JPH06140202A - Oxide resistor and manufacture thereof - Google Patents

Oxide resistor and manufacture thereof

Info

Publication number
JPH06140202A
JPH06140202A JP4290995A JP29099592A JPH06140202A JP H06140202 A JPH06140202 A JP H06140202A JP 4290995 A JP4290995 A JP 4290995A JP 29099592 A JP29099592 A JP 29099592A JP H06140202 A JPH06140202 A JP H06140202A
Authority
JP
Japan
Prior art keywords
sintered body
oxide
coating layer
insulating coating
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290995A
Other languages
Japanese (ja)
Inventor
Hideyasu Ando
秀泰 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4290995A priority Critical patent/JPH06140202A/en
Publication of JPH06140202A publication Critical patent/JPH06140202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To avoid the release of a side insulation coating layer from a sintered body by prescribing a specific value to the mean surface roughness on the sintered body side containing at least titanium. CONSTITUTION:A mixture mainly comprising zinc oxide whereto titanium and nickel are respectively added is previously wet-mixed with one another and then dried up and granulated to be baked later. Next, when a Zn2TiO4 particle layer formed on a sintered body surface by the reaction during the baking step is removed by about 1-200mum using centerless processing step, the inside of the sintered body 1 in the mean surface roughness of 0.5 to 5mum is to be exposed. Next, the side of the sintered body 1 after removing this Zn2TiO4 particle layer is coated with a polyimide base insulating resin to be baked for the formation of a side insulation coating layer 2. Furthermore, the upper and lower ends of the sintered body 1 are polished to be flame-sprayed with aluminum for the formation of electrodes 3. Through these procedures, the bonding strength between the sintered body 1 and the side insulation coating layer 2 can be increased thereby enabling the title oxide resistor high in withstand voltage and hardly subjected to creeping discharge to be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化亜鉛を主成分とし、
遮断器等の開閉サ―ジ吸収に好適な酸化物抵抗体に関す
る。
The present invention is mainly composed of zinc oxide,
The present invention relates to an oxide resistor suitable for absorbing switching surges such as circuit breakers.

【0002】[0002]

【従来の技術】酸化物抵抗体としては、酸化亜鉛を主成
分とし、酸化チタン,酸化ニッケルを副成分とした酸化
亜鉛系の酸化物抵抗体が知られている(Solid-State El
ectronics Pergamon Press 6,111(1963),米国特許第 2
892988号,米国特許第 2933586号)。このような酸化亜
鉛系の酸化物抵抗体は単位体積当たりのエネルギ―吸収
量を高めるために緻密な焼結体を備えていることが必要
である。緻密な焼結体を得るためには例えば副成分とし
て酸化チタンを添加する。このような酸化チタンを添加
した焼結体表面には焼結体内部に比べて粗い粒子が析出
したチタン酸亜鉛(Zn2 TiO4 )粒子層が形成され
る。チタン酸亜鉛粒子層は焼結体内部に比べて高抵抗で
あり、沿面放電を防止するための側面高抵抗層として作
用する。しかしながら沿面放電をさらに効果的に防止
し、耐電圧を向上させる目的で側面絶縁コ―ティング層
を形成しようとすると、コ―ティング層形成物質がチタ
ン酸亜鉛粒子層に浸透しにくいため形成される側面絶縁
コ―ティング層が焼結体から剥離しやすいという問題が
あった。
2. Description of the Related Art As an oxide resistor, a zinc oxide-based oxide resistor containing zinc oxide as a main component and titanium oxide or nickel oxide as a secondary component is known (Solid-State El.
ectronics Pergamon Press 6 , 111 (1963), US Patent No. 2
892988, U.S. Pat. No. 2933586). Such a zinc oxide based oxide resistor needs to have a dense sintered body in order to increase the amount of energy absorbed per unit volume. In order to obtain a dense sintered body, for example, titanium oxide is added as an auxiliary component. A zinc titanate (Zn 2 TiO 4 ) particle layer in which coarser particles are deposited than in the inside of the sintered body is formed on the surface of the sintered body to which titanium oxide is added. The zinc titanate particle layer has a higher resistance than the inside of the sintered body and acts as a side surface high resistance layer for preventing creeping discharge. However, when a side insulating coating layer is formed for the purpose of further effectively preventing creeping discharge and improving the withstand voltage, the coating layer forming substance is difficult to penetrate into the zinc titanate particle layer. There is a problem that the side insulating coating layer is easily peeled off from the sintered body.

【0003】[0003]

【発明が解決しようとする課題】上記のように従来の酸
化物抵抗体は側面絶縁コ―ティング層が焼結体側面から
剥離しやすいという問題があった。
As described above, the conventional oxide resistor has a problem that the side surface insulating coating layer is easily separated from the side surface of the sintered body.

【0004】そこで本発明の目的は焼結体と側面絶縁コ
―ティング層との接着強度を向上させ、沿面放電しにく
く耐電圧にすぐれた酸化物抵抗体及びその製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oxide resistor having an improved adhesive strength between a sintered body and a side insulating coating layer, which is resistant to creeping discharge and excellent in withstand voltage, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明においては第1の発明として酸化亜鉛を主成分
とし、少なくともチタンを含む焼結体の側面に側面絶縁
コ―ティング層を形成した酸化物抵抗体において、前記
焼結体の側面の平均表面粗さが 0.5〜5μmであること
を特徴とする酸化物抵抗体を提供する。また第2の発明
として酸化亜鉛を主成分とし、少なくともチタンを含む
焼結体の側面に側面絶縁コ―ティング層を形成する酸化
物抵抗体の製造方法において、前記焼結体の側面に形成
されるチタン酸亜鉛粒子層を取り除いた後に前記側面絶
縁コ―ティング層を形成することを特徴とする酸化物抵
抗体の製造方法を提供する。
In order to achieve the above object, in the present invention, as a first invention, a side surface insulating coating layer is formed on a side surface of a sintered body containing zinc oxide as a main component and containing at least titanium. In the oxide resistor described above, the average surface roughness of the side surface of the sintered body is 0.5 to 5 μm. In a second aspect of the present invention, there is provided a method of manufacturing an oxide resistor in which a side surface insulating coating layer is formed on a side surface of a sintered body containing zinc oxide as a main component and containing at least titanium. A method for manufacturing an oxide resistor, comprising forming the side insulating coating layer after removing the zinc titanate particle layer.

【0006】[0006]

【作用】焼結体側面に形成されたチタン酸亜鉛粒子層を
取り除くと平均表面粗さが 0.5〜5μmの焼結体内部が
現われる。この平均表面粗さが 0.5〜5μmの新らたな
焼結体側面は緻密な構造を有するため側面絶縁コ―ティ
ング層との接着強度にすぐれ、焼結体からの側面絶縁コ
―ティング層の剥離を防ぐことができる。
When the zinc titanate particle layer formed on the side surface of the sintered body is removed, the inside of the sintered body having an average surface roughness of 0.5 to 5 μm appears. Since the side surface of this new sintered body having an average surface roughness of 0.5 to 5 μm has a dense structure, it has excellent adhesive strength with the side surface insulating coating layer, and the side surface insulating coating layer from the sintered body has excellent adhesive strength. Peeling can be prevented.

【0007】[0007]

【実施例】以下に本発明の一実施例を図1乃至図5を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0008】酸化亜鉛(ZnO)を主成分として、チタ
ンを酸化チタン(TiO2 )として0.5〜15モル%、ニ
ッケルを酸化ニッケル(NiO)として 0.5〜30モル%
夫々添加して十分に湿式混合する。得られた混合物を乾
燥、造粒後、例えばφ155 ×φ51×35mmの環状に成形
し、1200℃〜1500℃で焼成する。この焼成時にZnOの
蒸発がおこり、
With zinc oxide (ZnO) as a main component, titanium is 0.5 to 15 mol% as titanium oxide (TiO 2 ) and nickel is 0.5 to 30 mol% as nickel oxide (NiO).
Add each and mix well thoroughly. After the obtained mixture is dried and granulated, it is formed into a ring of, for example, φ155 × φ51 × 35 mm and fired at 1200 ° C to 1500 ° C. ZnO is evaporated during this firing,

【0009】[0009]

【数1】2ZnO+TiO2 →Zn2 TiO4 の反応によって焼結体表面にチタン酸亜鉛(Zn2 Ti
4 )粒子層が形成される。このZnTiO4 粒子層は
直径1〜10μmのZn2 TiO4 粒子が層状に重なり合
って構成されており、焼成条件によって層の厚さが変化
する。このZn2TiO4 粒子層を例えばセンタレス加
工により除去する。ここでZn2 TiO4粒子層が 200
μm以上の厚さで形成されるような焼成条件で焼成する
と焼結体の電気抵抗特性のバラツキが大きくなり、安定
した特性が得られないこと及び、除去した後残ったZn
2 TiO4 粒子層の厚さが1μm以下の場合にはZn2
TiO4 粒子層をさらに取り除かなくても十分な側面絶
縁コ―ティング層と焼結体との接着強度を得ることがで
きることから除去するZn2 TiO4 粒子層の厚さは1
〜 200μm程度が望ましい。こうして図1に示すよう
に、Zn2 TiO4 粒子層を除去した焼結体1の側面に
高電圧を印加したときの沿面放電を防ぐための側面絶縁
コ―ティングとして例えばポリイミド系絶縁樹脂を塗布
して焼き付け側面絶縁コ―ティング層2を形成する。さ
らに焼結体1の上下端面を研磨し、この研磨面にアルミ
ニウムを溶射して電極3を形成し、酸化物抵抗体Aとし
た。
## EQU1 ## The reaction of ZnO + TiO 2 → Zn 2 TiO 4 causes zinc titanate (Zn 2 Ti
O 4 ) A particle layer is formed. This ZnTiO 4 particle layer is constituted by layering Zn 2 TiO 4 particles having a diameter of 1 to 10 μm, and the layer thickness changes depending on the firing conditions. The Zn 2 TiO 4 particle layer is removed by, for example, centerless processing. Here, the Zn 2 TiO 4 particle layer is 200
If firing is performed under firing conditions such that the sintered body is formed with a thickness of μm or more, the variation in the electric resistance characteristics of the sintered body becomes large, and stable characteristics cannot be obtained.
2 When the thickness of the TiO 4 particle layer is 1 μm or less, Zn 2
TiO 4 particle layer sufficiently without further removing the side insulation co - thickness of Zn 2 TiO 4 particle layer to be removed since it is possible to obtain a bonding strength between the coating layer and the sintered body 1
Approximately 200 μm is desirable. Thus, as shown in FIG. 1, a polyimide-based insulating resin, for example, is applied as a side surface insulating coating for preventing a creeping discharge when a high voltage is applied to the side surface of the sintered body 1 from which the Zn 2 TiO 4 particle layer is removed. Then, the baked side insulating coating layer 2 is formed. Further, the upper and lower end surfaces of the sintered body 1 were polished, and aluminum was sprayed on the polished surface to form the electrode 3 to obtain an oxide resistor A.

【0010】比較のために本実施例の酸化物抵抗体Aの
他に、図2に示すようなZn2 TiO4 粒子層4を取り
除かず、Zn2 TiO4 粒子層4の上に側面絶縁コ―テ
ィング層2を形成し酸化物抵抗体Bを製造した。又、Z
2 TiO4 粒子層4のみで側面絶縁コ―ティング層2
を形成しない図3に示すような酸化物抵抗体C及びZn
2 TiO4 粒子層4を取り除き、側面絶縁コ―ティング
層2も形成しない、焼結体1の側面がむき出しになっ
た、図4に示すような酸化物抵抗体Dも製造した。これ
ら4種の側面状態の異なる酸化物抵抗体の複数のロット
について8×20μsのインパルス電圧を5kV/cmから
0.5kV/cmづつ電圧を上げて印加していったときの沿面
放電しない確率を調べ平均耐電圧を求める試験を行っ
た。次に作用について説明する。
[0010] In addition to the oxide resistor A of this example for comparison, without removing the Zn 2 TiO 4 particle layer 4, as shown in FIG. 2, the side surface insulation co on the Zn 2 TiO 4 particle layer 4 -The coating layer 2 was formed and the oxide resistor B was manufactured. Also Z
Side insulating coating layer 2 only with n 2 TiO 4 particle layer 4
Oxide resistor C and Zn as shown in FIG.
An oxide resistor D as shown in FIG. 4 in which the side surface of the sintered body 1 was exposed, in which the 2 TiO 4 particle layer 4 was removed and the side insulating coating layer 2 was not formed, was also manufactured. Impulse voltage of 8 × 20μs was applied from 5kV / cm for multiple lots of these 4 kinds of oxide resistors with different lateral states.
A test was conducted to find the average withstand voltage by examining the probability that creeping discharge did not occur when the voltage was increased by 0.5 kV / cm and applied. Next, the operation will be described.

【0011】本実施例による酸化物抵抗体A及び側面状
態の異なる酸化物抵抗体B,C,Dに8×20μsのイン
パルス電圧を印加したときの平均耐電圧を表1に、酸化
物抵抗体A,B,C,Dの耐電圧の分布図を図5に示
す。図5において、横軸には耐電圧[kV/cm]を、縦軸
には分布を採用した。
Table 1 shows the average withstand voltage when an impulse voltage of 8 × 20 μs was applied to the oxide resistor A according to this example and the oxide resistors B, C, and D having different side states. A distribution diagram of the withstand voltage of A, B, C and D is shown in FIG. In FIG. 5, the horizontal axis represents the withstand voltage [kV / cm] and the vertical axis represents the distribution.

【表1】 [Table 1]

【0012】表1に示すように平均耐電圧は本実施例の
酸化物抵抗体Aが最も高く、酸化物抵抗体B,C,Dの
順に低くなる。Zn2 TiO4 は焼結体内部に比べ高抵
抗であるため酸化物抵抗体Dに比べ酸化物抵抗体Cの耐
電圧は高い。Zn2 TiO 4粒子層4の上に側面絶縁コ
―ティング層2を形成した酸化物抵抗体Bの耐電圧は酸
化物抵抗体Cに比べ高いがあまり大きな差はない。これ
に対して、Zn2 TiO4 粒子層4を取り除いてから側
面コ―ティング層2を形成した実施例による酸化物抵抗
体Aの耐電圧は他の抵抗体と比べ非常に高い。さらに図
5に示すように酸化物抵抗体Aは耐電圧のバラツキが少
なく、品質が均一である。
As shown in Table 1, the average withstand voltage is highest in the oxide resistor A of this embodiment, and decreases in the order of the oxide resistors B, C and D. Since Zn 2 TiO 4 has a higher resistance than the inside of the sintered body, the withstand voltage of the oxide resistor C is higher than that of the oxide resistor D. The withstand voltage of the oxide resistor B in which the side surface insulating coating layer 2 is formed on the Zn 2 TiO 4 particle layer 4 is higher than that of the oxide resistor C, but there is not much difference. On the other hand, the withstand voltage of the oxide resistor A according to the embodiment in which the Zn 2 TiO 4 particle layer 4 is removed and then the side surface coating layer 2 is formed is much higher than the other resistors. Further, as shown in FIG. 5, the oxide resistor A has little variation in withstand voltage and is uniform in quality.

【0013】これは焼結体1の側面からZn2 TiO4
粒子層4を取り除き、ポリイミド樹脂との接着強度にす
ぐれた緻密な構造の焼結体側面を露出させ、この焼結体
側面にポリイミド樹脂を塗布して側面絶縁コ―ティング
層2を形成したことによる。
From the side surface of the sintered body 1, Zn 2 TiO 4
Removing the particle layer 4 to expose the side surface of the sintered body having a dense structure excellent in adhesive strength with the polyimide resin, and applying the polyimide resin to the side surface of the sintered body to form the side insulating coating layer 2. by.

【0014】なお上記実施例においては焼結体の原料物
質として酸化亜鉛、酸化チタン、さらに酸化ニッケルを
添加したがこれはニッケルを酸化亜鉛とチタン酸亜鉛に
固溶させ抵抗率を増加させるためであり、酸化亜鉛とチ
タン酸亜鉛に固溶するものであれば、例えば酸化コバル
ト等であっても同じ効果が得られることは確認済みであ
る。
In the above embodiment, zinc oxide, titanium oxide, and nickel oxide were added as raw materials for the sintered body. This is because nickel is solid-dissolved in zinc oxide and zinc titanate to increase the resistivity. However, it has been confirmed that the same effect can be obtained even if cobalt oxide or the like is used as long as it can form a solid solution with zinc oxide and zinc titanate.

【0015】更に、上記実施例ではチタン、ニッケルの
出発原料に酸化物を用いたが、焼成して酸化物になるも
のであれば何でもよく、例えば炭化物等であっても同じ
効果が得られることはいうまでもない。
Furthermore, in the above embodiments, oxides were used as starting materials for titanium and nickel, but any material may be used as long as it can be converted into an oxide by firing, and the same effect can be obtained even if it is a carbide or the like. Needless to say.

【0016】このように本実施例によれば焼結体1と側
面絶縁コ―ティング層2の接着強度が大きくなるため側
面絶縁コ―ティング層2の焼結体1からの剥離を防止で
き耐電圧にすぐれた酸化物抵抗体を製造することができ
る。以下に本発明の他の実施例を図6を参照して説明す
る。
As described above, according to this embodiment, since the adhesive strength between the sintered body 1 and the side insulating coating layer 2 is increased, the side insulating coating layer 2 can be prevented from peeling off from the sintered body 1. It is possible to manufacture an oxide resistor having excellent voltage. Another embodiment of the present invention will be described below with reference to FIG.

【0017】酸化亜鉛(ZnO)を主成分として、チタ
ンを酸化チタン(TiO2 )として0.5〜15モル%、ニ
ッケルを酸化ニッケル(NiO)として 0.5〜30モル%
夫々添加して十分に湿式混合する。得られた混合物を乾
燥、造粒後、例えばφ155 ×φ51×35mmの環状に成形
し、1200℃〜1500℃で焼成する。焼成時にZn2 TiO
4 粒子が焼結体表面に形成されるので、この焼結体内・
外側面のZn2 TiO4粒子層を例えばセンタレス加工
などで取り除き、平均表面粗さを 0.5〜5μmにして、
側面絶縁コ―ティング層を形成する。側面絶縁コ―ティ
ング層を形成した焼結体の上下端面を研磨し、その研磨
面にアルミニウムを溶射し電極を形成して酸化物抵抗体
とした。
0.5 to 15 mol% of titanium as titanium oxide (TiO 2 ) and 0.5 to 30 mol% of nickel as nickel oxide (NiO) containing zinc oxide (ZnO) as a main component.
Add each and mix well thoroughly. After the obtained mixture is dried and granulated, it is formed into a ring of, for example, φ155 × φ51 × 35 mm and fired at 1200 ° C to 1500 ° C. Zn 2 TiO during firing
Since 4 particles are formed on the surface of the sintered body,
The Zn 2 TiO 4 particle layer on the outer surface is removed by, for example, centerless processing to make the average surface roughness 0.5 to 5 μm,
A side insulating coating layer is formed. The upper and lower end surfaces of the sintered body on which the side-surface insulating coating layer was formed were polished, and aluminum was sprayed on the polished surface to form electrodes to obtain an oxide resistor.

【0018】さらに比較のためZn2 TiO4 粒子層を
例えばセンタレス加工で取り除き、平均表面粗さを 0.1
〜 0.5μmにした焼結体及び5〜20μmにした焼結体を
作成し同様に側面絶縁コ―ティング層及び電極を形成し
て酸化物抵抗体とした。
For comparison, the Zn 2 TiO 4 particle layer was removed by, for example, centerless processing, and the average surface roughness was 0.1.
A sintered body having a thickness of .about.0.5 .mu.m and a sintered body having a thickness of 5 to 20 .mu.m were prepared, and a side insulating coating layer and electrodes were similarly formed to obtain an oxide resistor.

【0019】これら本実施例の酸化物抵抗体及び比較の
ための酸化物抵抗体の複数のロットについて8×20μs
のインパルス電圧を5kV/cmから 0.5kV/cmづつ高くし
て電圧を印加していったときの沿面放電しない確率を調
べ平均耐電圧を求める試験を行った。次に作用について
説明する。図6に焼結体側面の平均表面粗さと平均耐電
圧の関係を示す。ここで横軸は対数で平均表面粗さ[μ
m]を縦軸には平均耐電圧[kV/cm]を示す。
8 × 20 μs for a plurality of lots of the oxide resistors of this example and the oxide resistors for comparison
A test was performed to determine the average withstand voltage by examining the probability that creeping discharge did not occur when the impulse voltage was increased by 5 kV / cm from 0.5 kV / cm in increments of 0.5 kV / cm. Next, the operation will be described. FIG. 6 shows the relationship between the average surface roughness on the side surface of the sintered body and the average withstand voltage. Here, the horizontal axis is logarithmic and the average surface roughness [μ
m] indicates the average withstand voltage [kV / cm] on the vertical axis.

【0020】図6からわかるように平均表面粗さが 0.5
〜5μmで高い耐電圧が得られている。平均表面粗さが
5μm以上であると焼結体と絶縁コ―ティング層の間に
ポアができたり、絶縁コ―ティング層に亀裂が入りやす
くなり、焼結体と絶縁コ―ティング層の接着強度が低く
なり、耐電圧が低下してしまう。平均表面粗さが 0.5μ
m以下であると焼結体と絶縁コ―ティング層の接着面積
が減少することにより、接着強度が低くなり、耐電圧が
低下してしまう。
As can be seen from FIG. 6, the average surface roughness is 0.5.
A high withstand voltage is obtained at ˜5 μm. If the average surface roughness is 5 μm or more, pores may be formed between the sintered body and the insulating coating layer, or cracks may easily occur in the insulating coating layer, resulting in adhesion between the sintered body and the insulating coating layer. The strength is reduced and the withstand voltage is reduced. Average surface roughness 0.5μ
If it is m or less, the adhesive area between the sintered body and the insulating coating layer is reduced, so that the adhesive strength is lowered and the withstand voltage is lowered.

【0021】なお本実施例では焼結体の原料として酸化
亜鉛、酸化チタン、さらに酸化ニッケルを添加したがこ
れはニッケルを酸化亜鉛とチタン酸亜鉛に固溶させ抵抗
率を増加させるためであり、酸化亜鉛とチタン酸亜鉛に
固溶するものであれば、例えば酸化コバルト等であって
も同じ効果が得られることは確認済みである。
In this example, zinc oxide, titanium oxide, and nickel oxide were added as raw materials for the sintered body, but this is because nickel is solid-dissolved in zinc oxide and zinc titanate to increase the resistivity. It has been confirmed that the same effect can be obtained even if cobalt oxide or the like is used as long as it can form a solid solution with zinc oxide and zinc titanate.

【0022】更に、本実施例ではチタン、ニッケルの出
発原料に酸化物を用いたが、焼成して酸化物になるもの
であれば何でもよく、例えば炭化物等であっても同じ効
果が得られることはいうまでもない。
Further, although an oxide was used as a starting material for titanium and nickel in this embodiment, any material may be used as long as it is an oxide by firing, and the same effect can be obtained even if it is a carbide or the like. Needless to say.

【0023】このように本実施例によれば焼結体側面の
平均表面粗さを 0.5〜5μmに限定することにより、焼
結体と側面絶縁コ―ティング層の接着強度が増し、高耐
電圧な酸化物抵抗体を提供することができるという効果
を奏する。
As described above, according to this embodiment, by limiting the average surface roughness of the side surface of the sintered body to 0.5 to 5 μm, the adhesive strength between the sintered body and the side surface insulating coating layer is increased, and the high withstand voltage is increased. It is possible to provide an excellent oxide resistor.

【0024】[0024]

【発明の効果】以上述べてきたように、本発明によれ
ば、酸化亜鉛を主成分とする酸化物抵抗体において、焼
結体側面の平均表面粗さを 0.5〜5μmにすることによ
り焼結体と側面絶縁コ―ティング層との接着強度が高ま
り、高電圧を印加した時、沿面放電しにくい高耐電圧な
酸化物抵抗体を提供することができる。
As described above, according to the present invention, the oxide resistor containing zinc oxide as the main component is sintered by setting the average surface roughness of the side surface of the sintered body to 0.5 to 5 μm. The adhesive strength between the body and the side-surface insulating coating layer is enhanced, and it is possible to provide an oxide resistor having a high withstand voltage that is unlikely to cause creeping discharge when a high voltage is applied.

【0025】また焼結体側面に形成されたチタン酸亜鉛
粒子層を取り除いた後側面絶縁コ―ティング層を形成す
ることにより、焼結体と側面絶縁コ―ティング層との接
着強度が増し、沿面放電しにくく耐電圧を向上させた酸
化物抵抗体を提供することができる。
Further, by removing the zinc titanate particle layer formed on the side surface of the sintered body and then forming the side insulating coating layer, the adhesive strength between the sintered body and the side insulating coating layer is increased, It is possible to provide an oxide resistor in which creeping discharge is less likely to occur and which has an improved withstand voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す酸化物抵抗体の断面
図。
FIG. 1 is a cross-sectional view of an oxide resistor showing an embodiment of the present invention.

【図2】従来の酸化物抵抗体の断面図。FIG. 2 is a sectional view of a conventional oxide resistor.

【図3】従来の酸化物抵抗体の断面図。FIG. 3 is a sectional view of a conventional oxide resistor.

【図4】従来の酸化物抵抗体の断面図。FIG. 4 is a sectional view of a conventional oxide resistor.

【図5】本発明及び従来の酸化物抵抗体の耐電圧分布
図。
FIG. 5 is a withstand voltage distribution diagram of the present invention and a conventional oxide resistor.

【図6】焼結体側面の平均表面粗さと平均耐電圧の関係
図。
FIG. 6 is a diagram showing the relationship between the average surface roughness on the side surface of the sintered body and the average withstand voltage.

【符号の説明】[Explanation of symbols]

1…焼結体、2…側面絶縁コ―ティング層、3…電極、
4…チタン酸亜鉛粒子層
1 ... Sintered body, 2 ... Side insulating coating layer, 3 ... Electrode,
4 ... Zinc titanate particle layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、少なくともチタ
ンを含む焼結体の側面に側面絶縁コ―ティング層を形成
した酸化物抵抗体において、 前記焼結体の側面の平均表面粗さが 0.5〜5μmである
ことを特徴とする酸化物抵抗体。
1. An oxide resistor in which a side surface insulating coating layer is formed on a side surface of a sintered body containing zinc oxide as a main component and containing at least titanium, wherein an average surface roughness of the side surface of the sintered body is 0.5. An oxide resistor having a thickness of 5 μm.
【請求項2】 酸化亜鉛を主成分とし、少なくともチタ
ンを含む焼結体の側面に側面絶縁コ―ティング層を形成
する酸化物抵抗体の製造方法において、 前記焼結体の側面に形成されるチタン酸亜鉛粒子層を取
り除いた後に前記側面絶縁コ―ティング層を形成するこ
とを特徴とする酸化物抵抗体の製造方法。
2. A method of manufacturing an oxide resistor, wherein a side surface insulating coating layer is formed on a side surface of a sintered body containing zinc oxide as a main component and containing at least titanium, wherein the side surface of the sintered body is formed. A method for producing an oxide resistor, comprising forming the side insulating coating layer after removing the zinc titanate particle layer.
JP4290995A 1992-10-29 1992-10-29 Oxide resistor and manufacture thereof Pending JPH06140202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290995A JPH06140202A (en) 1992-10-29 1992-10-29 Oxide resistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290995A JPH06140202A (en) 1992-10-29 1992-10-29 Oxide resistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06140202A true JPH06140202A (en) 1994-05-20

Family

ID=17763100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290995A Pending JPH06140202A (en) 1992-10-29 1992-10-29 Oxide resistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06140202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component
JP4501235B2 (en) * 2000-06-29 2010-07-14 パナソニック株式会社 Manufacturing method of ceramic electronic component

Similar Documents

Publication Publication Date Title
US8339237B2 (en) Multilayer PTC thermistor
US6260258B1 (en) Method for manufacturing varistor
JPH06140202A (en) Oxide resistor and manufacture thereof
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JP4637440B2 (en) Manufacturing method of ceramic element
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2004311676A (en) Chip shape laminated ceramic electronic part and method for manufacturing the same
JP3604043B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP3396973B2 (en) Manufacturing method of multilayer varistor
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JP2002043105A (en) Zinc oxide varistor and method of manufacturing the same
JP4157237B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP4167459B2 (en) Manufacturing method of chip varistor
JP3189341B2 (en) Composite varistor
JPH0529104A (en) Ptc thermistor
JP2006093485A (en) Glass ceramic substrate
JPH036801A (en) Voltage-dependent nonlinear resistor
JPH11340074A (en) Manufacture of grain boundary insulation type laminated semiconductor capacitor
JP2000182808A (en) Nonlinear resistance member
JP3240689B2 (en) Laminated semiconductor porcelain composition
JP3747254B2 (en) Manufacturing method of surface mount type multilayer chip varistor
JPH07192968A (en) Electronic component and its manufacture
JPH01222404A (en) Manufacture of voltage dependent non-linear resistor
JPH0377647B2 (en)
JPH0812811B2 (en) Method of manufacturing voltage non-linear resistor