JPH06137516A - Method for operating pressure fluidized bed composite generator plant - Google Patents

Method for operating pressure fluidized bed composite generator plant

Info

Publication number
JPH06137516A
JPH06137516A JP28982192A JP28982192A JPH06137516A JP H06137516 A JPH06137516 A JP H06137516A JP 28982192 A JP28982192 A JP 28982192A JP 28982192 A JP28982192 A JP 28982192A JP H06137516 A JPH06137516 A JP H06137516A
Authority
JP
Japan
Prior art keywords
fluidized bed
gas turbine
air
combustion
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28982192A
Other languages
Japanese (ja)
Inventor
Satoki Motai
聰樹 甕
Katsuhiko Shinoda
克彦 篠田
Masahiko Sotono
雅彦 外野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28982192A priority Critical patent/JPH06137516A/en
Publication of JPH06137516A publication Critical patent/JPH06137516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To reduce an NOx generation amount at the time of burning in a composite plant for generating high temperatures gas for driving a gas turbine by burning coal, etc., in a pressure fluidized bed and generating steam by a heat transfer tube arranged in the bed. CONSTITUTION:Only minimum amount of air necessary for burning the discharge air of a compressor 15 to be driven by a gas turbine 12 is supplied to a fluidized bed 7, and the residual air is bypassed to a burning exhaust gas conduit 4. It prevents an increase in NOx generation amount due to excess oxygen in the bed 7 at the time of partial load of the turbine 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭または石炭をベー
スとするペーストもしくはスラリーなどの燃料(以下、
単に石炭と記す)を加圧流動層で燃焼することによっ
て、ガスタービン駆動用の高温ガスを発生させるととも
に、加圧流動層内に配された伝熱管内で水蒸気を発生さ
せる複合プラントにおいて、燃焼時の窒素酸化物(以下
NOx と記す)を低減させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel such as coal or a coal-based paste or slurry (hereinafter,
In the combined plant that generates high-temperature gas for driving the gas turbine, and also generates steam in the heat transfer tubes arranged in the pressurized fluidized bed, It relates to a method of reducing nitrogen oxide when (hereinafter referred to as NO x).

【0002】[0002]

【従来の技術】加圧流動層燃焼においては、基本的に炉
内脱硫を行なうために、流動層温度を800 〜 900℃に保
つ必要がある。一方、ガスタービンの特性として、ガス
タービン負荷が下ってもガスタービン圧縮機から供給さ
れる空気は定格負荷の約 60 〜70 %もある。この状態
でプラント負荷を減少させる、すなわち流動層内の伝熱
管の熱吸収を下げて発生蒸気量を減少させるには、加圧
流動層の層高を減らすとともに、供給石炭量を減らす操
作が必要となる。しかし供給される空気量が多過ぎるた
め、燃焼後の残存酸素濃度が定格負荷時と比べて大幅に
増加することとなる。この結果、発生するNOx も低負
荷時には大幅に増加するという問題があった。
2. Description of the Related Art In pressurized fluidized bed combustion, it is necessary to keep the fluidized bed temperature at 800 to 900 ° C. in order to basically perform desulfurization in a furnace. On the other hand, as a characteristic of the gas turbine, the air supplied from the gas turbine compressor is about 60 to 70% of the rated load even if the load on the gas turbine decreases. In this state, in order to reduce the plant load, that is, to reduce the heat absorption of the heat transfer tubes in the fluidized bed to reduce the amount of generated steam, it is necessary to reduce the bed height of the pressurized fluidized bed and the amount of coal supplied. Becomes However, since the amount of air supplied is too large, the residual oxygen concentration after combustion will increase significantly compared to when the rated load is applied. As a result, there is a problem that the generated NO x also greatly increases when the load is low.

【0003】[0003]

【発明が解決しようとする課題】加圧流動層複合プラン
トにおいて、発生NOx をフリーボードで減少させる方
法として、フリーボードに燃料を追加して燃焼させる方
法もあるが、システムが複雑となる欠点がある。また石
炭中の微粉をフリーボードで燃焼させる方法もあるが、
石炭中の微粉の割合の変化によって燃焼温度も変化する
ので、安定なNO x 制御が難しいという欠点がある。更
に、追加燃料を使用するいづれの案も、燃料増加となり
プラント効率が低下するという最大の欠点を有する。
PROBLEM TO BE SOLVED BY THE INVENTION Pressurized fluidized bed composite plan
NO generated inxTo reduce the free board
As a method, those who burn by adding fuel to the freeboard
There is a law, but there is a drawback that the system becomes complicated. Stone again
There is also a method of burning the fine powder in charcoal with a freeboard,
Combustion temperature changes as the proportion of fines in coal changes.
So stable NO xIt has the drawback of being difficult to control. Change
In addition, both plans to use additional fuel will
It has the biggest drawback of reduced plant efficiency.

【0004】[0004]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、内部に伝熱管が配された加圧流動
層に燃料を供給して燃焼させ、上記伝熱管内で水蒸気を
発生させるとともに、燃焼排ガスによりガスタービンを
駆動して発電する複合発電プラントにおいて、上記ガス
タービンの出力の一部で駆動される圧縮機の吐出空気の
うち、上記流動層内の酸素濃度が燃料の燃焼に必要な最
低濃度に保たれる量の空気だけを上記流動層の下方に供
給し、残りの空気を上記流動層上方のフリーボードと上
記ガスタービンとの間の燃焼排ガス管路へ導入すること
を特徴とする加圧流動層複合発電プラントの運転方法を
提案するものである。
In order to solve the above-mentioned conventional problems, the present invention supplies a fuel to a pressurized fluidized bed in which a heat transfer tube is arranged to burn the fuel, and steam is generated in the heat transfer tube. In the combined power generation plant that generates a gas and drives the gas turbine by the combustion exhaust gas to generate electric power, the oxygen concentration in the fluidized bed is the fuel in the discharge air of the compressor driven by a part of the output of the gas turbine. Is supplied to the lower part of the fluidized bed, and the remaining air is introduced into the combustion exhaust gas line between the freeboard above the fluidized bed and the gas turbine. The present invention proposes an operating method of a pressurized fluidized bed combined cycle power plant characterized by the following.

【0005】[0005]

【作用】ガスタービンの負荷が減少した時、圧縮機の吐
出空気量はその負荷に比例しては減少しないから、その
空気をそのまま流動層へ供給すると、酸素が過剰になっ
てNOx の発生量が増す。本発明では、燃料の燃焼に必
要な最低量の酸素だけを流動層へ供給し、残りはバイパ
スして燃焼排ガス管路へ導入するので、発生NO x 量が
低減される。
[Operation] When the load on the gas turbine decreases, the discharge of the compressor
Since the amount of air discharged does not decrease in proportion to the load,
When air is supplied to the fluidized bed as it is, oxygen becomes excessive.
NOxIncrease the amount of. In the present invention, it is necessary to burn the fuel.
Only the minimum amount of oxygen required is supplied to the fluidized bed, the rest is bypassed.
NO is generated as it is introduced into the combustion exhaust gas pipeline. xQuantity
Will be reduced.

【0006】[0006]

【実施例】図1は本発明方法を実施する設備の一例を示
すフローチャート図である。図中1は加圧流動層ボイラ
であって、一次空気供給管2、高温高圧燃焼ガス放出管
4、流動層内の伝熱管5、石炭・石灰石供給管6、加圧
流動層7、空気分散板8、風室10、フリーボード11
などを有している。高温高圧燃焼ガス放出管4は、ガス
タービン12に接続されており、その途中にサイクロン
13、高温脱塵装置14が設けられている。9はアッシ
ュストレージビンである。またガスタービン12の出口
の低温燃焼ガス管22には、煙突25までの間に脱硝装
置23、排熱回収熱交換器24が装備されている。
1 is a flow chart showing an example of equipment for carrying out the method of the present invention. In the figure, 1 is a pressurized fluidized bed boiler, which includes a primary air supply pipe 2, a high temperature and high pressure combustion gas discharge pipe 4, a heat transfer pipe 5 in a fluidized bed, a coal / limestone supply pipe 6, a pressurized fluidized bed 7, air dispersion. Board 8, wind chamber 10, freeboard 11
And so on. The high-temperature high-pressure combustion gas discharge pipe 4 is connected to the gas turbine 12, and a cyclone 13 and a high-temperature dust removing device 14 are provided in the middle thereof. 9 is an ash storage bin. The low temperature combustion gas pipe 22 at the outlet of the gas turbine 12 is equipped with a denitration device 23 and an exhaust heat recovery heat exchanger 24 up to the chimney 25.

【0007】ガスタービン12は空気圧縮機15および
発電機16に連結されている。空気圧縮機15の出口空
気配管は一次空気供給管2とバイパス空気供給管3に分
岐し、バイパス空気供給管3には制御弁17が設けられ
ている。加圧流動層ボイラ1の出口の高温高圧燃焼ガス
放出管4には、酸素濃度計測装置20が取付けられてお
り、その信号は酸素濃度調節器21へとおくられる。そ
して酸素濃度計測装置20での計測値が常に一定値以下
になるように、制御弁17の開度が制御される。なお図
1中26は蒸気タービン、27は発電機、28は復水
器、29はポンプ、30は給水加熱器をそれぞれ示す。
The gas turbine 12 is connected to an air compressor 15 and a generator 16. The outlet air pipe of the air compressor 15 is branched into a primary air supply pipe 2 and a bypass air supply pipe 3, and a control valve 17 is provided in the bypass air supply pipe 3. An oxygen concentration measuring device 20 is attached to the high-temperature high-pressure combustion gas discharge pipe 4 at the outlet of the pressurized fluidized bed boiler 1, and its signal is sent to an oxygen concentration controller 21. Then, the opening degree of the control valve 17 is controlled so that the measurement value of the oxygen concentration measuring device 20 is always a fixed value or less. In FIG. 1, 26 is a steam turbine, 27 is a generator, 28 is a condenser, 29 is a pump, and 30 is a feed water heater.

【0008】加圧流動層燃焼においては、容積型空気圧
縮機の特性から、ガスタービンの負荷が減少した場合、
流動層の供給される空気量は負荷に比例して減少せず、
最低負荷近傍でも定格負荷時の 60 〜 70 %となってい
る。一方、流動層内での熱吸収量を減少させる、すなわ
ち発生蒸気量を減少させるために、加圧流動層ボイラで
はその流動層高を発生蒸気量に見合うように下げて運用
している。この条件下で石炭投入量を減少させて、層温
度が 800〜900 ℃になるように運転されるわけである
が、従来は供給される空気量が燃焼に必要な空気量に対
して過剰のため、残存酸素濃度が図2に示されるように
定格負荷の約3倍にも達していた。
In the pressurized fluidized bed combustion, when the load of the gas turbine is reduced due to the characteristics of the positive displacement air compressor,
The amount of air supplied to the fluidized bed does not decrease in proportion to the load,
Even in the vicinity of the minimum load, it is 60 to 70% of the rated load. On the other hand, in order to reduce the amount of heat absorbed in the fluidized bed, that is, the amount of generated steam, the pressurized fluidized bed boiler operates by lowering the height of the fluidized bed to match the amount of generated steam. Under this condition, the coal input is reduced and the bed temperature is operated at 800-900 ℃. In the past, however, the supplied air volume was excessive compared to the air volume required for combustion. Therefore, the residual oxygen concentration reached about three times the rated load as shown in FIG.

【0009】一般に、流動層温度が同一ならばその発生
NOx は燃焼後の残存酸素濃度と逆の関係にあるから、
NOx を下げるには燃焼後の残存酸素濃度を減らせばよ
い。したがって本実施例のように、ある部分負荷時から
燃焼後の残存酸素濃度を一定に保つように流動層への供
給空気量の一部をバイパスする手段が、有効となる。本
バイパスの効果を図3に示す。この図から、本発明方法
によるNOx 低減効果が顕著であることがわかる。
Generally, if the temperature of the fluidized bed is the same, the generated NO x has an inverse relationship with the residual oxygen concentration after combustion.
To reduce the NO x , the residual oxygen concentration after combustion should be reduced. Therefore, as in the present embodiment, a means for bypassing a part of the amount of air supplied to the fluidized bed so as to keep the residual oxygen concentration after combustion constant from a certain partial load is effective. The effect of this bypass is shown in FIG. From this figure, it can be seen that the NO x reduction effect by the method of the present invention is remarkable.

【0010】[0010]

【発明の効果】本発明によれば流動層から発生するNO
x が減少する。したがって、ガスタービン後流の低温ガ
ス配管系統に設置される脱硝装置容量を小型にでき、ま
た使用される触媒量を大幅に低減できる。
According to the present invention, NO generated from the fluidized bed
x decreases. Therefore, the capacity of the denitration device installed in the low temperature gas piping system downstream of the gas turbine can be reduced, and the amount of catalyst used can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明方法を実施する設備の一例を示す
フローチャート図である。
FIG. 1 is a flowchart showing an example of equipment for carrying out the method of the present invention.

【図2】図2はガスタービン負荷と燃焼後の残存酸素濃
度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a gas turbine load and a residual oxygen concentration after combustion.

【図3】図3はガスタービンの負荷と発生NOx との関
係を、本発明と従来の場合とを比較して、示した図であ
る。
FIG. 3 is a diagram showing the relationship between the load of the gas turbine and the generated NO x , comparing the present invention and the conventional case.

【符号の説明】[Explanation of symbols]

1 加圧流動層ボイラ 2 一次空気供給管 3 バイパス空気供給管 4 高温高圧燃焼ガス放出管 5 伝熱管 6 石炭・石灰石供給管 7 加圧流動層 8 空気分散板 9 アッシュストレージビン 10 風室 11 フリーボード 12 ガスタービン 13 サイクロン 14 高温脱塵装置 15 空気圧縮機 16 発電機 17 制御弁 20 酸素濃度計測装置 21 酸素濃度調節器 22 低温燃焼ガス配管 23 脱硝装置 24 排熱回収熱交換器 25 煙突 26 蒸気タービン 27 発電機 28 復水器 29 ポンプ 30 給水加熱器 1 Pressurized Fluidized Bed Boiler 2 Primary Air Supply Pipe 3 Bypass Air Supply Pipe 4 High Temperature High Pressure Combustion Gas Release Pipe 5 Heat Transfer Pipe 6 Coal / Limestone Supply Pipe 7 Pressurized Fluidized Bed 8 Air Dispersion Plate 9 Ash Storage Bin 10 Air Chamber 11 Free Board 12 Gas turbine 13 Cyclone 14 High temperature dedusting device 15 Air compressor 16 Generator 17 Control valve 20 Oxygen concentration measuring device 21 Oxygen concentration regulator 22 Low temperature combustion gas pipe 23 Denitration device 24 Exhaust heat recovery heat exchanger 25 Chimney 26 Steam Turbine 27 Generator 28 Condenser 29 Pump 30 Water heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に伝熱管が配された加圧流動層に燃
料を供給して燃焼させ、上記伝熱管内で水蒸気を発生さ
せるとともに、燃焼排ガスによりガスタービンを駆動し
て発電する複合発電プラントにおいて、上記ガスタービ
ンの出力の一部で駆動される圧縮機の吐出空気のうち、
上記流動層内の酸素濃度が燃料の燃焼に必要な最低濃度
に保たれる量の空気だけを上記流動層の下方に供給し、
残りの空気を上記流動層上方のフリーボードと上記ガス
タービンとの間の燃焼排ガス管路へ導入することを特徴
とする加圧流動層複合発電プラントの運転方法。
1. A combined power generation system in which fuel is supplied to a pressurized fluidized bed having a heat transfer tube disposed therein for combustion to generate steam in the heat transfer tube and a combustion exhaust gas drives a gas turbine to generate electricity. In the plant, of the discharge air of the compressor driven by a part of the output of the gas turbine,
Supplying below the fluidized bed only air in an amount such that the oxygen concentration in the fluidized bed is kept at the minimum required for combustion of the fuel,
A method for operating a pressurized fluidized bed combined cycle power plant, characterized in that the remaining air is introduced into a combustion exhaust gas pipe line between the freeboard above the fluidized bed and the gas turbine.
JP28982192A 1992-10-28 1992-10-28 Method for operating pressure fluidized bed composite generator plant Withdrawn JPH06137516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28982192A JPH06137516A (en) 1992-10-28 1992-10-28 Method for operating pressure fluidized bed composite generator plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28982192A JPH06137516A (en) 1992-10-28 1992-10-28 Method for operating pressure fluidized bed composite generator plant

Publications (1)

Publication Number Publication Date
JPH06137516A true JPH06137516A (en) 1994-05-17

Family

ID=17748209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28982192A Withdrawn JPH06137516A (en) 1992-10-28 1992-10-28 Method for operating pressure fluidized bed composite generator plant

Country Status (1)

Country Link
JP (1) JPH06137516A (en)

Similar Documents

Publication Publication Date Title
US4468923A (en) Process and plant for generating electrical energy
JPH0429923B2 (en)
CN102047040B (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
CA2172521C (en) Supercritical steam pressurized circulating fluidized bed boiler
EP1172525A1 (en) Method of repowering boiler turbine generator plants and repowered boiler turbine generator plants
US5285629A (en) Circulating fluidized bed power plant with turbine fueled with sulfur containing fuel and using CFB to control emissions
JP2000502134A (en) Gasifiers and power plants
EP0722535B1 (en) A combined gas and steam cycle pressurized fluidized bed boiler power plant and a method of establishing and operating the same
JP2731631B2 (en) Method for maintaining a nominal operating temperature of flue gas in a PFBC power plant
JPH06511061A (en) Method for generating electrical energy in an environmentally compatible manner and equipment for implementing this method
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JPH06137516A (en) Method for operating pressure fluidized bed composite generator plant
JPH0216040Y2 (en)
JP3074448B2 (en) Combined power generation system
CN206291201U (en) A kind of coal gas peak load stations
JP2659499B2 (en) Pressurized fluidized bed boiler power plant
JPH02136520A (en) Exhaust gas treatment method for gas turbine
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
CA2109963A1 (en) Environmentally acceptable energy generation process and plant in a combined gas/steam generating power station
JPH0811171B2 (en) Ammonia injection amount control device
Komatsu et al. A Large-Capacity Pressurized-Fluidized-Bed-Combustion-Boiler Combined-Cycle Power Plant
KR19990023027A (en) Method and apparatus for generating additional energy in power units
JPH08166109A (en) Pressurized fluidized bed plant
JPH05231613A (en) Pressurized fluidized bed boiler
WO1987002755A1 (en) Pressurized fluidized bed apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104