を
備えている分だけその電気抵抗が大きくなるため、この
シリコン積層体が組込まれた太陽電池についてはその光
電変換効率の向上を図り難い欠点があった。
By the way, in this silicon laminate, a carbon fiber woven cloth having a net-like structure provided with a series of holes for holding and crystallizing the molten silicon is applied. Since the electric resistance increases as much as the holes are provided, there is a drawback that it is difficult to improve the photoelectric conversion efficiency of the solar cell incorporating the silicon laminated body.

【0006】このため、従来においては、通常、熱CV
D法やプラズマCVD法等の製膜手段によりシート状の
炭素系基材面に多結晶シリコン膜を直接製膜させてシリ
コン積層体を製造し、このシリコン積層体を上記太陽電
池等に組込む方法が採られている。
Therefore, in the past, the thermal CV is usually used.
A method for producing a silicon laminated body by directly forming a polycrystalline silicon film on a sheet-shaped carbon-based substrate surface by a film forming means such as D method or plasma CVD method, and incorporating the silicon laminated body into the solar cell or the like. Is taken.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記製膜手段
を適用して製造された後者のシリコン積層体においても
以下のような問題点があった。
However, the latter silicon laminated body manufactured by applying the above-mentioned film forming means also has the following problems.

【0008】すなわち、シート状の炭素系基材面に対し
て熱CVD法等の手段により多結晶シリコン膜を製膜し
た場合、上記炭素系基材とシリコンの熱膨張係数の差異
に起因して製膜された多結晶シリコン膜にストレスが生
じ易い欠点があった。
That is, when a polycrystalline silicon film is formed on a sheet-like carbon-based substrate surface by means of a thermal CVD method or the like, due to the difference in thermal expansion coefficient between the carbon-based substrate and silicon. The formed polycrystalline silicon film has a drawback that stress is likely to occur.

【0009】このため、多結晶シリコン膜の膜厚をある
程度の大きさに設定しないと膜内に欠陥やクラックが生
じ易い問題点があり、かつ、上記膜ストレスが原因とな
って基材から多結晶シリコン膜が剥がれ易いといった問
題点があった。
Therefore, unless the film thickness of the polycrystalline silicon film is set to a certain level, defects and cracks are likely to occur in the film, and the film stress causes a large amount of the film from the substrate. There is a problem that the crystalline silicon film is easily peeled off.

【0010】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、炭素系基材と多
結晶シリコン膜とで主要部が構成されその電気抵抗の低
減が図れると共にシリコン膜が剥離し難いシリコン積層
体を提供することにある。
The present invention has been made by paying attention to such a problem, and its problem is that a main part is composed of a carbon-based base material and a polycrystalline silicon film to reduce the electric resistance thereof. At the same time, it is to provide a silicon laminate in which the silicon film is not easily peeled off.

【0011】[0011]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、上記シリコン積層体が、シート状の炭素系基
材と、この炭素系基材表面の全域に亘り形成された炭化
シリコンより成る中間膜と、この中間膜上に製膜された
多結晶シリコン膜とで構成されていることを特徴とする
ものである。
That is, in the invention according to claim 1, the silicon laminated body comprises a sheet-like carbon-based base material and silicon carbide formed over the entire surface of the carbon-based base material. And a polycrystalline silicon film formed on the intermediate film.

【0012】このような技術的手段において上記炭素系
基材は炭素を主成分としその全域に亘り小孔を有さない
シート状の基材を意味しており、このような炭素系基材
として、例えば、表面並びに内部構造が密状態にあるグ
ラファイト板やシート状の炭素−炭素複合材料(例え
ば、カーボンファイバーと炭化された樹脂成分とでその
主要部が構成されたもの等)、及び、密に編まれて表面
並びに内部構造が密状態にあるカーボンファイバー織布
等が適用できる。
In the above technical means, the carbon-based substrate means a sheet-shaped substrate which contains carbon as a main component and does not have small holes over the entire area thereof. , For example, a graphite plate or sheet-like carbon-carbon composite material whose surface and internal structure are in a dense state (for example, one whose main part is composed of carbon fiber and a carbonized resin component), and A carbon fiber woven cloth or the like having a dense surface and inner structure can be applied.

【0013】そして、この発明に適用されるシート状の
炭素系基材はその全域に亘り小孔を有していないため電
気抵抗の低減が図れ、かつ、この基材と多結晶シリコン
膜との間には化学的並びに物理的に炭素とシリコンの中
間的性質を有する炭化シリコンの中間膜が介在されてい
るため、化学的親和性の向上と多結晶シリコン製膜後に
おける膜ストレスの低減が図れ、更に、多結晶シリコン
膜と炭素系基材間のオーミック性接合をも形成すること
が可能となる。
The sheet-like carbonaceous substrate applied to the present invention does not have small holes all over its area, so that the electric resistance can be reduced, and the substrate and the polycrystalline silicon film are combined. Since an intermediate film of silicon carbide having an intermediate property between carbon and silicon chemically and physically is interposed between them, it is possible to improve the chemical affinity and reduce the film stress after the polycrystalline silicon film is formed. Furthermore, it becomes possible to form an ohmic contact between the polycrystalline silicon film and the carbon-based substrate.

【0014】従って、この発明に係るシリコン積層体を
太陽電池等に適用した場合、その電気抵抗が小さいこと
から光電変換効率等の向上が図れ、かつ、その膜厚を薄
く設定しても製膜された多結晶シリコン膜には欠陥やク
ラック等が存在しないと共に炭素系基材からの剥離も起
り難いためその物理的耐性が向上し、更に、シリコン層
と裏面電極との間のオーミック性接合も可能となる利点
を有している。
Therefore, when the silicon laminate according to the present invention is applied to a solar cell or the like, its electrical resistance is small, so that the photoelectric conversion efficiency and the like can be improved, and even if the film thickness is set thin The polycrystalline silicon film thus formed has no defects or cracks and is less likely to be peeled off from the carbon-based base material, so that its physical resistance is improved, and ohmic contact between the silicon layer and the back electrode is also formed. It has the advantage of being possible.

【0015】尚、このようなシリコン積層体の適用対象
としては上記太陽電池に限らず、例えば光センサ等が挙
げられる。
The application target of such a silicon laminate is not limited to the above-mentioned solar cell, but may be, for example, an optical sensor.

【0016】[0016]

【作用】請求項1に係る発明によれば、シート状の炭素
系基材と、この炭素系基材表面の全域に亘り形成された
炭化シリコンより成る中間膜と、この中間膜上に製膜さ
れた多結晶シリコン膜とでシリコン積層体が構成されて
おり、上記シート状の炭素系基材がその全域に亘り小孔
を有していないため電気抵抗の低減が図れ、かつ、炭素
系基材と多結晶シリコン膜との間には化学的並びに物理
的に炭素とシリコンとの中間的性質を有する炭化シリコ
ンの中間膜が介在されているため、化学的親和性の向上
と多結晶シリコン製膜直後における膜ストレスの低減が
図れると共に、炭素系基材と多結晶シリコン膜との間の
オーミック性接合を形成することも可能となる。
According to the invention of claim 1, a sheet-shaped carbon-based substrate, an intermediate film made of silicon carbide formed over the entire surface of the carbon-based substrate, and a film formed on this intermediate film. And a polycrystalline silicon film formed into a silicon laminate, and the sheet-shaped carbon-based substrate does not have small holes over the entire area, so that the electrical resistance can be reduced and the carbon-based substrate can be formed. Since an intermediate film of silicon carbide, which is chemically and physically intermediate between carbon and silicon, is interposed between the material and the polycrystalline silicon film, the chemical affinity is improved and the polycrystalline silicon film is made. It is possible to reduce the film stress immediately after the film and form an ohmic contact between the carbon-based substrate and the polycrystalline silicon film.

【0017】[0017]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0018】まず、この実施例に係るシリコン積層体2
0は、図1に示すようにその全域に亘り小孔を有してい
ないシート状のカーボンファイバー織布21と、このカ
ーボンファイバー織布21表面の全域に亘り形成された
炭化シリコンから成る中間膜22と、この中間膜22上
に製膜された多結晶シリコン膜23とでその主要部が構
成されている。
First, the silicon laminate 2 according to this embodiment.
As shown in FIG. 1, reference numeral 0 denotes a sheet-like carbon fiber woven fabric 21 having no small holes throughout the entire region, and an intermediate film made of silicon carbide formed over the entire surface of the carbon fiber woven fabric 21. 22 and a polycrystalline silicon film 23 formed on the intermediate film 22 constitute a main part thereof.

【0019】尚、上記カーボンファイバー織布21に
は、以下の表1にその特性が示されている株式会社有沢
製作所のカーボンファイバークロス(商品名 CFS
1140)が適用されている。
The carbon fiber woven cloth 21 has carbon fiber cloth (trade name: CFS) manufactured by Arisawa Manufacturing Co., Ltd. whose characteristics are shown in Table 1 below.
1140) has been applied.

【0020】[0020]

【表1】 そして、このシリコン積層体20は以下に述べるような
方法にて製造されている。すなわち、図2に示すように
アークプラズマ並びに誘導プラズマを形成できる高温プ
ラズマ発生部1と、この高温プラズマ発生部1に隣接し
て設けられ内部に基材ホルダー7を備える反応室3とで
その主要部が構成される装置内に上記カーボンファイバ
ー織布21を配置し、かつ、反応室3内を〜10-3Torr
まで真空引きを行って反応室3内の空気等を排気した
後、プラズマ点火後の急加熱や局所的過熱を防ぐため点
火に先がけ上記基材ホルダー7に設けられカーボンファ
イバー織布21を水平方向へ移動操作する移動機構(図
示せず)を作動させた。
[Table 1] The silicon stack 20 is manufactured by the method described below. That is, as shown in FIG. 2, a high temperature plasma generating part 1 capable of forming arc plasma and induction plasma, and a reaction chamber 3 provided adjacent to the high temperature plasma generating part 1 and having a substrate holder 7 therein, The carbon fiber woven fabric 21 is arranged in the apparatus constituting the part, and the inside of the reaction chamber 3 is -10 −3 Torr.
After evacuating the air and the like in the reaction chamber 3 until the plasma chamber is ignited, the carbon fiber woven cloth 21 is horizontally attached to the base material holder 7 prior to ignition in order to prevent rapid heating and local overheating after plasma ignition. A moving mechanism (not shown) for moving to (1) was operated.

【0021】次に、プラズマ発生部1内へアルゴンガス
と水素ガスを導入すると共にプラズマ点火を行った。電
源は最初に直流を投入しその後に高周波を投入した。
尚、高温プラズマフレームの形状はアルゴンガス、水素
ガスの流量でかなり変化するが安定した状態を比較的容
易に得ることができた。また、この装置にはアルゴンガ
スと水素ガスの導入口並びにシリコン原料の導入口に圧
力制御弁が取付けられ、かつ、反応室3の下流側には排
気系4が設けられておりこれ等機構により反応室3内の
圧力は〜550Torrに保持されている。
Next, argon gas and hydrogen gas were introduced into the plasma generating part 1 and plasma ignition was performed. As the power source, direct current was first applied and then high frequency was applied.
The shape of the high temperature plasma flame varied considerably depending on the flow rates of argon gas and hydrogen gas, but a stable state could be obtained relatively easily. In addition, a pressure control valve is attached to the inlets of argon gas and hydrogen gas and the inlet of silicon raw material, and an exhaust system 4 is provided downstream of the reaction chamber 3 in this apparatus. The pressure in the reaction chamber 3 is maintained at ˜550 Torr.

【0022】そして、上記カーボンファイバー織布21
を高温プラズマと基材ホルダー7内に設けられた加熱手
段8により加熱してその表面温度が十分上昇しているこ
とを放射温度計を用いてモニターし、その表面温度が1
500℃になった時点でシリコン原料の導入口から定量
のシリコン粒子6を導入してこのシリコン粒子6を高温
プラズマ中にて溶融させ、かつ、この溶融物をカーボン
ファイバー織布21上へ供給しそのシリコン成分と織布
21の炭素成分とを加熱反応させて炭化シリコン(Si
C)から成る中間膜22を形成した。
The carbon fiber woven fabric 21
Is heated by the high temperature plasma and the heating means 8 provided in the substrate holder 7 and the surface temperature is monitored to be sufficiently elevated by using a radiation thermometer.
When the temperature reached 500 ° C., a fixed amount of silicon particles 6 were introduced from the inlet of the silicon raw material to melt the silicon particles 6 in high temperature plasma, and the melt was supplied onto the carbon fiber woven fabric 21. The silicon component and the carbon component of the woven fabric 21 are heated and reacted to produce silicon carbide (Si
An intermediate film 22 made of C) was formed.

【0023】次に、上記加熱手段8の出力を下げてカー
ボンファイバー織布21の温度をシリコンの融点直下の
温度(1400℃)まで下げると共に、この温度条件下
において上記中間膜22上にシリコン粒子6の溶融物を
製膜させた。
Next, the output of the heating means 8 is lowered to lower the temperature of the carbon fiber woven cloth 21 to a temperature just below the melting point of silicon (1400 ° C.), and silicon particles are deposited on the intermediate film 22 under this temperature condition. The melt of 6 was formed into a film.

【0024】そして、この製膜処理を2〜3分間行い、
かつ、シリコン粒子6の供給停止後も高周波を投入して
アルゴンの高温プラズマを継続させ5〜10分程度の冷
却制御を行い膜厚1mm程度の多結晶シリコン膜23を形
成して上記シリコン積層体20を製造した。
Then, this film forming treatment is performed for 2 to 3 minutes,
Further, even after the supply of the silicon particles 6 is stopped, a high frequency is applied to continue the high temperature plasma of argon to control the cooling for about 5 to 10 minutes to form a polycrystalline silicon film 23 with a film thickness of about 1 mm to form the above silicon laminated body. 20 was produced.

【0025】尚、基材ホルダー7に設けられた移動機構
は上記中間膜22の形成前からシリコン膜の冷却制御中
も継続して作動させておりカーボンファイバー織布21
表面への入熱の均一化を図っている。
The moving mechanism provided on the base material holder 7 is continuously operated before the formation of the intermediate film 22 and during the cooling control of the silicon film.
The heat input to the surface is made uniform.

【0026】(製 膜 条
件) 反応室内の圧力 〜550Torr DCプラズマ投入電力 5KW RFプラズマ投入電力 30KW アルゴンガス流量 60〜80リット
ル/min 水素ガス流量 2〜4リットル/
min シリコン粒子の粒径 75〜150μm シリコン粒子の供給量 1g/min 高温プラズマ発生部と織布間距離 10〜20cm この様にして求められた多結晶シリコン膜23について
TEM観察を行ったところ、膜厚1mm程度でその結晶粒
径は100μm程度に達していることが確認でき、か
つ、その膜特性も均一になっていることが確認された。
(Film forming strip
Conditions) Pressure in reaction chamber ~ 550 Torr DC plasma input power 5KW RF plasma input power 30KW Argon gas flow rate 60-80 liters / min Hydrogen gas flow rate 2-4 liters /
min Particle size of silicon particles 75 to 150 μm Supply amount of silicon particles 1 g / min Distance between high temperature plasma generation part and woven fabric 10 to 20 cm TEM observation was conducted on the polycrystalline silicon film 23 thus obtained, and the film was found. It was confirmed that the crystal grain size reached about 100 μm at a thickness of about 1 mm, and that the film characteristics were also uniform.

【0027】[0027]

【発明の効果】請求項1に係る発明によれば、シート状
の炭素系基材がその全域に亘り小孔を有していないため
電気抵抗の低減が図れ、かつ、炭素系基材と多結晶シリ
コン膜との間には化学的並びに物理的に炭素とシリコン
との中間的性質を有する炭化シリコンの中間膜が介在さ
れているため、化学的親和性の向上と多結晶シリコン製
膜直後における膜ストレスの低減が図れると共に、炭素
系基材と多結晶シリコン膜との間のオーミック性接合を
形成することも可能となる。
According to the invention of claim 1, since the sheet-shaped carbon-based substrate does not have small holes over its entire area, the electric resistance can be reduced, and the carbon-based substrate and the carbon-based substrate can be mixed with each other. Since an intermediate film of silicon carbide, which is chemically and physically intermediate between carbon and silicon, is interposed between the crystalline silicon film and the crystalline silicon film, the chemical affinity is improved and the film immediately after the polycrystalline silicon film is formed. It is possible to reduce the film stress and form an ohmic contact between the carbon-based substrate and the polycrystalline silicon film.

【0028】従って、その電気抵抗が低くしかも多結晶
シリコン膜が剥離し難いシリコン積層体を提供できる効
果を有している。
Therefore, there is an effect that it is possible to provide a silicon laminate having a low electric resistance and in which the polycrystalline silicon film is hard to be peeled off.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るシリコン積層体の概略断面図。FIG. 1 is a schematic cross-sectional view of a silicon stack according to an example.

【図2】実施例の製法に適用された装置の構成概念図。FIG. 2 is a structural conceptual diagram of an apparatus applied to the manufacturing method of the embodiment.

【図3】従来の太陽電池の概略断面図。FIG. 3 is a schematic sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

20 シリコン積層体 21 カーボンファイバー織布 22 中間膜(SiC) 23 多結晶シリコン膜 20 Silicon Laminate 21 Carbon Fiber Woven 22 Intermediate Film (SiC) 23 Polycrystalline Silicon Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シート状の炭素系基材と、この炭素系基材
表面の全域に亘り形成された炭化シリコンより成る中間
膜と、この中間膜上に製膜された多結晶シリコン膜とで
構成されることを特徴とするシリコン積層体。
1. A sheet-shaped carbon-based substrate, an intermediate film made of silicon carbide formed over the entire surface of the carbon-based substrate, and a polycrystalline silicon film formed on the intermediate film. A silicon laminated body characterized by being constituted.
JP4288360A 1992-10-27 1992-10-27 Laminated silicon element Pending JPH06140652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288360A JPH06140652A (en) 1992-10-27 1992-10-27 Laminated silicon element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288360A JPH06140652A (en) 1992-10-27 1992-10-27 Laminated silicon element

Publications (1)

Publication Number Publication Date
JPH06140652A true JPH06140652A (en) 1994-05-20

Family

ID=17729197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288360A Pending JPH06140652A (en) 1992-10-27 1992-10-27 Laminated silicon element

Country Status (1)

Country Link
JP (1) JPH06140652A (en)

Similar Documents

Publication Publication Date Title
JPH0319164B2 (en)
EP0659905B1 (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JP2004204299A (en) Diamond film-deposition silicon and electrode
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JPS63285923A (en) Manufacture of silicon-germanium alloy
JPH06140652A (en) Laminated silicon element
JP7024668B2 (en) SOI wafer and its manufacturing method
JPH058269B2 (en)
JPH06268242A (en) Manufacture of silicon substrate and crystalline silicon solar cell
JPH06140647A (en) Laminated silicon element
JPH06224140A (en) Manufacture of silicon laminate
JPH0536847A (en) Manufacture of diamond multilayer wiring board
JPH06208961A (en) Manufacture of silicon lamination body
JPS6239534B2 (en)
JP4907017B2 (en) Method for producing carbon nanotube film body
JPH06208960A (en) Manufacture of silicon lamination body
JPH07153687A (en) Silicon laminate
CN102144283A (en) Method for preparing a self-supporting crystallized silicon thin film
JPH07153698A (en) Silicon laminate
JP2000272990A (en) Crucible comprising pyrolytic graphite and used for growing single crystal
JPH06196426A (en) Manufacture of silicon laminate
JPH04325685A (en) Production of thin film
JPH07153697A (en) Silicon laminate
JPH06196425A (en) Manufacture of silicon laminate
JP3839930B2 (en) Thin film production apparatus and thin film production method