JPH06139821A - Nonreducing dielectric ceramic composition - Google Patents

Nonreducing dielectric ceramic composition

Info

Publication number
JPH06139821A
JPH06139821A JP4309264A JP30926492A JPH06139821A JP H06139821 A JPH06139821 A JP H06139821A JP 4309264 A JP4309264 A JP 4309264A JP 30926492 A JP30926492 A JP 30926492A JP H06139821 A JPH06139821 A JP H06139821A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
porcelain
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4309264A
Other languages
Japanese (ja)
Other versions
JP3368602B2 (en
Inventor
Harunobu Sano
野 晴 信 佐
Yukio Hamachi
地 幸 生 浜
Kunisaburo Tomono
野 国 三 郎 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP30926492A priority Critical patent/JP3368602B2/en
Priority to US08/139,531 priority patent/US5322828A/en
Priority to FR9312620A priority patent/FR2697244B1/en
Priority to DE4336089A priority patent/DE4336089C2/en
Publication of JPH06139821A publication Critical patent/JPH06139821A/en
Application granted granted Critical
Publication of JP3368602B2 publication Critical patent/JP3368602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To provide a nonreducing dielectric ceramic composition not formed into a semiconductor when baked in the reducing atmosphere, capable of obtaining a large dielectric constant although the crystal grain size is small, and capable of miniaturizing a layered ceramic capacitor using it. CONSTITUTION:A nonreducing dielectric ceramic composition is mainly constituted of BaO, CaO, MgO, TiO2, ZrO2, and Nb2O5, and it is expressed by a general formula [(Ba1-xCaxMgy)O]m (Ti1-o-pZroNbp) O2+p/2, where 0<x<=0.20, 0<y<=0.05, 0<o<=0.25, 0.0005<=p<=0.023, and 1.000<=m<=1.03. The nonreducing dielectric ceramic composition contains 0.02-2.0mol. of at least one kind of oxides MnO2, Fe2O3, Cr2O3, CoO, and NiO of Mn, Fe, Cr, Co, Ni and 0.1-2.0mol. of at least one kind of SiO2 or ZnO against 100mol of the main constituent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特にたとえば積層セラミックコンデンサな
どに用いられる非還元性誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition for use in, for example, laminated ceramic capacitors.

【0002】[0002]

【従来の技術】積層セラミックコンデンサの製造工程と
しては、まず、その表面に内部電極となる電極材料を塗
布したシート状の誘電体材料が準備される。この誘電体
材料としては、たとえばBaTiO3 を主成分とする材
料などが用いられる。この電極材料を塗布したシート状
の誘電体材料を積層して熱圧着し、一体化したものを自
然雰囲気中において1250〜1350℃で焼成して、
内部電極を有する誘電体磁器が得られる。そして、この
誘電体磁器の端面に、内部電極と導通する外部電極を焼
き付けて、積層セラミックコンデンサが製造される。
2. Description of the Related Art In the manufacturing process of a monolithic ceramic capacitor, first, a sheet-shaped dielectric material is prepared, the surface of which is coated with an electrode material serving as an internal electrode. As the dielectric material, for example, a material containing BaTiO 3 as a main component is used. Sheet-shaped dielectric materials coated with this electrode material are laminated, thermocompression-bonded, and the integrated product is fired at 1250 to 1350 ° C. in a natural atmosphere,
A dielectric porcelain having internal electrodes is obtained. Then, an external electrode that is electrically connected to the internal electrode is printed on the end face of this dielectric ceramic, and a monolithic ceramic capacitor is manufactured.

【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。
Therefore, the material for the internal electrodes must satisfy the following conditions.

【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。
(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain must have a melting point higher than the firing temperature.

【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。
(B) It should not be oxidized even in an oxidizing high temperature atmosphere and should not react with the dielectric.

【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。
Noble metals such as platinum, gold, palladium or alloys thereof have been used as the electrode material satisfying such conditions.

【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。
However, while these electrode materials have excellent characteristics, they are expensive. Therefore, the ratio of the electrode material cost to the monolithic ceramic capacitor is 30 to 7
It reached 0%, which was the biggest factor in raising the manufacturing cost.

【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成される必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。
N having a high melting point other than precious metals
Although there are base metals such as i, Fe, Co, W, and Mo, these base metals are easily oxidized in a high-temperature oxidizing atmosphere and cannot serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the monolithic ceramic capacitor, it is necessary to fire them together with the dielectric ceramic in a neutral or reducing atmosphere. However, the conventional dielectric ceramic material has a drawback that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.

【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
考え出された。このような誘電体材料を使用することに
よって、還元性雰囲気中で焼成しても半導体化しない誘
電体磁器を得ることができ、内部電極としてニッケルな
どの卑金属を使用した積層セラミックコンデンサの製造
が可能となった。
In order to overcome such drawbacks, for example, as shown in Japanese Patent Publication No. 57-42588, in a barium titanate solid solution, the barium site / titanium site ratio is set to be more than stoichiometric. The body material was devised. By using such a dielectric material, it is possible to obtain a dielectric ceramic that does not become a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a monolithic ceramic capacitor that uses a base metal such as nickel as an internal electrode. Became.

【0010】[0010]

【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化の傾向が顕著になってき
た。積層セラミックコンデンサを小型化する方法として
は、一般的に大きな誘電率を有する材料を用いるか、誘
電体層を薄膜化することが知られている。しかし、大き
な誘電率を有する材料は結晶粒が大きく、10μm以下
のような薄膜になると、1つの層中に存在する結晶粒の
数が減少し、信頼性が低下してしまう。
With the recent development of electronics, miniaturization of electronic parts has rapidly progressed, and the tendency of miniaturization of monolithic ceramic capacitors has become remarkable. As a method for miniaturizing the monolithic ceramic capacitor, it is generally known to use a material having a large dielectric constant or to thin the dielectric layer. However, a material having a large dielectric constant has a large number of crystal grains, and when the film is a thin film having a thickness of 10 μm or less, the number of crystal grains present in one layer decreases, and reliability decreases.

【0011】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られ、こ
れを用いることによって積層セラミックコンデンサを小
型化することができる、非還元性誘電体磁器組成物を提
供することである。
Therefore, the main object of the present invention is that even if it is fired in a reducing atmosphere, it does not become a semiconductor and, despite having a small crystal grain size, a large dielectric constant is obtained. It is an object of the present invention to provide a non-reducing dielectric ceramic composition capable of miniaturizing a monolithic ceramic capacitor.

【0012】[0012]

【課題を解決するための手段】この発明は、その主成分
がBaO,CaO,MgO,TiO2 ,ZrO2 および
Nb2 5 からなり、次の一般式{ (Ba1-x Cax
y ) O}m ( Ti1-o-p Zro Nbp ) O2+p/2 で表
され、x,y,o,pおよびmが、0<x≦0.20、
0<y≦0.05、0<o≦0.25、0.0005≦
p≦0.023、1.000≦m≦1.03の関係を満
足し、主成分100モルに対して、Mn,Fe,Cr,
Co,Niの各酸化物をMnO2 ,Fe2 3 ,Cr2
3 ,CoO,NiOと表したとき、各酸化物の少なく
とも1種類を0.02〜2.0モル含み、さらに、0.
1〜2.0モルのSiO2 またはZnOを少なくとも1
種類含む、非還元性誘電体磁器組成物である。
According to the present invention, the main components are composed of BaO, CaO, MgO, TiO 2 , ZrO 2 and Nb 2 O 5 , and the following general formula {(Ba 1-x Ca x M
g y ) O} m (Ti 1-op Zr o Nb p ) O 2 + p / 2 , where x, y, o, p and m are 0 <x ≦ 0.20,
0 <y ≦ 0.05, 0 <o ≦ 0.25, 0.0005 ≦
The relationship of p ≦ 0.023 and 1.000 ≦ m ≦ 1.03 is satisfied, and Mn, Fe, Cr, and
The oxides of Co and Ni were replaced with MnO 2 , Fe 2 O 3 and Cr 2 respectively.
When expressed as O 3 , CoO, and NiO, at least one kind of each oxide is contained in an amount of 0.02 to 2.0 mol, and further, 0.
1 to 2.0 mol of SiO 2 or ZnO at least 1
It is a non-reducing dielectric ceramic composition including types.

【0013】[0013]

【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない非還元性誘電体磁
器組成物を得ることができる。したがって、この非還元
性誘電体磁器組成物を用いて磁器積層コンデンサを製造
すれば、電極材料として卑金属を用いることができ、1
250℃以下と比較的低温で焼成可能であるため、積層
セラミックコンデンサのコストダウンを図ることができ
る。
According to the present invention, it is possible to obtain a non-reducing dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not become a semiconductor. Therefore, if a porcelain multilayer capacitor is manufactured using this non-reducing dielectric porcelain composition, a base metal can be used as an electrode material.
Since it can be fired at a relatively low temperature of 250 ° C. or lower, the cost of the monolithic ceramic capacitor can be reduced.

【0014】また、この非還元性誘電体磁器組成物を用
いた磁器では、誘電率が9000以上あり、しかもこの
ように高誘電率であるにもかかわらず、結晶粒が3μm
以下と小さい。したがって、積層セラミックコンデンサ
を製造するときに、誘電体層を薄膜化しても、従来の積
層セラミックコンデンサのように層中に存在する結晶粒
の量が少なくならない。このため、信頼性が高く、しか
も小型で大容量の積層セラミックコンデンサを得ること
ができる。
Further, in the porcelain using this non-reducing dielectric ceramic composition, the dielectric constant is 9000 or more, and despite having such a high dielectric constant, the crystal grain is 3 μm.
Below is small. Therefore, when a multilayer ceramic capacitor is manufactured, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. Therefore, it is possible to obtain a highly reliable, small-sized, large-capacity monolithic ceramic capacitor.

【0015】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will be more apparent from the detailed description of the embodiments below.

【0016】[0016]

【実施例】まず、原料として、純度99.8%以上のB
aCO3 ,CaCO3 ,MgO,TiO2 ,ZrO2
Nb2 5 ,MnO2 ,Fe2 3 ,Cr2 3 ,Co
O,NiO,SiO2 ,ZnOを準備した。これらの原
料を{ (Ba1-x Cax Mgy ) O}m ( Ti1-o-p
o Nbp ) O2+p/2 の組成式で表され、x,y,m,
o,pが表1に示す割合となるように配合して、配合原
料を得た。なお、表1に示す添加物(A)および(B)
のモル数は、主成分100モルに対して添加されるモル
数である。
EXAMPLES First, as a raw material, B having a purity of 99.8% or more was used.
aCO 3 , CaCO 3 , MgO, TiO 2 , ZrO 2 ,
Nb 2 O 5 , MnO 2 , Fe 2 O 3 , Cr 2 O 3 , Co
O, NiO, SiO 2 and ZnO were prepared. Using these raw materials as {(Ba 1-x Ca x Mg y ) O} m (Ti 1-op Z
r o Nb p ) O 2 + p / 2 represented by the composition formula, x, y, m,
Blending was carried out so that o and p were in the ratios shown in Table 1 to obtain blended raw materials. In addition, the additives (A) and (B) shown in Table 1
The number of moles of is the number of moles added to 100 moles of the main component.

【0017】[0017]

【表1】 [Table 1]

【0018】この配合原料をボールミルで湿式混合し、
粉砕したのち乾燥し、空気中において1100℃で2時
間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機によ
って粉砕し、粒径が1μm以下の粉砕物を得た。この粉
砕物に純水と酢酸ビニルバインダを加えて、ボールミル
で16時間混合して混合物を得た。
The blended raw materials are wet mixed in a ball mill,
After crushing, it was dried and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. The calcined product was crushed by a dry crusher to obtain a crushed product having a particle size of 1 μm or less. Pure water and a vinyl acetate binder were added to this pulverized product, and the mixture was mixed for 16 hours with a ball mill to obtain a mixture.

【0019】この混合物を乾燥造粒した後、2000k
g/cm2 の圧力で成形し、直径10mm,厚さ0.5
mmの円板を得た。得られた円板を空気中において50
0℃まで加熱して有機バインダを燃焼させたのち、酸素
分圧が3×10-8〜3×10-10 atmのH2 −N2
空気ガスからなる還元雰囲気炉中において表2に示す温
度で2時間焼成し、円板状の磁器を得た。
After dry granulating this mixture, 2000 k
Molded with a pressure of g / cm 2 , diameter 10 mm, thickness 0.5
A disc of mm was obtained. The resulting disk is 50 in air
After heating to 0 ° C. to burn the organic binder, H 2 —N 2 — with an oxygen partial pressure of 3 × 10 −8 to 3 × 10 −10 atm was used.
In a reducing atmosphere furnace consisting of air gas, firing was performed for 2 hours at the temperature shown in Table 2 to obtain a disk-shaped porcelain.

【0020】[0020]

【表2】 [Table 2]

【0021】得られた磁器の表面を、走査型電子顕微鏡
で倍率1500倍で観察し、グレインサイズを測定し
た。
The surface of the obtained porcelain was observed with a scanning electron microscope at a magnification of 1,500 to measure the grain size.

【0022】そして、得られた磁器の主表面に銀電極を
焼き付けて測定試料(コンデンサ)とした。得られた試
料について、室温での誘電率(ε),誘電損失(tan
δ)および温度変化に対する静電容量(C)の変化率を
測定した。なお、誘電率および誘電損失は、温度25
℃,1kHz,1Vrms の条件で測定した。また、温度
変化に対する静電容量の変化率については、20℃での
静電容量を基準とした−25℃と85℃での変化率(Δ
C/C20)および−25℃から85℃の範囲内で絶対値
としてその変化率が最大である値(|ΔC/C
20max )を示した。
Then, a silver electrode was baked on the main surface of the obtained porcelain to obtain a measurement sample (capacitor). Regarding the obtained sample, the dielectric constant (ε) and the dielectric loss (tan) at room temperature
δ) and the rate of change of the capacitance (C) with respect to the temperature change were measured. The dielectric constant and the dielectric loss are measured at a temperature of 25
The measurement was performed under the conditions of ° C, 1 kHz and 1 V rms . Regarding the rate of change of capacitance with respect to temperature change, the rate of change at −25 ° C. and 85 ° C. (Δ
C / C 20 ) and the value whose change rate is the maximum as an absolute value within the range of −25 ° C. to 85 ° C. (| ΔC / C
20 | max ).

【0023】さらに、絶縁抵抗計によって、500Vの
直流電流を2分間印加したのちの絶縁抵抗値を測定し
た。絶縁抵抗は、25℃および85℃の値を測定し、そ
れぞれの体積抵抗率の対数(logρ)を算出した。こ
れらの測定結果を表2に合わせて示す。
Further, the insulation resistance value was measured by applying a direct current of 500 V for 2 minutes with an insulation resistance meter. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (logρ) of each volume resistivity was calculated. The results of these measurements are also shown in Table 2.

【0024】次に、各組成の限定理由について説明す
る。
Next, the reasons for limiting each composition will be described.

【0025】{ (Ba1-x Cax Mgy ) O}m ( Ti
1-o-p Zro Nbp ) O2+p/2 において、試料番号1の
ように、カルシウム量xが0の場合、磁器の焼結性が悪
く、誘電損失が2.0%を超え、絶縁抵抗の低下が生じ
好ましくない。一方、試料番号16のように、カルシウ
ム量xが0.20を超えると、焼結性が悪くなり、誘電
率が低下し好ましくない。
{(Ba 1-x Ca x Mg y ) O} m (Ti
In 1-op Zr o Nb p ) O 2 + p / 2 , when the calcium content x is 0 as in Sample No. 1, the sinterability of the porcelain is poor, the dielectric loss exceeds 2.0%, and the insulation It is not preferable because the resistance decreases. On the other hand, when the calcium content x exceeds 0.20 as in Sample No. 16, the sinterability deteriorates and the dielectric constant decreases, which is not preferable.

【0026】さらに、試料番号2のように、マグネシウ
ム量yが0の場合、絶縁抵抗の低下が生じ好ましくな
い。一方、試料番号17のように、マグネシウム量yが
0.05を超えると、誘電率が9000未満に低下し、
絶縁抵抗の低下が生じ、結晶粒径が3μmより大きくな
り好ましくない。
Further, when the amount y of magnesium is 0 as in sample No. 2, the insulation resistance is lowered, which is not preferable. On the other hand, as in Sample No. 17, when the amount y of magnesium exceeds 0.05, the dielectric constant decreases to less than 9000,
Insulation resistance is reduced, and the crystal grain size is larger than 3 μm, which is not preferable.

【0027】試料番号3のように、ジルコニウム量oが
0の場合、誘電率が9000未満になり、静電容量の温
度変化率が大きくなり好ましくない。一方、試料番号1
8のように、ジルコニウム量oが0.25を超えると、
焼結性が低下し、誘電率が9000未満になり好ましく
ない。
When the amount of zirconium is 0 as in Sample No. 3, the dielectric constant is less than 9000 and the rate of change in capacitance with temperature is large, which is not preferable. On the other hand, sample number 1
8, when the zirconium amount o exceeds 0.25,
The sinterability is lowered and the dielectric constant is less than 9000, which is not preferable.

【0028】試料番号4のように、ニオブ量pが0.0
005未満の場合、誘電率が9000未満になり、結晶
粒径が3μmより大きくなり、積層セラミックコンデン
サにした場合、誘電体層を薄膜化できず好ましくない。
一方、試料番号19のように、ニオブ量pが0.023
を超えると、還元性雰囲気で焼成したときに、磁器が還
元され、半導体化して絶縁抵抗が大幅に低下し好ましく
ない。
As in Sample No. 4, the niobium amount p is 0.0
When it is less than 005, the dielectric constant becomes less than 9000, the crystal grain size becomes larger than 3 μm, and in the case of a laminated ceramic capacitor, the dielectric layer cannot be thinned, which is not preferable.
On the other hand, as in sample number 19, the niobium amount p is 0.023.
When it exceeds, the porcelain is reduced when it is fired in a reducing atmosphere, and it becomes a semiconductor, and the insulation resistance is significantly reduced, which is not preferable.

【0029】試料番号5のように、{ (Ba1-x Cax
Mgy ) O}m ( Ti1-o-p ZroNbp ) O2+p/2
おけるモル比mが1.000未満では、還元性雰囲気中
で焼成したときに磁器が還元され、半導体化して絶縁抵
抗が低下してしまい好ましくない。一方、試料番号20
のように、そのモル比mが1.03を超えると、焼結性
が極端に悪くなり好ましくない。
Like sample number 5, {(Ba 1-x Ca x
When the molar ratio m in Mg y ) O} m (Ti 1-op Zr o Nb p ) O 2 + p / 2 is less than 1.000, the porcelain is reduced when fired in a reducing atmosphere to become a semiconductor. Insulation resistance decreases, which is not preferable. On the other hand, sample number 20
As described above, when the molar ratio m exceeds 1.03, the sinterability is extremely deteriorated, which is not preferable.

【0030】さらに、試料番号6のように、主成分10
0モルに対して、添加物(A)としてのMnO2 ,Fe
2 3 ,Cr2 3 ,CoO,NiOの添加量が0.0
2モル未満の場合、85℃以上での絶縁抵抗が小さくな
り、高温中における長時間使用の信頼性が低下し好まし
くない。一方、試料番号21のように、主成分100モ
ルに対して、これらの添加物(A)の添加量が2.0モ
ルを超えると、誘電損失が2.0%を超えて大きくな
り、同時に絶縁抵抗も劣化し好ましくない。
Further, as in Sample No. 6, the main component 10
With respect to 0 mol, MnO 2 , Fe as the additive (A)
The amount of addition of 2 O 3 , Cr 2 O 3 , CoO, NiO is 0.0
When the amount is less than 2 mol, the insulation resistance at 85 ° C. or higher becomes small, and the reliability of long-term use at high temperature decreases, which is not preferable. On the other hand, as in Sample No. 21, when the additive amount of these additives (A) exceeds 2.0 mol with respect to 100 mol of the main component, the dielectric loss increases to more than 2.0%, and at the same time, The insulation resistance also deteriorates, which is not preferable.

【0031】また、試料番号7のように、主成分100
モルに対して、添加物(B)としてのSiO2 またはZ
nOの添加量が0.1モル未満の場合、焼結性が悪くな
り、誘電損失が2.0%を超えて好ましくない。一方、
試料番号22のように、主成分100モルに対して、S
iO2 またはZnOの添加量が2.0モルを超えると、
誘電率が9000未満に低下するとともに、絶縁抵抗が
劣化し、結晶粒径が3μmより大きくなり好ましくな
い。
In addition, as in Sample No. 7, the main component 100
SiO 2 or Z as an additive (B), based on mol
If the amount of nO added is less than 0.1 mol, the sinterability will be poor and the dielectric loss will exceed 2.0%, which is not preferable. on the other hand,
As in Sample No. 22, S was added to 100 mol of the main component.
When the added amount of iO 2 or ZnO exceeds 2.0 mol,
The dielectric constant decreases to less than 9000, the insulation resistance deteriorates, and the crystal grain size becomes larger than 3 μm, which is not preferable.

【0032】それに対して、この発明の非還元性誘電体
磁器組成物を用いれば、誘電率が9000以上と高く、
誘電損失が2.0%以下で、温度に対する静電容量の変
化率が、−25℃〜85℃の範囲でJIS規格に規定す
るE特性規格あるいはF特性規格を満足する誘電体磁器
を得ることができる。さらに、この誘電体磁器では、2
5℃,85℃における絶縁抵抗は、体積抵抗率の対数で
表したときに12以上と高い値を示す。また、この発明
の非還元性誘電体磁器組成物は、焼成温度も1250℃
以下と比較的低温で焼結可能であり、粒径についても3
μm以下と小さい。
On the other hand, when the non-reducing dielectric ceramic composition of the present invention is used, the dielectric constant is as high as 9000 or more,
To obtain a dielectric porcelain that has a dielectric loss of 2.0% or less and a rate of change of capacitance with respect to temperature that satisfies E characteristic standard or F characteristic standard defined in JIS standard in the range of -25 ° C to 85 ° C. You can Furthermore, in this dielectric porcelain, 2
The insulation resistance at 5 ° C. and 85 ° C. shows a high value of 12 or more when expressed by the logarithm of volume resistivity. The non-reducing dielectric ceramic composition of the present invention also has a firing temperature of 1250 ° C.
It can be sintered at a relatively low temperature as
It is as small as μm or less.

【0033】なお、実施例では出発は材料としてBaC
3 ,CaCO3 ,MgO,TiO2 ,ZrO2 ,Nb
2 5 などの酸化物粉末を用いたか、この他、アルコキ
シド法、共沈法、あるいは水熱合成法などによって得ら
れた粉末を用いてもよい。これらの粉末を用いることに
より、実施例で示した特性を向上させることが可能とな
る。
In the examples, the starting material is BaC.
O 3 , CaCO 3 , MgO, TiO 2 , ZrO 2 , Nb
An oxide powder such as 2 O 5 may be used, or a powder obtained by an alkoxide method, a coprecipitation method, a hydrothermal synthesis method, or the like may be used. By using these powders, the characteristics shown in the examples can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 その主成分がBaO,CaO,MgO,
TiO2 ,ZrO2およびNb2 5 からなり、次の一
般式 { (Ba1-x Cax Mgy ) O}m ( Ti1-o-p Zro Nbp ) O2+p/2 で表され、x,y,o,pおよびmが、 0<x≦0.20 0<y≦0.05 0<o≦0.25 0.0005≦p≦0.023 1.000≦m≦1.03 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO2 ,F
2 3 ,Cr2 3 ,CoO,NiOと表したとき、
各酸化物の少なくとも1種類を0.02〜2.0モル含
み、さらに、0.1〜2.0モルのSiO2 またはZn
Oを少なくとも1種類含む、非還元性誘電体磁器組成
物。
1. A main component of which is BaO, CaO, MgO,
It is composed of TiO 2 , ZrO 2 and Nb 2 O 5 , and is represented by the following general formula: {(Ba 1-x Ca x Mgy y ) O} m (Ti 1-op Zr o Nb p ) O 2 + p / 2 , X, y, o, p and m are 0 <x ≦ 0.20 0 <y ≦ 0.05 0 <o ≦ 0.25 0.0005 ≦ p ≦ 0.023 1.000 ≦ m ≦ 1. Satisfying the relation of 03, and for 100 moles of the main component, M
The oxides of n, Fe, Cr, Co, and Ni are mixed with MnO 2 , F.
e 2 O 3 , Cr 2 O 3 , CoO, NiO,
0.02 to 2.0 mol of at least one kind of each oxide, and 0.1 to 2.0 mol of SiO 2 or Zn.
A non-reducing dielectric ceramic composition containing at least one O.
JP30926492A 1992-10-23 1992-10-23 Non-reducing dielectric porcelain composition Expired - Lifetime JP3368602B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30926492A JP3368602B2 (en) 1992-10-23 1992-10-23 Non-reducing dielectric porcelain composition
US08/139,531 US5322828A (en) 1992-10-23 1993-10-19 Non-reducible dielectric ceramic composition
FR9312620A FR2697244B1 (en) 1992-10-23 1993-10-22 NON-REDUCTIBLE DIELECTRIC CERAMIC COMPOSITION BASED ON METAL OXIDES.
DE4336089A DE4336089C2 (en) 1992-10-23 1993-10-22 Non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30926492A JP3368602B2 (en) 1992-10-23 1992-10-23 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH06139821A true JPH06139821A (en) 1994-05-20
JP3368602B2 JP3368602B2 (en) 2003-01-20

Family

ID=17990908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30926492A Expired - Lifetime JP3368602B2 (en) 1992-10-23 1992-10-23 Non-reducing dielectric porcelain composition

Country Status (4)

Country Link
US (1) US5322828A (en)
JP (1) JP3368602B2 (en)
DE (1) DE4336089C2 (en)
FR (1) FR2697244B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962888B2 (en) 2000-06-29 2005-11-08 Tdk Corporation Dielectric ceramic composition and electronic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650367A (en) * 1994-01-28 1997-07-22 Kyocera Corporation Dielectric ceramic composition
JP3229528B2 (en) * 1994-11-22 2001-11-19 松下電器産業株式会社 Dielectric porcelain and dielectric resonator
JP3279856B2 (en) * 1995-02-14 2002-04-30 ティーディーケイ株式会社 Dielectric porcelain composition
US5646080A (en) * 1995-11-20 1997-07-08 Tam Ceramics, Inc. Dielectric stable at high temperature
EP0794542B1 (en) * 1996-03-08 2000-02-16 Murata Manufacturing Co., Ltd. Dielectric ceramic and monolithic ceramic electronic part using the same
EP0934595A2 (en) * 1997-05-30 1999-08-11 Phycomp Holding B.V. Ceramic multilayer capacitor and ceramic composition for use in such capacitor
EP0988637B1 (en) * 1997-10-08 2005-12-21 Ferro (Holland) B.V. Ceramic multilayer capacitor
CN102584233B (en) * 2012-01-11 2013-12-25 深圳顺络电子股份有限公司 Medium and high dielectric constant low temperature co-fired ceramic material and preparation method thereof
CN111423225A (en) * 2020-05-12 2020-07-17 电子科技大学 Cordierite microwave dielectric ceramic material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742588A (en) * 1980-08-25 1982-03-10 Saito Osamu Heat-insulating material for spray filling
JPS6119005A (en) * 1984-07-05 1986-01-27 株式会社村田製作所 Nonreduced dielectric porcelain composition
US5030386A (en) * 1985-02-22 1991-07-09 Gte Products Corporation BaTiO3 ceramic temperature sensor with improved positive temperature coefficient of resistance
US4988468A (en) * 1987-01-08 1991-01-29 Murata Manufacturing Co., Ltd. Method for producing non-reducible dielectric ceramic composition
US5103369A (en) * 1989-12-04 1992-04-07 Taiyo Yuden Co., Ltd. Solid dielectric capacitor
SG50701A1 (en) * 1991-09-25 1998-07-20 Murata Manufacturing Co Non-reducible dielectric ceramic composition
JP3435607B2 (en) * 1992-05-01 2003-08-11 株式会社村田製作所 Non-reducing dielectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962888B2 (en) 2000-06-29 2005-11-08 Tdk Corporation Dielectric ceramic composition and electronic device

Also Published As

Publication number Publication date
US5322828A (en) 1994-06-21
DE4336089C2 (en) 1995-06-29
FR2697244B1 (en) 1996-08-02
FR2697244A1 (en) 1994-04-29
JP3368602B2 (en) 2003-01-20
DE4336089A1 (en) 1994-04-28

Similar Documents

Publication Publication Date Title
JP3435607B2 (en) Non-reducing dielectric porcelain composition
JPH1083931A (en) Layered ceramic capacitor
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP3482654B2 (en) Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
JPS597665B2 (en) High dielectric constant porcelain composition
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3316717B2 (en) Multilayer ceramic capacitors
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP3064518B2 (en) Dielectric porcelain composition
JP3362408B2 (en) Dielectric porcelain composition
JP2621478B2 (en) High dielectric constant porcelain composition
JP3470299B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS6217806B2 (en)
JPH03112858A (en) Dielectric porcelain composition
JPH06302219A (en) Dielectric porcelain composition
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH04334809A (en) Dielectric porcelain composite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

EXPY Cancellation because of completion of term