JPH0613999B2 - Deviation measuring device for optical components - Google Patents

Deviation measuring device for optical components

Info

Publication number
JPH0613999B2
JPH0613999B2 JP26614884A JP26614884A JPH0613999B2 JP H0613999 B2 JPH0613999 B2 JP H0613999B2 JP 26614884 A JP26614884 A JP 26614884A JP 26614884 A JP26614884 A JP 26614884A JP H0613999 B2 JPH0613999 B2 JP H0613999B2
Authority
JP
Japan
Prior art keywords
laser
eccentricity
sample mounting
display device
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26614884A
Other languages
Japanese (ja)
Other versions
JPS61144541A (en
Inventor
正道 竹下
昭喜 江口
利治 佐久間
久夫 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26614884A priority Critical patent/JPH0613999B2/en
Publication of JPS61144541A publication Critical patent/JPS61144541A/en
Publication of JPH0613999B2 publication Critical patent/JPH0613999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学部品の偏心測定装置に係り、特にレンズ
面の偏心量、すなわちレンズ面でのレンズの光軸と中心
軸とのずれ量、および“たおれ”、すなわち前記光軸と
中心軸とのなす傾斜角を測定する光学部品の偏心測定装
置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an eccentricity measuring device for an optical component, and more particularly to an eccentricity amount of a lens surface, that is, an amount of deviation between a lens optical axis and a central axis on the lens surface. , And “taore”, that is, an eccentricity measuring device for an optical component that measures an inclination angle formed by the optical axis and the central axis.

〔従来の技術〕[Conventional technology]

従来のレンズの偏心測定装置は、特開昭48−3936
号公報に記載されているように、透過光によって1枚の
レンズまたはレンズ系の偏心量を測定するものであっ
た。
A conventional lens eccentricity measuring device is disclosed in JP-A-48-3936.
As described in Japanese Patent Laid-Open Publication No. JP-A-2003-264, the amount of eccentricity of one lens or lens system is measured by transmitted light.

前記のように、従来は透過光を使用して偏心量を測定し
ているため、1枚のレンズの片面や、例えばプラスチッ
クレンズの成形に使用される金型のレンズ成形面の偏心
量および“たおれ”を測定することはできなかった。
As described above, conventionally, transmitted light is used to measure the amount of eccentricity, so that the amount of eccentricity on one surface of one lens or the lens molding surface of a mold used for molding a plastic lens and the " It was not possible to measure "Taore".

従来の透過光を使用しない測定装置としては三次元測定
器があるが、この三次元測定器での測定は接触式である
ため、測定の際の触針によってレンズ面を損傷する恐れ
があるのみならず、測定に長時間を要し、測定効率が悪
いという問題点もあった。
There is a three-dimensional measuring device as a conventional measuring device that does not use transmitted light, but since the measurement with this three-dimensional measuring device is a contact type, there is a risk that the stylus at the time of measurement may damage the lens surface. However, there is also a problem that the measurement requires a long time and the measurement efficiency is poor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述したように、従来技術では透過光を使用して偏心量
を測定しているため、レンズの片面やレンズ金型のレン
ズ成形面の偏心量を測定することができなかった。ま
た、三次元測定器においても損傷を受けるという問題点
があった。
As described above, in the related art, since the eccentricity is measured by using the transmitted light, it is not possible to measure the eccentricity on one surface of the lens or the lens molding surface of the lens mold. Further, there is a problem that the three-dimensional measuring device is also damaged.

本発明は、上記した従来技術の問題点を改善して、レン
ズの片面や金型のレンズ成形面の偏心量および“たお
れ”を非接触で効率よく測定することができる光学部品
の偏心測定装置の提供を目的とするものである。
The present invention solves the above-mentioned problems of the prior art, and an eccentricity measuring device for an optical component capable of efficiently measuring the amount of eccentricity of one surface of a lens or the lens molding surface of a mold and "fall" in a non-contact manner. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明に係る光学部品の
偏心測定装置は、Z方向に光軸を有し該Z方向に移動可
能なレーザ干渉装置と、Z軸まわりに回動可能でありX
方向,Y方向へ移動可能で、且つXZ面,YZ面内で傾
斜可能な、被測定物を載置固定することができる試料搭
載台と、該試料搭載台のX方向,Y方向の移動量を測定
することができる各移動量測定器と、前記試料搭載台を
XZ面,YZ面内で傾斜させ、その傾斜量を表示するこ
とができる各傾斜つまみと、該試料搭載台に載置固定さ
れた被測定物のX方向の変位を測定することができる、
前記レーザ干渉装置と一体に設けられた変位測定器と、
前記レーザ干渉装置から照射され被測定物の表面で収束
する収束レーザ光の反射像を表示する基準を持つ収束光
表示装置と干渉縞外周線を表示する基準を持つ干渉縞表
示装置とを具備し、収束光表示装置に表示される収束レ
ーザ光の反射像を前記基準に一致するように試料搭載台
を移動させたときのX方向,Y方向各移動量測定器の測
定量から偏心量を、そして干渉縞表示装置に表示される
収束レーザ光の干渉縞外周線を前記基準を中心に同心円
となるように試料搭載台をXZ面,YZ面内で傾斜させ
たときの各傾斜つまみの傾斜量から“たおれ”を測定す
るようにしたものである。
In order to achieve the above object, an eccentricity measuring device for an optical component according to the present invention includes a laser interference device having an optical axis in the Z direction and movable in the Z direction, and rotatable about the Z axis. X
And Y-direction movable and tiltable in the XZ and YZ planes for mounting and fixing the object to be measured, and the amount of movement of the sample mounting base in the X and Y directions. Each movement amount measuring device capable of measuring the above, each sample mounting table is tilted in the XZ plane and the YZ plane, each tilting knob capable of displaying the tilt amount, and the sample mounting table are mounted and fixed on the sample mounting table. Displacement of the measured object in the X direction can be measured.
A displacement measuring device provided integrally with the laser interference device,
A convergent light display device having a reference for displaying a reflected image of the converged laser light emitted from the laser interference device and converging on the surface of the object to be measured, and an interference fringe display device having a reference for displaying an outer peripheral line of the interference fringe. The eccentricity amount from the measurement amount of each movement amount measuring device in the X and Y directions when the sample mounting table is moved so that the reflected image of the converged laser beam displayed on the convergent light display device matches the reference. Then, the tilt amount of each tilt knob when the sample mounting table is tilted in the XZ plane and the YZ plane so that the outer peripheral line of the convergent laser beam displayed on the interference fringe display device becomes concentric with the reference as the center. It is designed to measure "taore".

〔実施例〕 実施例の説明に入るまえに、本発明に係る基本的事項を
説明する。
[Examples] Before starting the description of the examples, the basic items of the present invention will be described.

透過光では測定不可能なレンズ片面や金型のレンズ成形
面の偏心量測定を可能とするため、本発明の光学部品の
偏心測定装置は、レーザ干渉装置を使用して、被測定物
であるレンズ面へ照射したレーザ光の反射像を受光し、
表示装置で表示するようにした。
The eccentricity measuring device of the optical component of the present invention is an object to be measured by using a laser interferometer in order to enable the measurement of the eccentricity of one surface of the lens which cannot be measured with transmitted light or the lens molding surface of the mold. Receives the reflected image of the laser light applied to the lens surface,
Displayed on the display device.

そして、被測定物を載置する試料搭載台をレーザ干渉装
置の光軸まわりに回動可能で、該光軸と垂直な面内にお
いて移動可能で且つ面外へ傾斜可能に構成した。また、
レーザ干渉装置と一体の被測定物の変位を測定すること
ができる変位測定器を設けるようにした。
The sample mounting table on which the object to be measured is placed can be rotated around the optical axis of the laser interferometer, movable in a plane perpendicular to the optical axis, and tiltable out of the plane. Also,
A displacement measuring instrument capable of measuring the displacement of the object to be measured is provided integrally with the laser interferometer.

このように構成したものにおいて、試料搭載台に載置し
た被測定物の側面に接触させた変位測定器をレーザ干渉
装置の光軸方向に沿って上下方向へ移動させたとき、変
位測定器の変位量がほとんど変化しなくなるように、試
料搭載台の傾斜を修正する。これにより被測定物の中心
軸と前記レーザ干渉装置の光軸とが平行になる。
In such a configuration, when the displacement measuring device brought into contact with the side surface of the object to be measured placed on the sample mounting table is moved vertically along the optical axis direction of the laser interferometer, Correct the tilt of the sample mounting table so that the amount of displacement hardly changes. As a result, the central axis of the object to be measured and the optical axis of the laser interference device become parallel.

つぎに、試料搭載台を回動させたとき、変位測定器の目
盛変化が最も小さくなるように試料搭載台をその面内で
移動させる。これにより、被測定物の中心軸とレーザ干
渉装置の光軸とが一致する。
Next, when the sample mounting base is rotated, the sample mounting base is moved within the plane so that the scale change of the displacement measuring instrument is minimized. As a result, the central axis of the object to be measured and the optical axis of the laser interference device coincide with each other.

表示装置に映った反射像が表示装置の十字の基準線の中
心位置と一致するように、試料搭載台を移動せしめたと
きのその移動量が偏心量であり、また、前記反射像の十
字の基準線の中心位置近傍の干渉縞外周線が同心円にな
るように、試料搭載台を傾斜せしめたときの、その傾斜
が“たおれ”である。
The amount of movement when the sample mounting table is moved is the eccentric amount so that the reflection image reflected on the display device coincides with the center position of the reference line of the cross of the display device. When the sample mounting table is tilted so that the outer peripheral lines of the interference fringes near the center of the reference line are concentric circles, the tilt is "Taore".

本発明は、前記した基準的事項に基づいてなされたもの
である。
The present invention has been made based on the above-mentioned standard items.

以下、実施例によって説明する。Hereinafter, description will be made with reference to examples.

第1図は、本発明の一実施例に係る光学部品の偏心測定
装置の側面図、第2図は、第1図に係る光学部品の偏心
測定装置の平面図、第3図は、第1図におけるレーザ干
渉装置からの照射レーザ光の収束状態とその反射状態を
示す部分側面図、第4図は、第1図における被測定物の
中心軸と光軸との位置関係を示す部分側面図、第5図は
他の被測定物(非球面)の中心軸と光軸,“たおれ”と
の関係を示す部分側面図である。
FIG. 1 is a side view of an eccentricity measuring device for optical parts according to an embodiment of the present invention, FIG. 2 is a plan view of the eccentricity measuring device for optical parts according to FIG. 1, and FIG. FIG. 4 is a partial side view showing a converged state and a reflected state of a laser beam emitted from a laser interference device, and FIG. 4 is a partial side view showing a positional relationship between a central axis of an object to be measured and an optical axis in FIG. , FIG. 5 is a partial side view showing the relationship between the central axis of another object to be measured (aspherical surface), the optical axis, and the "flare".

図において、1はZ方向(第1図において上下方向)に
光軸を有し、レーザ光を収束するためのリファレンスレ
ンズ4を具備したレーザ干渉装置であり、このレーザ干
渉装置1は、支持アーム2によって支持台14に立てら
れた支持ロッド3にZ方向に移動可能に取付けられてい
る。
In the figure, reference numeral 1 is a laser interference device having an optical axis in the Z direction (vertical direction in FIG. 1) and equipped with a reference lens 4 for converging laser light. It is attached to a support rod 3 which is erected on a support base 14 by 2 so as to be movable in the Z direction.

10は支持台14上に支持桿19によって支持された試
料搭載台であって、この試料搭載台10は、Z軸まわり
に回動可能な回転台10aと、Y方向へ移動可能なY移
動台10bとX方向へ移動可能なX移動台10cを具備
し、前記回転台10a上に被測定物8を載置固定するこ
とができるようになっている。
Reference numeral 10 denotes a sample mounting base supported on a supporting base 14 by a supporting rod 19. The sample mounting base 10 includes a rotating base 10a rotatable about the Z axis and a Y moving base movable in the Y direction. 10B and an X moving table 10c movable in the X direction are provided so that the DUT 8 can be placed and fixed on the rotary table 10a.

11は回転台10aを回動させるに使用される試料搭載
台10に取付けられたモータ、12xは試料搭載台10
をX方向へ移動させるのに使用されるX移動台10cに
取付けられたX移動つまみ、12yは試料搭載台10を
Y方向に移動させるのに使用されるY移動台10bに取
付けられたY移動つまみである。
Reference numeral 11 denotes a motor mounted on the sample mounting base 10 used for rotating the rotary base 10a, and 12x denotes the sample mounting base 10.
X-moving knob attached to an X-moving table 10c used to move the sample mounting table 10c in the X-direction, and Y-moving attached to a Y-moving table 10b used to move the sample mounting table 10 in the Y-direction. It is a knob.

19xは試料搭載台10をXZ面内で傾斜させ、その傾
斜量を表示することができるXZ面傾斜つまみ、19y
は試料搭載台10をYZ面内で傾斜させ、その傾斜量を
表示することができるYZ面傾斜つまみである。
19x is an XZ plane tilt knob that can tilt the sample mounting table 10 in the XZ plane and display the tilt amount, 19y.
Is a YZ plane tilt knob that can tilt the sample mounting table 10 in the YZ plane and display the tilt amount.

7は試料搭載台10に載置固定された被測定物8のX方
向の変位を測定することができる触子7bを有する変位
測定器であって、この変移測定器7は、レーザ干渉装置
1に突設けたレーザ干渉装置1の光軸と平行な支持バー
6によって、レーザ干渉装置1に一体に取付けられてい
る。
Reference numeral 7 denotes a displacement measuring device having a contact 7b capable of measuring the displacement in the X direction of the object to be measured 8 mounted and fixed on the sample mounting table 10. The displacement measuring device 7 is a laser interferometer 1 The laser interference device 1 is integrally attached to the laser interference device 1 by a support bar 6 provided in parallel with the optical axis of the laser interference device 1.

13x,13yは、いずれも支持台14に立てられ、そ
れぞれ試料搭載台10のX方向,Y方向の移動量を測定
することができるX移動量測定器,Y移動量測定器であ
る。
Reference numerals 13x and 13y respectively denote an X movement amount measuring device and a Y movement amount measuring device which are erected on the support base 14 and can measure the movement amounts of the sample mounting base 10 in the X and Y directions, respectively.

16はレーザ干渉装置1から照射され、被測定物8の表
面に係るレンズ面9で収束している収束レーザ光、5
a,5bはそれぞれこの収束レーザ光16の反射像1
7,干渉縞外周線18を表示することができるそれぞれ
が十字の基準線を持つ収束光表示装置,干渉縞表示装置
である。
Reference numeral 16 denotes a converged laser beam which is emitted from the laser interference device 1 and is converged on the lens surface 9 related to the surface of the DUT 5.
a and 5b are reflection images 1 of the converged laser beam 16 respectively.
7. The convergent light display device and the interference fringe display device, each of which can display the interference fringe outer peripheral line 18, have a cross reference line.

つぎに光学部品の偏心測定装置の動作を、まずレンズ面
9が球面である被測定物8の場合について説明する。
Next, the operation of the eccentricity measuring device for optical components will be described first for the case of the object to be measured 8 whose lens surface 9 is a spherical surface.

まず被測定物8を試料搭載台10の回転台10a上に搭
載して固定する。つぎに支持アーム2および変位測定器
アーム7あを調整して、被測定物8の側面に変位測定器
7の触子7bを触接させる。
First, the DUT 8 is mounted and fixed on the rotary table 10a of the sample mounting table 10. Next, the support arm 2 and the displacement measuring instrument arm 7 are adjusted so that the side surface of the DUT 8 is brought into contact with the tentacle 7b of the displacement measuring instrument 7.

支持アーム2を支持ロッド3に沿って上下動させたと
き、変位測定器7の変位表示が変化しなくなるように、
XZ面傾斜つまみ19x,YZ面傾斜つまみ19yを調
整して試料搭載台10の傾斜を修正する。これによっ
て、被測定物8の中心軸とレーザ干渉装置1の光軸とが
平行になる。
When the support arm 2 is moved up and down along the support rod 3, the displacement display of the displacement measuring instrument 7 does not change,
The tilt of the sample mounting table 10 is corrected by adjusting the XZ plane tilt knob 19x and the YZ plane tilt knob 19y. As a result, the central axis of the DUT 8 and the optical axis of the laser interference device 1 become parallel.

モータ11を駆動して回転台10aを回動させ、変位測
定器7の変位表示が所定値(あらかじめ設定した被測定
物8の外形誤差、例えば2μm)になるように、X移動
つまみ12x,Y移動つまみ12yを調整する。この調
整によって、被測定物8の外形中心軸とレーザ干渉装置
1の光軸とが、XZ面内で一致する。
The motor 11 is driven to rotate the rotary table 10a, and the X movement knobs 12x, Y are adjusted so that the displacement display of the displacement measuring device 7 becomes a predetermined value (a preset outer shape error of the object 8 to be measured, for example, 2 μm). Adjust the moving knob 12y. By this adjustment, the center axis of the outer shape of the DUT 8 and the optical axis of the laser interference device 1 are aligned in the XZ plane.

レーザ干渉装置1を電源ONにして動作させ、リファレ
ンスレンズ4を調整して、レーザ干渉装置1からのレー
ザ光を被測定物8のレンズ面9に収束させる(第3図参
照)。収束レーザ光16はレンズ面9で反射し、この反
射像がレーザ干渉装置1で受光され、収束光表示装置5
aおよび干渉縞表示装置5bに表示される。この収束レ
ーザ光の反射像の収束光表示装置5a上に表示される反
射像17は、レンズ9に偏心が無ければ第3図に示す収
束光表示装置5aの十字の基準線の中心位置15aに一
致するが、レンズ面9に偏心がある場合第3図に示すよ
うに収束光表示装置5aの十字の基準線の中心位置15
aからずれて表示される。その理由は、偏心がある場
合、レンズ面9の中心軸と被測定物8の外形中心軸とが
一致せず、したがって当然、レンズ面9の中心軸は被測
定物8の中心にあるレーザ干渉装置1の光軸とも一致し
ないからである。
The laser interferometer 1 is turned on to operate, the reference lens 4 is adjusted, and the laser light from the laser interferometer 1 is converged on the lens surface 9 of the DUT 8 (see FIG. 3). The converged laser light 16 is reflected by the lens surface 9, and the reflected image is received by the laser interference device 1, and the converged light display device 5
a and the interference fringe display device 5b. The reflected image 17 displayed on the convergent light display device 5a of the reflected image of the convergent laser light is at the center position 15a of the cross reference line of the convergent light display device 5a shown in FIG. 3 if the lens 9 has no eccentricity. If they coincide, but the lens surface 9 is decentered, as shown in FIG. 3, the central position 15 of the cross reference line of the convergent light display device 5a
It is displayed deviating from a. The reason is that, in the case of eccentricity, the center axis of the lens surface 9 and the outer shape center axis of the object to be measured 8 do not coincide with each other. Therefore, the center axis of the lens surface 9 is naturally the laser interference at the center of the object to be measured 8. This is because it does not match the optical axis of the device 1.

このため、レンズ面9の中心軸と、レーザ干渉装置1の
光軸とが一致していれば同一になるはずの、レンズ面9
の法線とレーザ干渉装置1の光軸とが一致せず、一致し
ていれば往路、復路とも完全に重複するレーザ干渉装置
1の照射したレーザ光16が、入射角をもってレンズ面
9に入射し、同じ角度でレンズ面9の中心軸21rと反
対側に反射していくので、往路とはずれて16rのよう
にレーザ干渉装置1に戻り受光される。
Therefore, if the center axis of the lens surface 9 and the optical axis of the laser interference device 1 are aligned, they should be the same.
Does not coincide with the optical axis of the laser interferometer 1, and if they do coincide, the laser light 16 emitted from the laser interferometer 1 that completely overlaps the forward path and the return path is incident on the lens surface 9 at the incident angle. Then, since the light is reflected at the same angle to the side opposite to the central axis 21r of the lens surface 9, it deviates from the forward path and returns to the laser interferometer 1 as in 16r to receive the light.

このため、本来、収束光表示装置5aの十字の基準線の
中心位置15aに表れるはずの反射像17も、第3図に
示すように収束光表示装置5aの十字の基準線の中心位
置15aからずれて表示される。また、干渉縞表示装置
5bに現れる干渉縞外周線も、偏心がある場合、この収
束レーザ光が往路とはずれてレーザ干渉装置1に戻り受
光されるため、偏心がない場合のように十字の基準線の
中心位置15bを中心とする円を形成しない。
For this reason, the reflected image 17 that should originally appear at the center position 15a of the cross reference line of the convergent light display device 5a is, as shown in FIG. 3, from the center position 15a of the cross reference line of the convergent light display device 5a. The display is shifted. Further, if the outer peripheral line of the interference fringe appearing on the interference fringe display device 5b also has an eccentricity, this converged laser beam is deviated from the outward path and is received by the laser interference device 1 to be received. A circle centered on the center position 15b of the line is not formed.

ところで、第4図は、レンズ面9を形成する球面の中心
方向と非平行的に心取りが行われた、また金型成形品の
レンズで言えば、成形パーティング面(成形取り出し
面)が非平行的に開いて成形された成形品の例であっ
て、被測定物8のレンズ面9は球面であるので、その光
軸20は、第4図に示すように、レンズ面9の最も高い
位置を通り、中心軸21と平行であり、“たおれ”は存
在しない。そして、収束光表示装置5aに表示される反
射像17は、被測定物8の外形中心からの反射像である
ので、第3図における収束光表示装置5aの十字の基準
線の中心位置15aと反射像17とのずれ量から、第4
図に示す偏心量22が概ね判別できる。
By the way, FIG. 4 shows that the centering is performed non-parallel to the center direction of the spherical surface forming the lens surface 9, and in the case of the lens of the mold product, the molding parting surface (molding take-out surface) is This is an example of a molded product formed by opening in a non-parallel manner, and since the lens surface 9 of the DUT 8 is a spherical surface, the optical axis 20 thereof is the most of the lens surface 9 as shown in FIG. It passes through a high position and is parallel to the central axis 21, and there is no "fall". Since the reflected image 17 displayed on the convergent light display device 5a is a reflected image from the center of the outer shape of the DUT 8, the center position 15a of the cross reference line of the convergent light display device 5a in FIG. From the amount of deviation from the reflection image 17,
The eccentricity amount 22 shown in the figure can be generally determined.

そして、反射像17が収束光表示装置5aの十字の基準
線の中心位置15aと一致するように、X移動つまみ1
2x,Y移動つまみ12yを操作して、そのときのX移
動量測定器13x,Y移動量測定器13yの即定量をマ
イコン(図示せず)へ入力すれば、所望の偏心量22が
計算される。
Then, the X moving knob 1 is adjusted so that the reflected image 17 coincides with the center position 15a of the cross reference line of the convergent light display device 5a.
The desired eccentricity amount 22 is calculated by operating the 2x, Y movement knob 12y and inputting an immediate fixed amount of the X movement amount measuring device 13x, Y movement amount measuring device 13y at that time to a microcomputer (not shown). It

つぎに、レンズ面9Aが非球面である被測定物8A(第
5図参照)の場合について説明する。
Next, the case where the object 8A (see FIG. 5) whose lens surface 9A is an aspherical surface will be described.

被測定物8Aの中心軸21Aとレーザ干渉装置1の光軸
とを一致させる動作は、前述した被測定物8(レンズ面
9が球面)の場合と同様である。また、レーザ干渉装置
1を動作させて、収束光表示装置5a,干渉縞表示装置
5bに収束レーザ光の反射像17,干渉縞表示装置18
を表示させる方法も同様である。
The operation of aligning the central axis 21A of the DUT 8A and the optical axis of the laser interference device 1 is the same as that of the DUT 8 (lens surface 9 is a spherical surface) described above. Further, the laser interferometer 1 is operated so that the convergent laser display device 5a and the interference fringe display device 5b reflect the converged laser light reflected image 17 and the interference fringe display device 18 respectively.
The method of displaying is also the same.

ところで、被測定物8Aのレンズ面9Aは非球面である
ので、その光軸20Aは1本だけ存在し、また、球面の
場合と異なり、非球面レンズには、偏心量22Aと“た
おれ”23とが存在する。そこでXZ面傾斜つまみ19
xとYZ面傾斜つまみ19yとを調整して、“たおれ”
を減少させる。“たおれ”の減少に伴い、モータ11に
よって回動する被測定物8Aの収束光表示装置5a上の
反射像17,干渉縞表示装置5b上の干渉縞外周線18
の一転を中心にした円運動が小さくなり、“たおれ”が
なくなったときに円運動は中心の一点に収束する。
By the way, since the lens surface 9A of the object to be measured 8A is an aspherical surface, there is only one optical axis 20A, and unlike the case of a spherical surface, the aspherical lens has an eccentricity 22A and a "fall" 23. And exist. Therefore, XZ plane tilt knob 19
Adjust "x" and YZ plane tilt knob 19y to make "Taore"
To reduce. Along with the decrease of “flare”, the reflected image 17 of the DUT 8A rotated by the motor 11 on the convergent light display device 5a and the interference fringe outer peripheral line 18 on the interference fringe display device 5b.
The circular motion centered around a turn of the ball becomes smaller, and when the "fall" disappears, the circular motion converges to a central point.

これも偏心量の場合と同じく、レンズ面9の中心軸と、
レーザ干渉装置1の光軸とが一致していれば同一になる
はずの、レンズ面9の法線とレーザ干渉装置1の光軸と
が一致せず、一致していれば往路、復路とも完全に重複
するレーザ干渉装置1の照射したレーザ光が往路とはず
れてレーザ干渉装置1に戻り受光されるため、本来、収
束光表示装置5aの一点に収束すべき反射像17および
干渉縞表示装置5bの干渉縞外周線18がレンズの回動
に伴って円運動を生ずるためである。このときXZ面傾
斜つまみ19x,YZ面傾斜つまみ19yに表示された
傾斜量を前記マイコンへ入力すれば、“たおれ”23が
計算される。
This is also the same as the case of the eccentricity amount, with the central axis of the lens surface 9,
It should be the same if the optical axis of the laser interference device 1 is the same, but the normal line of the lens surface 9 and the optical axis of the laser interference device 1 are not the same, and if they are the same, both the forward and return paths are complete. Since the laser light emitted from the laser interference device 1 overlapping with the above is deviated from the outward path and returned to the laser interference device 1 to be received, the reflected image 17 and the interference fringe display device 5b which should originally converge on one point of the converged light display device 5a. This is because the outer peripheral line 18 of the interference fringes causes a circular motion as the lens rotates. At this time, if the tilt amounts displayed on the XZ plane tilt knob 19x and the YZ plane tilt knob 19y are input to the microcomputer, "Taore" 23 is calculated.

X移動つまみ12x,Y移動つまみ12yを調整して試
料搭載台10を移動させ、反射像17,干渉縞同心円1
8の中心をそれぞれの表示装置の十字の基準線の中心位
置15a,15bに一致させる。そのときのX移動測定
器13x,Y移動量測定器13yの即定量を前記マイコ
ンへ入力すれば、偏心量22Aが計算される。
The X-moving knob 12x and the Y-moving knob 12y are adjusted to move the sample mounting table 10, and the reflected image 17 and the interference fringe concentric circle 1
The center of 8 is made to coincide with the center positions 15a and 15b of the cross reference line of each display device. The eccentricity amount 22A is calculated by inputting the immediate fixed amounts of the X movement measuring device 13x and the Y movement amount measuring device 13y at that time to the microcomputer.

具体的数値を述べると、偏心量の許容値は通常10μm
程度であり、本発明による光学部品の偏心測定装置を使
用することにより、干渉縞単位(0.3μm/本)での
偏心量測定装置が可能である。
Stated concretely, the allowable value of eccentricity is usually 10 μm
By using the optical component eccentricity measuring device according to the present invention, an eccentricity amount measuring device in units of interference fringes (0.3 μm / line) is possible.

本実施例では、レンズの片面測定について述べたが、金
型レンズ面についても、全く同様な方法で、偏心と“た
おれ”の測定が可能であることはいうまでもない。以上
説明したように本発明によれば、従来から行われている
透過光による測定では不可能であったレンズ片面や金型
のレンズ成形面の偏心量,“たおれ”の測定が、レーザ
光を使用することにより可能となる。また、レーザ光の
利用は、非接触の測定が可能であり、三次元測定器等の
接触式測定と異なり、レンズ面全面を一時に測定できる
ので測定時間の大幅な短縮を図ることでき、また接触式
のような触針の接触による表面損傷を防止できるという
効果がある。
In this embodiment, the one-sided measurement of the lens has been described, but it goes without saying that the eccentricity and the “flapping” can be measured on the mold lens surface by the same method. As described above, according to the present invention, the laser beam is used for the measurement of the eccentricity of the lens single surface or the lens molding surface of the mold, which is impossible by the conventional measurement by the transmitted light. It becomes possible by using it. In addition, laser light can be used for non-contact measurement, and unlike contact-type measurement such as a three-dimensional measuring instrument, the entire lens surface can be measured at a time, which can greatly reduce the measurement time. There is an effect that surface damage due to contact of the stylus can be prevented as in the contact type.

さらに、本発明によれば、被測定物の外形をレーザ干渉
装置1の光軸と平行もしくは一致させることができるの
で、被測定物の外形に対するレンズ面一面毎の偏心量,
“たおれ”の測定が可能となり、金型のレンズ成形面の
偏心修正時等に、修正すべき内容と量を的確に示すこと
ができる。
Further, according to the present invention, since the outer shape of the object to be measured can be made parallel or coincident with the optical axis of the laser interference device 1, the eccentricity of each lens surface with respect to the outer shape of the object to be measured,
It is possible to measure "flare", and it is possible to accurately indicate the content and amount to be corrected when correcting the eccentricity of the lens molding surface of the mold.

加えて、これまでの測定法で、分離して捕らえていなか
ったレンズ面の偏心量と“たおれ”とを分離できるの
で、金型のレンズ成形面の偏心修正時などにも効果があ
る。
In addition, since it is possible to separate the amount of eccentricity of the lens surface that has not been separately captured by the conventional measuring method and the "flare", it is also effective when correcting the eccentricity of the lens molding surface of the mold.

なお、本装置の較正方法は、レンズの代わりに、もとも
と原理的に偏心と“たおれ”が存在しない球、すなわち
所定精度の基準球を用いることにより可能である。
It should be noted that the calibration method of the present apparatus can be performed by using, instead of the lens, a sphere that originally does not have eccentricity and "fall", that is, a reference sphere with a predetermined accuracy.

試料搭載台10に基準球を固定し、レーザ光の反射像1
7および18が表示装置17および18の十字の基準線
の中心位置にくるように、X移動台10c、Y移動台1
0bを移動させる。十字の基準線の中心位置に合ったと
ころで、変位測定器7を上下左右に微動して、最大値
(または最小値)をとるところを探し出し、固定すれ
ば、その位置が光軸からX方向に最も離れた基準球半径
位置であり、この半径位置と光軸とを含む面がXZ面を
形成する。
A reference sphere is fixed to the sample mounting table 10 and a reflection image 1 of laser light is obtained.
The X moving table 10c and the Y moving table 1 are arranged so that 7 and 18 come to the center position of the cross reference line of the display devices 17 and 18.
Move 0b. When the center position of the cross reference line is met, the displacement measuring instrument 7 is finely moved vertically and horizontally to find the maximum value (or minimum value), and if it is fixed, the position is moved in the X direction from the optical axis. It is the farthest reference sphere radius position, and the plane including this radius position and the optical axis forms the XZ plane.

なお、本実施例においては、変位測定器7を1個設ける
ようにしたが、複数個の変位測定器7を支持バー6に取
付けてZ方向(上,下方向)に配接するようにすれば、
被測定物8の中心軸とレーザ干渉装置1お光軸とを平行
にする場合、支持アーム2を上下動させる必要がないの
で、測定の効率がさらに向上するという利点がある。
In this embodiment, one displacement measuring device 7 is provided, but if a plurality of displacement measuring devices 7 are attached to the support bar 6 and arranged in the Z direction (upward and downward). ,
When the central axis of the DUT 8 and the optical axis of the laser interferometer 1 are made parallel to each other, it is not necessary to move the support arm 2 up and down, which is advantageous in that the measurement efficiency is further improved.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、レンズの片面の
偏心量および“たおれ”を、非接触で効率良く測定する
ことができる光学部品の偏心測定装置を提供することが
できる。
As described above, according to the present invention, it is possible to provide an eccentricity measuring device for an optical component, which is capable of efficiently measuring the eccentricity amount and “flapping” of one surface of a lens in a non-contact manner.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る光学部品の偏心測定装
置の側面図、第2図は第1図に係る光学部品の偏心測定
装置の平面図、第3図は第1図におけるレーザ干渉装置
からの照射レーザ光の収束状態とその反射状態を示す部
分側面図、第4図は第1図における被測定物の中心軸と
光軸との位置関係を示す部分側面図、第5図は他の被測
定物(非球面)の中心軸と光軸,“たおれ”との関係を
示す部分側面図である。 1……レーザ干渉装置、2……支持アーム、3……支持
ロッド、4……リファレンスレンズ、5a……収束光表
示装置、5b……干渉縞表示装置、6……支持バー、7
……変位測定器、7a……変位測定器アーム、7b……
触子、8,8a……被測定物、9,9A……レンズ面、
10……試料搭載台、10a……回転台、10b……Y
移動台、10c……X移動台、11……モータ、12x
……X移動つまみ、12y……Y移動つまみ、13x…
…X移動量測定器、13y……Y移動量測定器、14…
…支持台、19x……XZ面傾斜つまみ、19y……Y
Z面傾斜つまみ。 15a……収束光表示装置の十字の基準線の中心位置、
15b……干渉縞表示装置の十字の基準線の中心位置、
16……レーザ干渉装置から照射されるレーザ光、16
r……被測定物からの反射レーザ光、17……収束光表
示装置に表示された収束レーザ光の反射像、18……干
渉縞表示装置に表示された干渉縞外周線、20、20A
……光軸、21、21r……中心軸。
1 is a side view of an eccentricity measuring apparatus for optical parts according to an embodiment of the present invention, FIG. 2 is a plan view of the eccentricity measuring apparatus for optical parts according to FIG. 1, and FIG. 3 is a laser in FIG. FIG. 5 is a partial side view showing a converged state and a reflected state of the laser light emitted from the interference device, FIG. 4 is a partial side view showing the positional relationship between the central axis and the optical axis of the DUT in FIG. 1, and FIG. FIG. 6 is a partial side view showing the relationship between the center axis of another object to be measured (aspherical surface), the optical axis, and “Taore”. 1 ... Laser interference device, 2 ... Support arm, 3 ... Support rod, 4 ... Reference lens, 5a ... Converging light display device, 5b ... Interference fringe display device, 6 ... Support bar, 7
...... Displacement measuring device, 7a ...... Displacement measuring device arm, 7b ......
Tactile, 8, 8a ... DUT, 9, 9A ... Lens surface,
10 ... Sample mounting table, 10a ... Rotary table, 10b ... Y
Mobile stand, 10c ... X mobile stand, 11 ... Motor, 12x
...... X movement knob, 12y …… Y movement knob, 13x…
... X movement amount measuring device, 13y ... Y movement amount measuring device, 14 ...
… Supporting stand, 19x …… XZ plane tilt knob, 19y …… Y
Z-plane tilt knob. 15a: the center position of the cross reference line of the convergent light display device,
15b ... The center position of the cross reference line of the interference fringe display device,
16 ... Laser light emitted from the laser interference device, 16
r: reflected laser light from the object to be measured, 17: reflected image of the converged laser light displayed on the convergent light display device, 18: outer peripheral line of interference fringes displayed on the interference fringe display device, 20, 20A
…… Optical axis, 21, 21r …… Central axis.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Z方向に光軸を有し該Z方向に移動可能な
レーザ干渉装置と、Z軸まわりに回動可能でありX方
向,Y方向へ移動可能で、且つXZ面,YZ面内で傾斜
可能な、被測定物を載置固定することができる試料搭載
台と、該試料搭載台のX方向,Y方向の移動量を測定す
ることができる各移動量測定器と、前記試料搭載台をX
Z面,YZ面内で傾斜させ、その傾斜量を表示すること
ができる各傾斜つまみと、前記試料搭載台に載置固定さ
れた被測定物のX方向の変位を測定することができる、
前記レーザ干渉装置と一体に設けられた変位測定器と、
前記レーザ干渉装置から照射され被測定物の表面で収束
する収束レーザ光の反射像を表示する基準を持つ収束光
表示装置と干渉縞外周線を表示する基準を持つ干渉縞表
示装置とを具備し、収束光表示装置に表示される収束レ
ーザ光の反射像を前記基準に一致するように試料搭載台
を移動させたときのX方向,Y方向各移動量測定器の測
定量から偏心量を、そして干渉縞表示装置に表示される
収束レーザ光の干渉縞外周線を前記基準を中心に同心円
となるように試料搭載台をXZ面,YZ面内で傾斜させ
たときの各傾斜つまみの傾斜量から“たおれ”を測定す
ることを特徴とする光学部品の偏心測定装置。
1. A laser interference device having an optical axis in the Z direction and movable in the Z direction, and a laser interfering device rotatable about the Z axis, movable in the X and Y directions, and in the XZ and YZ planes. A sample mounting table which is capable of inclining inside and capable of mounting and fixing an object to be measured, and respective movement amount measuring devices capable of measuring the movement amounts of the sample mounting table in the X and Y directions; X mount
It is possible to measure the displacement in the X direction of each of the tilt knobs that can be tilted in the Z plane and the YZ plane and display the tilt amount, and the object to be measured mounted and fixed on the sample mounting table.
A displacement measuring device provided integrally with the laser interference device,
A convergent light display device having a reference for displaying a reflected image of the converged laser light emitted from the laser interference device and converging on the surface of the object to be measured, and an interference fringe display device having a reference for displaying an outer peripheral line of the interference fringe. The eccentricity amount from the measurement amount of each movement amount measuring device in the X and Y directions when the sample mounting table is moved so that the reflected image of the converged laser beam displayed on the convergent light display device matches the reference. Then, the tilt amount of each tilt knob when the sample mounting table is tilted in the XZ plane and the YZ plane so that the outer peripheral line of the convergent laser beam displayed on the interference fringe display device becomes concentric with the reference as the center. An eccentricity measuring device for optical parts, which measures "taore" from.
【請求項2】変位測定器を、Z方向に複数個設けたこと
を特徴とする特許請求の範囲第1項記載の光学部品の偏
心測定装置。
2. An eccentricity measuring device for an optical component according to claim 1, wherein a plurality of displacement measuring devices are provided in the Z direction.
JP26614884A 1984-12-19 1984-12-19 Deviation measuring device for optical components Expired - Lifetime JPH0613999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26614884A JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26614884A JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Publications (2)

Publication Number Publication Date
JPS61144541A JPS61144541A (en) 1986-07-02
JPH0613999B2 true JPH0613999B2 (en) 1994-02-23

Family

ID=17426963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26614884A Expired - Lifetime JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Country Status (1)

Country Link
JP (1) JPH0613999B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812126B2 (en) * 1988-05-24 1996-02-07 オリンパス光学工業株式会社 Aspherical lens eccentricity measuring device
TW283201B (en) * 1993-08-13 1996-08-11 Ricoh Kk
JP5298619B2 (en) * 2008-04-30 2013-09-25 コニカミノルタ株式会社 Eccentricity measuring method and eccentricity measuring device
CN109000885A (en) * 2018-05-22 2018-12-14 歌尔股份有限公司 The detection method and device of camera lens and display screen assembling
CN109163679A (en) * 2018-07-27 2019-01-08 东莞市凯融光学科技有限公司 A kind of measurement method of image-type mode mechanical eccentric
JP2020020670A (en) * 2018-08-01 2020-02-06 株式会社ミツトヨ Circularity measurement device, measurement guide system and method
CN112444214A (en) * 2020-11-20 2021-03-05 叶莉娟 Laser detection early warning method for eccentric rotation of rotating shaft

Also Published As

Publication number Publication date
JPS61144541A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US8635783B2 (en) Surface measurement instrument and method
US7982882B2 (en) Optical wave interference measuring apparatus
US8059278B2 (en) Optical wave interference measuring apparatus
JP2003156405A (en) Method for measuring decentering of aspherical lens and device for measuring decentering
JPH10257258A (en) Position adjusting device for picture read unit
CN209215695U (en) Eccentric debugging apparatus between a kind of high-precision microscope group
JPH0613999B2 (en) Deviation measuring device for optical components
CN113203553B (en) Lens center error measuring system and measuring method
US5218461A (en) Scanning optical apparatus
US6688009B2 (en) Laser survey instrument
JP2006119121A (en) Shape measurement method and device for optical member
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP2018059733A (en) Three-dimentional shape measurement system
JPH11211426A (en) Surface form measuring device
JP3345149B2 (en) Aspherical lens eccentricity measuring device and centering device
CN111024000A (en) Long-range surface shape detector and detection method
US2883905A (en) Optical contour gauging apparatus
JPS60211303A (en) Correcting device for optical axis direction of visual device
CN111043990B (en) Autocollimator and use method thereof
CN214201947U (en) Two-dimensional rotary table turning optical debugging assembly and debugging system
JPH11211427A (en) Surface form measuring device
JP3372322B2 (en) Aspherical lens eccentricity measuring apparatus and aspherical lens eccentricity measuring method
JPH09289160A (en) Aligner
JPH11211611A (en) Eccentricity measuring apparatus