JPH06138269A - Cold fusion material and cold fusion system using the same - Google Patents

Cold fusion material and cold fusion system using the same

Info

Publication number
JPH06138269A
JPH06138269A JP4312832A JP31283292A JPH06138269A JP H06138269 A JPH06138269 A JP H06138269A JP 4312832 A JP4312832 A JP 4312832A JP 31283292 A JP31283292 A JP 31283292A JP H06138269 A JPH06138269 A JP H06138269A
Authority
JP
Japan
Prior art keywords
cold fusion
deuterium
hydrogen storage
fusion
storage metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4312832A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
博 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4312832A priority Critical patent/JPH06138269A/en
Publication of JPH06138269A publication Critical patent/JPH06138269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To provide a small, simple fusion system by putting in a heater- equipped container a heat medium and a cold fusion material of a hydrogen storage metal with a sufficient amount of deuterium stored therein and having a dense film provided on the overall surface thereof. CONSTITUTION:A film of metal is uniformly and densely vapor-deposited on the overall surface of Pd being a hydrogen storage metal with a sufficient amount of deuterium stored therein to fabricate a cold fusion material 1. A heater 6 is provided in a container 5 and the material 1 and water serving as a heat medium 4 are put in the container. A fusion system is started up simply by heating the material 1 and the medium 4 using the heater 6 to abnormal temperature at which the material 1 starts to release the deuterium in the Pd. The material 1 should be spherical rather than plate-shaped since the pressure of the deuterium in the hydrogen storage metal during heating is then increased by about four times and the probability of fusion increased. The fusion system has a so simple structure that it can be miniaturized to palm size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、常温核融合に使用する
材料及び装置に関する。
FIELD OF THE INVENTION The present invention relates to materials and equipment for cold fusion.

【0002】[0002]

【従来の技術】従来、常温核融合は1989年3月に英
国のフライシュマン博士、米国のポンズ博士らの重水の
電気分解により常温で核融合が起こるとの研究発表によ
り、世界中にセンセーションを巻き起こしたが、再現性
の無さから、常温核融合そのものが疑問視されてきた
が、今年に入り、複数の研究機関での追試実験の成功に
より、ようやく常温核融合が確かなものであることが確
認されようとしている現状である。
2. Description of the Related Art Conventionally, cold fusion has been sensitized all over the world in March 1989 by Dr. Fleishman of the United Kingdom and Dr. Ponds of the United States, which announced that nuclear fusion will occur at room temperature due to electrolysis of heavy water. Cold fusion itself was questioned due to its lack of reproducibility, but this year, with the success of additional experiments at multiple research institutes, cold fusion is finally certain. Is the current situation that is about to be confirmed.

【0003】[0003]

【発明が解決しようとする課題】従来の技術に決定的な
欠点は再現性が乏しいことである。常温核融合をエネル
ギー源とした場合、100%の確率で核融合が起きなけ
ればならない。又、様々な種類の装置のエネルギー源と
する為には、常温核融合装置そのものは小型で車などに
搭載出来る簡便さが要求される。又、放射線が常温核融
合装置の外部に漏洩しないことが大事である。本発明
は、これらの欠点を除くためになされたものである。
A critical drawback of the prior art is poor reproducibility. If cold fusion is used as the energy source, there is a 100% probability that fusion will occur. Further, in order to use it as an energy source for various types of devices, the cold fusion device itself is required to be small and easy to mount on a vehicle or the like. It is also important that radiation does not leak outside the cold fusion device. The present invention has been made to eliminate these drawbacks.

【0004】[0004]

【課題を解決するための手段】重水素を十分に吸収させ
たパラジウム又はチタン又はニッケル又は水素吸蔵合金
などの水素吸蔵金属(2)の表面全体に、蒸着又はスパ
ッタリング又はメッキ又は塗布又は化学反応などの方法
により、均一で緻密な被膜(3)を設けた常温核融合材
料(1)とする。容器(5)にヒーター(6)を設け、
水又はナトリウム又はフレオンガスなどの熱媒体(4)
と請求項1記載の常温核融合材料(1)を入れる。
Means for Solving the Problems Vapor deposition, sputtering, plating, coating, chemical reaction, etc., on the entire surface of a hydrogen storage metal (2) such as palladium or titanium or nickel or a hydrogen storage alloy that has sufficiently absorbed deuterium. A cold fusion material (1) provided with a uniform and dense coating (3) by the above method. A heater (6) is provided in the container (5),
Heat carrier such as water or sodium or Freon gas (4)
And the cold fusion material (1) according to claim 1 is put.

【0005】[0005]

【作用】水素吸蔵金属は、常温でその体積の約800倍
以上の重水素や水素を吸収することで知られている。そ
こで、水素吸蔵金属により多くの重水素を吸収させるた
め、低温下で水素吸蔵金属に重水素を吸収させ、その後
にこの水素吸蔵金属の表面に、蒸着又はスパッタリング
又はメッキ又は塗布又は化学反応などの方法により、金
属又は金属酸化物又はセラミックスなどの被膜を作る。
この常温核融合材料を水又は油又はナトリウム又はフレ
オンガスなどの熱媒体の中に入れ、ヒーターで加熱す
る。すると、水素吸蔵金属の種類によって異なるが、例
えばパラジウムの場合には摂氏80度以上になると中の
重水素が外に出ようとする。しかし、水素吸蔵金属の表
面には被膜が施されているために重水素は水素吸蔵金属
の外部には出られず、水素吸蔵金属の表面付近に集まり
高密度、高圧の重水素となるため、重水素同士がぶつか
りあい核融合に至り高熱を出すようになる。この段階に
なるとヒーターの加熱は必要が無くなり、ヒーターを切
っても重水素が核融合反応をしている間は熱は発生して
いるので、この核反応熱が衰えない間に新たな常温核融
合材料を熱媒体に投入すると、それまで常温核融合を起
こしていた水素吸蔵金属の中の重水素の核融合の熱によ
り更に核融合が継続され、次々と常温核融合材料を投入
することにより永久に常温核融合が継続することなる。
そして、発生する熱量は、常温核融合材料の投入量に比
例するので、熱量を多くしたければ常温核融合材料をよ
り多く投入すれば良いし、ヒーターでの加熱温度を高く
することも核反応を速めるので熱量を多くすることにな
る。逆に、熱量を少なくするには常温核融合材料の投入
量を減らすだけで良い。又、核融合を止めたい時には、
核反応中の常温核融合材料を熱源から遠ざけるだけで良
い。つまり常温核融合材料を熱媒体から取り出すだけで
冷却されるので核反応は徐々に止まる。緊急の時には更
に液体窒素などの冷媒により急冷するのも良い。
FUNCTION The hydrogen storage metal is known to absorb deuterium or hydrogen at about 800 times its volume at room temperature. Therefore, in order to absorb more deuterium in the hydrogen storage metal, the hydrogen storage metal is allowed to absorb the deuterium at a low temperature, and then the surface of the hydrogen storage metal is subjected to vapor deposition, sputtering, plating, coating, chemical reaction, or the like. The method produces a coating of metal or metal oxide or ceramics.
This cold fusion material is placed in a heat medium such as water, oil, sodium or Freon gas, and heated by a heater. Then, although depending on the type of the hydrogen storage metal, for example, in the case of palladium, the deuterium in the inside tends to go out when the temperature reaches 80 degrees Celsius or higher. However, since the surface of the hydrogen storage metal is coated, deuterium cannot be emitted outside the hydrogen storage metal, and is concentrated near the surface of the hydrogen storage metal and becomes high-density, high-pressure deuterium. Deuterium collides with each other, leading to nuclear fusion and producing high heat. At this stage, it is no longer necessary to heat the heater, and even if the heater is turned off, heat is generated while the deuterium is undergoing the nuclear fusion reaction. When the fusion material is put into the heat medium, the fusion of the deuterium in the hydrogen storage metal, which had undergone cold fusion until then, causes the fusion to continue further, and the cold fusion material is fed one after another. Cold fusion will continue forever.
Since the amount of heat generated is proportional to the amount of cold fusion material input, if the amount of heat is to be increased, more cold fusion material should be added, and it is also possible to increase the heating temperature of the heater by the nuclear reaction. Since it accelerates, the amount of heat will be increased. On the contrary, in order to reduce the amount of heat, it is sufficient to reduce the input amount of the cold fusion material. Also, when you want to stop nuclear fusion,
It is only necessary to move the cold fusion material in the nuclear reaction away from the heat source. In other words, the cold reaction is gradually stopped because the cold fusion material is cooled simply by removing it from the heat medium. In an emergency, it may be possible to further quench with a refrigerant such as liquid nitrogen.

【0006】[0006]

【実施例】以下、本発明の一実施例について説明する。
重水素を十分に吸収した水素吸蔵金属(2)であるパラ
ジウムの表面全体に蒸着により金の被膜(3)を均一か
つ緻密に設けた常温核融合材料(1)を作成する。容器
(5)にヒーター(6)を設け、この容器(5)の中に
常温核融合材料(1)と、熱媒体(4)である水を入れ
る。この核融合装置の始動は、ヒーター(6)により常
温核融合材料(1)と、熱媒体(4)を常温核融合材料
(1)の中のパラジウムが重水素を放出し始める温度以
上に加熱するだけである。なお、水素吸蔵金属(2)と
してはパラジウムのほか水素吸蔵合金又はチタン又はニ
ッケルでも良い。又、水素吸蔵金属(2)であるパラジ
ウム、水素吸蔵合金などは常温においても十分に重水素
を吸収するので、重水素を満たした容器或は袋の中に入
れておくと自然と重水素を吸収するが、時間の短縮とよ
り多くの重水素を吸収させるためには、低温にした状態
で重水素を吸収させると、より効果的である。又、被膜
(3)の種類については、金のほか銀、銅などの金属や
金属酸化膜、セラミックスなどでも良いが、熱の良導体
の方が核融合の熱を常温核融合材料(1)の外部に放出
するのでより良い結果が得られる。又、被膜(3)の作
成方法については、蒸着のほかスパッタリング又はメッ
キ又は塗布又は化学反応などの方法によっても作成出来
る。更に、熱媒体(4)としては水のほか油又はナトリ
ウム又はフレオンガスなどでも良い。なお、このヒータ
ー(6)は常温核融合を起こさせるための熱源であるの
で、例えば、初めに熱水又は太陽熱などの熱源があれば
常温核融合材料(1)を加熱し、常温核融合を起こすこ
とが出来るので、敢えてヒーター(6)が無くとも良い
わけであるが、どこでもいつでも常温核融合を起こすた
めには、このヒーター(6)が必要である。又、熱媒体
(4)が環境破壊をしない種類のフレオンガスなどの気
体の場合には、超小型のエネルギー源を製作可能であ
る。この核反応の熱エネルギーを取り出すには、熱交換
器(7)、熱電対(8)、ヒートパイプなどを用いると
良い。常温核融合材料(1)の形状については寸法にも
よるが、厚さ1mm縦横30mmの板の場合には体積に
対する表面積の割合は1.13であるが球の場合にはそ
の割合は0.3で、球と板の割合を比較すると球は板の
約4分の1と小さい。即ち、球の方が水素吸蔵金属
(2)を加熱した際の水素吸蔵金属(2)中の重水素の
圧力が板の4倍大きくなるため、核融合の確率が飛躍的
に高くなる。又、水素吸蔵金属(2)の大きさと被膜
(3)の厚さについては、被膜(3)で中の重水素の放
出を押さえる力がどのくらいかによるが、小さい方が作
成し易いと言える。しかし、あまり大きくすると、常温
核融合の発生熱により水素吸蔵金属(2)内部の圧力が
高くなり過ぎ爆発の危険性があるため、常温核融合を起
こす程度の大きさと、それに応じた被膜(3)の厚さと
し、水素吸蔵金属(2)内部の圧力が高くなり過ぎた際
の爆発を防止するためには、やや被膜(3)を薄くして
おく方が良いと思われる。こうすることにより、核融合
に必要な圧力以上の内部圧力があった際に被膜(3)の
原子間からごく少量ずつ重水素が抜けて水素吸蔵金属
(2)内部圧力を若干下げるので、爆発が防止出来る。
こうした意味で、金の蒸着による被膜(3)生成の場
合、その厚さによって内部からの過剰圧力を原子間から
徐々に逃がすという調整機能があるため理想的と言える
が、値段が高いのが欠点である。
EXAMPLES An example of the present invention will be described below.
A cold fusion material (1) is prepared in which a gold coating (3) is uniformly and densely provided on the entire surface of palladium, which is a hydrogen storage metal (2) that has sufficiently absorbed deuterium, by vapor deposition. A heater (6) is provided in the container (5), and the cold fusion material (1) and water as a heat medium (4) are put in the container (5). To start the fusion device, the cold fusion material (1) and the heating medium (4) are heated by the heater (6) to a temperature above the temperature at which palladium in the cold fusion material (1) begins to release deuterium. Just do. The hydrogen storage metal (2) may be a hydrogen storage alloy, titanium, or nickel in addition to palladium. In addition, since the hydrogen storage metal (2), palladium, hydrogen storage alloy, etc., absorbs deuterium sufficiently even at room temperature, it is naturally stored in a container or bag filled with deuterium. Absorbs, but in order to shorten the time and absorb more deuterium, it is more effective to absorb deuterium at a low temperature. The coating (3) may be a metal such as silver or copper, a metal oxide film, ceramics, etc. in addition to gold, but a good conductor of heat can transfer the heat of fusion to the cold fusion material (1). Since it is released to the outside, better results are obtained. Further, as a method of forming the coating film (3), it can be formed by a method such as sputtering, plating, coating or chemical reaction in addition to vapor deposition. Further, as the heat medium (4), oil, sodium, freon gas or the like may be used in addition to water. Since this heater (6) is a heat source for causing cold fusion, if there is a heat source such as hot water or solar heat first, the cold fusion material (1) is heated to perform cold fusion. Since it can be generated, it is not necessary to have the heater (6), but this heater (6) is necessary to cause cold fusion anywhere and anytime. If the heat medium (4) is a gas such as Freon gas that does not cause environmental damage, it is possible to manufacture a microminiature energy source. A heat exchanger (7), a thermocouple (8), a heat pipe, etc. may be used to extract the thermal energy of this nuclear reaction. Although the shape of the cold fusion material (1) depends on the size, in the case of a plate having a thickness of 1 mm and a length of 30 mm, the ratio of the surface area to the volume is 1.13, but in the case of a sphere, the ratio is 0. Comparing the ratios of the sphere and the plate in 3, the sphere is as small as about a quarter of the plate. That is, the pressure of deuterium in the hydrogen storage metal (2) when the sphere heats the hydrogen storage metal (2) is four times as large as that of the plate, so that the probability of nuclear fusion is dramatically increased. Regarding the size of the hydrogen storage metal (2) and the thickness of the film (3), it can be said that the smaller the film, the easier it is to produce, although it depends on the force for suppressing the release of deuterium in the film (3). However, if it is made too large, the pressure inside the hydrogen storage metal (2) becomes too high due to the heat generated by cold fusion, and there is a danger of explosion. Therefore, the size of cold fusion and the corresponding coating (3 In order to prevent the explosion when the pressure inside the hydrogen storage metal (2) becomes too high, it is better to make the coating (3) thinner. By doing so, when there is an internal pressure higher than the pressure required for nuclear fusion, deuterium is evacuated from between the atoms of the film (3) very little by little, and the internal pressure of the hydrogen storage metal (2) is slightly lowered. Can be prevented.
In this sense, when the coating film (3) is formed by vapor deposition of gold, it can be said to be ideal because it has an adjusting function of gradually releasing the internal excess pressure from between the atoms due to its thickness, but the cost is high. Is.

【0007】[0007]

【発明の効果】本発明の常温核融合装置は構造が極めて
簡単であるので、装置は手の平サイズのものまで小型化
が可能である。このため、様々な種類の装置のエネルギ
ー源として使用出来る。ヒーターの電源を切っても核融
合の熱により更に常温核融合材料を定期的に投入するだ
けで常温核融合が持続するので常温核融合の運転が容易
である。核融合を止めたい時には、核反応中の常温核融
合材料を熱源から遠ざけるだけで良いので簡単である。
緊急の時には液体窒素などの冷媒により急冷するのも良
い。常温核融合を起こした後の常温核融合材料中の水素
吸蔵金属は溶かして中の気体を放出した後に又、重水素
を吸収させ被膜を生成させることにより、何度も使用出
来るので資源の枯渇にならない。予め、重水から生成さ
せた重水素を水素吸蔵金属に吸収させておく方式なの
で、従来の重水の電気分解による常温核融合とは異な
り、重水に無駄がない。又、常温核融合材料に核反応後
も核反応物質が残ったままなので、外部にみだりに核反
応物質を拡散させない。そのうえ、重水を使用しないた
め熱交換器を特に必要としないので、熱媒体として水を
使用した場合には、熱交換器を通さなくとも良いので熱
媒体をそのままエネルギー取り出し用熱水として使用出
来、熱効率が非常に高くなる。
Since the cold fusion device of the present invention has an extremely simple structure, the device can be downsized to a palm size. Therefore, it can be used as an energy source for various types of devices. Even if the heater is turned off, cold fusion can be continued simply by periodically feeding cold fusion material due to the heat of fusion, so cold fusion operation is easy. When you want to stop the fusion, it is easy because you just have to move the cold fusion material during the nuclear reaction away from the heat source.
In an emergency, it is good to quench with a refrigerant such as liquid nitrogen. After the cold fusion, the hydrogen storage metal in the cold fusion material is melted and the gas inside is released, and after deuterium is absorbed to form a film, it can be used many times, so the resources are exhausted. do not become. Since deuterium generated from heavy water is absorbed in the hydrogen storage metal in advance, unlike conventional cold fusion by electrolysis of heavy water, heavy water is not wasted. Further, since the nuclear reaction material remains in the cold fusion material after the nuclear reaction, the nuclear reaction material is not diffused to the outside. Moreover, since heavy water is not used and a heat exchanger is not particularly required, when water is used as the heat medium, the heat medium can be used as it is as hot water for energy extraction because it does not need to pass through the heat exchanger. Very high thermal efficiency.

【0008】[0008]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で、重水素を吸収した水素吸
蔵金属に被膜をつけた常温核融合材料の断面図。
FIG. 1 is a cross-sectional view of a cold fusion material in which a hydrogen storage metal absorbing deuterium is coated with a film according to an embodiment of the present invention.

【図2】本発明の一実施例で、常温核融合装置のシステ
ム模式図。
FIG. 2 is a system schematic diagram of a cold fusion device in one embodiment of the present invention.

【図3】本発明の一実施例で、常温核融合装置に熱電対
を使用したシステム模式図。
FIG. 3 is a schematic diagram of a system in which a thermocouple is used for a cold fusion device in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 常温核融合材料 2 重水素を吸収した水素吸蔵金属 3 被膜 4 熱媒体 5 容器 6 ヒーター 7 熱交換器 8 熱電対 1 Cold Fusion Material 2 Hydrogen Storage Metal that Absorbs Deuterium 3 Coating 4 Heat Medium 5 Container 6 Heater 7 Heat Exchanger 8 Thermocouple

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重水素を十分に吸収させた水素吸蔵金属
(2)の表面全体に均一で緻密な被膜(3)を設けたこ
とを特徴とした常温核融合材料。
1. A cold fusion material, characterized in that a uniform and dense coating (3) is provided on the entire surface of a hydrogen storage metal (2) which has sufficiently absorbed deuterium.
【請求項2】 容器(5)にヒーター(6)を設け、こ
の容器(5)の中に請求項1記載の常温核融合材料
(1)と熱媒体(4)を入れたことを特徴とした常温核
融合装置。
2. A container (5) is provided with a heater (6), and the cold fusion material (1) according to claim 1 and a heating medium (4) are placed in this container (5). Cold fusion device.
JP4312832A 1992-10-27 1992-10-27 Cold fusion material and cold fusion system using the same Pending JPH06138269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312832A JPH06138269A (en) 1992-10-27 1992-10-27 Cold fusion material and cold fusion system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4312832A JPH06138269A (en) 1992-10-27 1992-10-27 Cold fusion material and cold fusion system using the same

Publications (1)

Publication Number Publication Date
JPH06138269A true JPH06138269A (en) 1994-05-20

Family

ID=18033965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312832A Pending JPH06138269A (en) 1992-10-27 1992-10-27 Cold fusion material and cold fusion system using the same

Country Status (1)

Country Link
JP (1) JPH06138269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020320A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Monolithically integrated device
WO1997020319A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Solid fuel for cold nuclear fusion reactors
WO1997020318A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Method and apparatus for the generation of thermal energy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020320A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Monolithically integrated device
WO1997020319A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Solid fuel for cold nuclear fusion reactors
WO1997020318A1 (en) * 1995-11-30 1997-06-05 Sgs-Thomson Microelectronics S.R.L. Method and apparatus for the generation of thermal energy

Similar Documents

Publication Publication Date Title
Somov et al. Hydrodynamic response of the solar chromosphere to an elementary flare burst: I: Heating by accelerated electrons
US20060198487A1 (en) Fusionable material target
Gus' Kov et al. The laser greenhouse thermonuclear target with distributed absorption of laser energy
US20120264072A1 (en) Method and apparatus for performing reactive thermal treatment of thin film pv material
Jun et al. Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations
JPH06138269A (en) Cold fusion material and cold fusion system using the same
US3504494A (en) Intermittent power source
JP2920860B2 (en) Heating device
CN103344141A (en) Heat pipe heating device, heat pipe heat dissipation method and superconduction liquid
US4297165A (en) Fuel pellets for controlled nuclear fusion
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JPH1054623A (en) Method of managing adsorption and thermochemistry reaction of solid/liquid
JPS6129881B2 (en)
JPS6222883A (en) Rapid heating device
Kirkpatrick et al. Ignition and burn in inertially confined magnetized fuel
JPH06168899A (en) Heater unit for heating substrate
CN220139999U (en) Radiator
CN217057140U (en) Portable solid hydrogen storage hydrogen charging and discharging device
CN101533748B (en) Improved hot shrinkage clamp method in helix line traveling wave tube slow-wave system
Rosenfeld et al. Evaluation of porous media heat exchangers for plasma facing components
JPH0794935B2 (en) Method for absorbing and releasing hydrogen gas by hydrogen storage alloy and hydrogen storage alloy container
Rosenfeld et al. Innovative technologies for Faraday shield cooling
JPS59137789A (en) Latent-heat type heat accumulator
JPH046358A (en) Heat pump apparatus
JPH0771838A (en) Cold generating device using metallic hydride