JP3074448B2 - Combined power generation system - Google Patents

Combined power generation system

Info

Publication number
JP3074448B2
JP3074448B2 JP07055396A JP5539695A JP3074448B2 JP 3074448 B2 JP3074448 B2 JP 3074448B2 JP 07055396 A JP07055396 A JP 07055396A JP 5539695 A JP5539695 A JP 5539695A JP 3074448 B2 JP3074448 B2 JP 3074448B2
Authority
JP
Japan
Prior art keywords
fluidized bed
turbine
pressurized fluidized
power generation
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07055396A
Other languages
Japanese (ja)
Other versions
JPH08246898A (en
Inventor
鈴木  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP07055396A priority Critical patent/JP3074448B2/en
Publication of JPH08246898A publication Critical patent/JPH08246898A/en
Application granted granted Critical
Publication of JP3074448B2 publication Critical patent/JP3074448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンと加圧流
動床燃焼器から構成されている複合発電システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined power generation system comprising a gas turbine and a pressurized fluidized bed combustor.

【0002】[0002]

【従来の技術】従来の加圧流動床発電システムは、図3
のように、ガスタービンと加圧流動床ボイラと超高温蒸
気タービンから構成されているシステムであり、加圧流
動床ボイラがガスタービンと超高温蒸気タービンとの接
点の役目を負っている。
2. Description of the Related Art A conventional pressurized fluidized bed power generation system is shown in FIG.
As described above, the system is composed of a gas turbine, a pressurized fluidized bed boiler, and an ultra high temperature steam turbine, and the pressurized fluidized bed boiler plays a role of a contact point between the gas turbine and the ultra high temperature steam turbine.

【0003】[0003]

【発明が解決しようとする課題】従って、加圧流動床ボ
イラは、ガスタービンと超高温蒸気タービンの双方に必
要なエネルギーを要し、過酷なボイラとなる。特に、加
圧流動床ボイラの炉内温度は、脱硫、脱硝のため、従来
のボイラに比べて低温(800〜900℃)にする必要
がある。
Accordingly, the pressurized fluidized bed boiler requires the energy required for both the gas turbine and the ultra high temperature steam turbine, and is a severe boiler. In particular, the furnace temperature of a pressurized fluidized-bed boiler needs to be lower (800 to 900 ° C.) than that of a conventional boiler for desulfurization and denitration.

【0004】また、加圧流動床ボイラ内に蒸気タービン
に供給する蒸気を発生させるための伝熱管を有している
ため、その摩耗が著しく、信頼性に問題があった。更
に、加圧流動床ボイラを内包する圧力容器が大きく、コ
スト高になる一因になった。伝熱管を加圧流動床ボイラ
内に内蔵させると、発生蒸気の条件を高くすることがで
き、蒸気タービンの発電効率を高くできるが、その反
面、伝熱管の設置スペース分だけ、圧力容器が大きくな
る。本発明の目的は、係る従来の欠点を解消し得る複合
発電システムを提供することにある。
Further, since the pressurized fluidized-bed boiler has a heat transfer tube for generating steam to be supplied to the steam turbine, its wear is remarkable, and there has been a problem in reliability. Further, the pressure vessel containing the pressurized fluidized-bed boiler is large, which has contributed to an increase in cost. By incorporating heat transfer tubes inside a pressurized fluidized-bed boiler, the conditions for the generated steam can be increased and the power generation efficiency of the steam turbine can be increased, but on the other hand, the pressure vessel becomes larger due to the installation space for the heat transfer tubes. Become. An object of the present invention is to provide a combined power generation system that can solve such a conventional disadvantage.

【0005】[0005]

【課題を解決するための手段】 すなわち、本発明の複
合発電システムは、低圧と高圧の二つのタービン及び圧
縮機を有するガスタービンおよび蒸気タービンにより発
電する複合発電システムであって、高圧タービンから排
出されたタービン排ガスを加圧流動床燃焼器の流動床に
導入すると共に加圧流動床燃焼器に石炭と石灰石を投入
して燃焼と同時に脱硫させる一方、加圧流動床燃焼器の
流動床に導入するタービン排ガスの流量と、圧縮機より
抽気された吐出空気の流量とを加圧流動床燃焼器内の圧
力に応じてそれぞれバランスさせて加圧流動床燃焼器を
内蔵している圧力容器内を圧縮機から抽気した吐出空気
で満たし、さらに、加圧流動床燃焼器からサイクロンを
通って排出された燃焼排ガスを膨張比の低い低圧タービ
ンを経て廃熱ボイラに導入させることを特徴としてい
る。
That is, a combined power generation system of the present invention is a combined power generation system that generates power using a gas turbine and a steam turbine having two low-pressure and high-pressure turbines and a compressor. Turbine exhaust gas into the fluidized bed of a pressurized fluidized bed combustor
Introduce coal and limestone into pressurized fluidized bed combustor
And desulfurization at the same time as combustion.
From the flow rate of turbine exhaust gas introduced into the fluidized bed and from the compressor
The flow rate of the bled discharge air and the pressure inside the pressurized fluidized bed combustor
The pressurized fluidized bed combustor is
Discharged air extracted from the compressor inside the built-in pressure vessel
And exhaust gas discharged from a pressurized fluidized bed combustor through a cyclone is introduced into a waste heat boiler through a low pressure turbine having a low expansion ratio.

【0006】[0006]

【作用】 上記加圧流動床燃焼器は、従来の加圧流動床
ボイラと異なり、蒸気タービン用伝熱管が無いから、流
動床の流動に起因する伝熱管の摩耗などの問題が無い。
また、圧縮機からの抽気は、圧力容器内を加圧するため
の空気であるから量的に少量であり、高圧タービンに及
ぼす影響がない。
The above pressurized fluidized bed combustor is a conventional pressurized fluidized bed combustor.
Unlike boilers, there are no heat transfer tubes for steam turbines.
There is no problem such as wear of the heat transfer tube due to the flow of the moving bed.
Also, bleed air from the compressor is small amount quantitatively because air for pressurizing the pressure vessel, there is no effect on the high 圧Ta turbine.

【0007】[0007]

【実施例】以下、図面により本発明の実施例を説明す
る。図1において、10は、通常の燃料焚きガスタービ
ンであり、例えば、天然ガス等の気体燃料fは、圧縮機
11によって圧縮された吐出空気a’と混合しながら燃
焼器14内で燃焼した後、高圧ガスタービン14で膨脹
する。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 denotes a normal fuel-fired gas turbine. For example, a gas fuel f such as natural gas is burned in a combustor 14 while being mixed with a discharge air a ′ compressed by a compressor 11. , In the high-pressure gas turbine 14.

【0008】そして、その排ガスgは、加圧流動床燃焼
器16の流動床17に導かれる。そして、圧縮機11よ
り抽気された吐出空気a”と共に加圧流動床燃焼器16
内の圧力に応じてそれぞれの流量バランスを保持するよ
うになっている。上記の吐出空気a”は、高圧ガスター
ビン14の排ガスgより、やや高めに圧力が設定されて
いる。
The exhaust gas g is guided to a fluidized bed 17 of a pressurized fluidized bed combustor 16. The compressed fluidized-bed combustor 16 together with the discharge air a ″ extracted from the compressor 11
The respective flow balances are maintained according to the internal pressure. The pressure of the discharge air a ″ is set slightly higher than the exhaust gas g of the high-pressure gas turbine 14.

【0009】また、高圧ガスタービン14の排ガスg中
の酸素濃度は、比較的、高いため、加圧流動床燃焼器1
6内で石炭cを燃焼させることが可能であるが、より燃
焼安定性と加圧流動床燃焼器16の圧力容器18内を吐
出空気a”で充満させるため、圧縮機11の抽気がバラ
ンスよく配分される。加圧流動床燃焼器16には、燃料
である石炭cと、脱硫のための石炭石dを投入し、加圧
流動床燃焼器16内で燃焼と同時に脱硫する。硫黄分
は、灰分と共に系外に排出される。
The oxygen concentration in the exhaust gas g of the high-pressure gas turbine 14 is relatively high.
6, it is possible to burn the coal c. However, since the combustion stability and the pressure vessel 18 of the pressurized fluidized bed combustor 16 are filled with the discharge air a ″, the bleed air of the compressor 11 is balanced. Coal c as a fuel and coal stone d for desulfurization are charged into the pressurized fluidized bed combustor 16, and are desulfurized simultaneously with combustion in the pressurized fluidized bed combustor 16. And ash are discharged out of the system.

【0010】加圧流動床燃焼器16から排出された燃焼
ガスg’は、サイクロン19及びフィルター20を通過
した後、低圧ガスタービン15へ導かれて発電機13を
回転させ、動力を発生するようになっている。低圧ガス
タービン15の排ガスg”の温度は、タービン膨張比が
低く設計されているので、通常の排ガス温度より高い。
そのため、低圧ガスタービン15より後流側に位置する
廃熱ボイラ21における蒸気回収に際して、設定条件を
高くできるので、図示しない蒸気タービンの発電効率を
高めることが可能である。
The combustion gas g 'discharged from the pressurized fluidized-bed combustor 16 passes through the cyclone 19 and the filter 20, and then is guided to the low-pressure gas turbine 15 to rotate the generator 13 and generate power. It has become. The temperature of the exhaust gas g ″ of the low-pressure gas turbine 15 is higher than the normal exhaust gas temperature because the turbine expansion ratio is designed to be low.
Therefore, when recovering steam in the waste heat boiler 21 located downstream of the low-pressure gas turbine 15, the set conditions can be increased, and the power generation efficiency of a steam turbine (not shown) can be increased.

【0011】廃熱ボイラ21の伝熱管は、条件の良いガ
スであり、摩耗及びガス中の硫黄分が無いため、低温腐
食などを回避できる。図2は、本発明の複合発電サイク
ルの状態線図であり、1〜2は、圧縮機による仕事、2
〜3は、通常の燃料による加圧過程である。3〜4は、
高圧ガスタービンの発生出力。4〜5は、加圧流動床燃
焼器による加熱過程である。5〜6は、低圧ガスタービ
ンによる発生出力である。
The heat transfer tube of the waste heat boiler 21 is a gas with good conditions, and has no wear and no sulfur content in the gas, so that low-temperature corrosion and the like can be avoided. FIG. 2 is a state diagram of the combined cycle of the present invention.
Nos. 3 to 3 are pressurization processes using ordinary fuel. 3-4
Output of high pressure gas turbine. Nos. 4 to 5 are heating processes by the pressurized fluidized bed combustor. Reference numerals 5 and 6 denote outputs generated by the low-pressure gas turbine.

【0012】従来の方式の仕事量は、1〜1'〜4〜5
〜6〜1で囲まれる部分に相当し、本発明の仕事量は、
1〜2〜3〜4〜5〜6で囲まれる部分に相当する。従
って、図2から本発明の方式の方が従来の方式より仕事
量が多いことが分かる。
The amount of work of the conventional method is 1 to 1 'to 4 to 5
The amount of work of the present invention corresponds to a portion surrounded by
It corresponds to a portion surrounded by 1-2 to 3-4 to 5-6. Therefore, it can be seen from FIG. 2 that the method of the present invention has a larger workload than the conventional method.

【0013】[0013]

【発明の効果】上記のように、本発明は、高圧ガスター
ビンの排ガスと、圧縮機より抽気した空気によって加圧
流動床燃焼器内の流動床を流動化させると共に、前記加
圧流動床燃焼器より排出された燃焼ガスを低圧ガスター
ビンに導入して動力を発生させ、更に、前記低圧ガスタ
ービンの排ガスから廃熱を回収するようにしたので、従
来にはない優れた効果を奏する。
As described above, according to the present invention, the fluidized bed in the pressurized fluidized bed combustor is fluidized by the exhaust gas of the high pressure gas turbine and the air extracted from the compressor. Since the combustion gas discharged from the vessel is introduced into the low-pressure gas turbine to generate power, and the waste heat is recovered from the exhaust gas of the low-pressure gas turbine, an unprecedented superior effect is achieved.

【0014】すなわち、 高効率のガスタービンの採用によって石油系燃料を
削減し、クリーンな発電が可能になった。 設備がコンパクトとなり、且つ、信頼性の高い発電
が可能になった。 石炭を一部燃料に使用するにも係わらず、従来の最
高水準の電源を構成することが可能になった。
That is, the adoption of a high-efficiency gas turbine has reduced the amount of petroleum-based fuel and enabled clean power generation. The equipment became compact and reliable power generation became possible. Despite the use of some coal as fuel, it has become possible to construct a conventional high-level power source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る複合発電システムの系統図であ
る。
FIG. 1 is a system diagram of a combined cycle power generation system according to the present invention.

【図2】本発明のサイクル状態線図である。FIG. 2 is a cycle state diagram of the present invention.

【図3】従来の複合発電システムの系統図である。FIG. 3 is a system diagram of a conventional combined cycle system.

【符号の説明】[Explanation of symbols]

a” 圧縮機より抽気した空気 g 高圧ガス
タービンの排ガス g’ 加圧流動床燃焼器より排出された燃焼ガス g” 低圧ガスタービンからの排ガス 16 加圧流
動床燃焼器 17 流動床 15 低圧ガ
スタービン
a "Air extracted from the compressor g Exhaust gas from the high pressure gas turbine g 'Combustion gas exhausted from the pressurized fluidized bed combustor g" Exhaust gas from the low pressure gas turbine 16 Pressurized fluidized bed combustor 17 Fluidized bed 15 Low pressure gas turbine

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低圧と高圧の二つのタービン及び圧縮機
を有するガスタービンおよび蒸気タービンにより発電す
る複合発電システムであって、高圧タービンから排出さ
れたタービン排ガスを加圧流動床燃焼器の流動床に導入
すると共に加圧流動床燃焼器に石炭と石灰石を投入して
燃焼と同時に脱硫させる一方、加圧流動床燃焼器の流動
床に導入するタービン排ガスの流量と、圧縮機より抽気
された吐出空気の流量とを加圧流動床燃焼器内の圧力に
応じてそれぞれバランスさせて加圧流動床燃焼器を内蔵
している圧力容器内を圧縮機から抽気した吐出空気で満
たし、さらに、加圧流動床燃焼器からサイクロンを通っ
て排出された燃焼排ガスを膨張比の低い低圧タービンを
経て廃熱ボイラに導入させることを特徴とする複合発電
システム。
1. A combined power generation system for generating electric power by a gas turbine and a steam turbine having two turbines and a compressor at a low pressure and a high pressure, wherein a turbine exhaust gas discharged from a high pressure turbine is fluidized by a fluidized bed of a pressurized fluidized bed combustor. Introduced in
And adding coal and limestone to the pressurized fluidized bed combustor
Desulfurization at the same time as combustion
Flow rate of turbine exhaust gas introduced into the floor and extraction from compressor
The flow rate of the discharged air and the pressure in the pressurized fluidized bed combustor.
Built-in pressurized fluidized bed combustor balanced according to each
Pressure vessel filled with discharge air extracted from the compressor.
Plus further combined power generation system characterized in that to introduce the pressurized fluidized bed low pressure turbine menstrual and waste heat boiler of the expansion ratio of the combustion exhaust gas discharged through the cyclone from the combustor.
JP07055396A 1995-03-15 1995-03-15 Combined power generation system Expired - Fee Related JP3074448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07055396A JP3074448B2 (en) 1995-03-15 1995-03-15 Combined power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07055396A JP3074448B2 (en) 1995-03-15 1995-03-15 Combined power generation system

Publications (2)

Publication Number Publication Date
JPH08246898A JPH08246898A (en) 1996-09-24
JP3074448B2 true JP3074448B2 (en) 2000-08-07

Family

ID=12997372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07055396A Expired - Fee Related JP3074448B2 (en) 1995-03-15 1995-03-15 Combined power generation system

Country Status (1)

Country Link
JP (1) JP3074448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1346011A4 (en) * 2000-12-26 2005-02-23 Ebara Corp Fluidized-bed gasification method and apparatus
CN108506928A (en) * 2018-04-16 2018-09-07 中国计量大学 A kind of non-oil ignition system and method for circulating fluidized bed combustion coal boiler

Also Published As

Publication number Publication date
JPH08246898A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3213321B2 (en) Combined cycle thermal power plant combined with atmospheric circulating fluidized bed boiler and gasifier
CN1162643C (en) Combined circular coal-burning power generating system and method adopting partial gasification and air preheating
US4288979A (en) Combined cycle power plant incorporating coal gasification
US4468923A (en) Process and plant for generating electrical energy
JPH041428A (en) Power generation facilities
JPH07317506A (en) Coal burning combined power generation plant combined with fuel reformer
Shi et al. System analysis on supercritical CO 2 power cycle with circulating fluidized bed oxy-coal combustion
US4387560A (en) Utilization of coal in a combined cycle powerplant
US5285629A (en) Circulating fluidized bed power plant with turbine fueled with sulfur containing fuel and using CFB to control emissions
JP3074448B2 (en) Combined power generation system
EP0722535B1 (en) A combined gas and steam cycle pressurized fluidized bed boiler power plant and a method of establishing and operating the same
CA1045390A (en) Gasification of coal for use in a turbine
Ruth The US Department of Energy's Combustion 2000 Program: Clean, efficient electricity from coal
McKinsey et al. A performance comparison of advanced coal based power generation technologies
KR970002012B1 (en) Complex generating system for carbonic gas
CN102337937B (en) Coal integrally-gasified smoke reheating combined-cycle power system
CN107151566B (en) Device and method for generating gas and generating power by using gas
JPH10148302A (en) Pressurized boiler combined cycle plant
Scheffknecht Fossil fuel-based power generation and greenhouse gas emissions: state of the art and perspective
Huang et al. Emissions reduction by co-firing biomass or waste with coal in a pressurized fluidised bed combustion combined cycle power plant
Wheeldon Addendum: Results of EPRI’s Engineering and Economic Evaluation of PFBC Power Plant Designs
Cai et al. Thermal performance study for the coal-fired combined cycle with partial gasification and fluidized bed combustion
RU2248452C2 (en) Steam-gas power plant with simultaneous combustion of solid and gaseous fuel
Kaneko et al. Gasification Technology Conference
JPH05231613A (en) Pressurized fluidized bed boiler

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000425

LAPS Cancellation because of no payment of annual fees