JPH08166109A - Pressurized fluidized bed plant - Google Patents

Pressurized fluidized bed plant

Info

Publication number
JPH08166109A
JPH08166109A JP31059694A JP31059694A JPH08166109A JP H08166109 A JPH08166109 A JP H08166109A JP 31059694 A JP31059694 A JP 31059694A JP 31059694 A JP31059694 A JP 31059694A JP H08166109 A JPH08166109 A JP H08166109A
Authority
JP
Japan
Prior art keywords
air
fluidized bed
gas
pressurized
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31059694A
Other languages
Japanese (ja)
Inventor
Satoshi Uchida
聡 内田
Katsuhiko Shinoda
克彦 篠田
Tsutomu Koga
勉 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31059694A priority Critical patent/JPH08166109A/en
Publication of JPH08166109A publication Critical patent/JPH08166109A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/061Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed
    • F01K23/062Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed the combustion bed being pressurised

Abstract

PURPOSE: To achieve higher efficiency by providing a control valve on bypass piping for bypassing compressed air to an port of an air compressor to decrease an Nox generation quantity while wasting no heat value. CONSTITUTION: After the removal of dust with a ceramic filter 7, a high temperature and high pressure gas generated by a pressurized fluidized bed boiler 2 turns a gas turbine 3 to convert heat energy to mechanical energy and the gas with the pressure thereof approaching atmospheric pressure and with the temperature lowered undergoes a heat exchange with water and a steam system by a stack gas cooler 5 to be discharged from a stack 12. The air pressurized at an outlet of an air compressor 4 is recirculated to an inlet or an outlet of an air filter 15 to mix through an air control valve 13 and pressurized with the air compressor 4 via an IGV. Thus, the temperature of the air introduced into the compressor passing through the IGV rises to allow reduction in the mass of the air to be supplied to the pressurized fluidized bed boiler thereby enabling the supplying of the amount of air to match a load by recirculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧流動床ボイラー、ガ
スタービン及び発電機等により構成される加圧流動床プ
ラントに関するものであり、特にプラント負荷変化時の
運用性の向上を図ることができる加圧流動床プラントに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed plant composed of a pressurized fluidized bed boiler, a gas turbine, a generator, etc., and particularly, it is possible to improve the operability when the plant load changes. Pressure fluidized bed plant.

【0002】[0002]

【従来の技術】コンバインドプラントは、通常ガスター
ビン、蒸気タービン、排熱回収ボイラーによって構成さ
れ、ガスタービンからの排ガスを熱源として排熱回収ボ
イラーで発生させた蒸気で蒸気タービンを駆動する。こ
のコンバインドプラントにおいて、ガスタービンの燃焼
器を兼ねた加圧流動床ボイラーを用いたものを加圧流動
床プラントと称する。
2. Description of the Related Art A combined plant is generally composed of a gas turbine, a steam turbine and an exhaust heat recovery boiler. The exhaust gas from the gas turbine is used as a heat source to drive the steam turbine with steam generated in the exhaust heat recovery boiler. In this combined plant, a pressurized fluidized bed boiler that also serves as a combustor of a gas turbine is referred to as a pressurized fluidized bed plant.

【0003】この加圧流動床プラントトは、具体的には
以下のように構成される。まずガスタービンにより駆動
される空気圧縮機によって圧縮空気を得、この空気を加
圧容器に格納された加圧流動床ボイラーへ供給する。燃
料としての石炭等の化石燃料は水等の液体と混練りした
スラリー或いはペースト状態にして、或いは、乾式状態
のままボイラーに供給され燃焼される。燃焼により発生
した高温の加圧ガスは除塵装置を通り、ガスタービンへ
供給され出力を得る。一方加圧流動床ボイラーで発生し
た蒸気は蒸気タービンを駆動して複合発電として蒸気タ
ービンでも出力を得る。一般的に蒸気タービンの出力は
ガスタービンの出力に比べ6乃至7倍程度の比率とな
る。
This pressurized fluidized bed plant is specifically constructed as follows. First, compressed air is obtained by an air compressor driven by a gas turbine, and this air is supplied to a pressurized fluidized bed boiler stored in a pressurized container. Fossil fuel such as coal as a fuel is supplied to a boiler and burned in a slurry or paste state kneaded with a liquid such as water or in a dry state. The hot pressurized gas generated by combustion passes through the dust remover and is supplied to the gas turbine to obtain an output. On the other hand, the steam generated in the pressurized fluidized bed boiler drives the steam turbine to obtain output also in the steam turbine as combined power generation. Generally, the output of the steam turbine is about 6 to 7 times the output of the gas turbine.

【0004】空気圧縮機出口の空気は通常運転では加圧
流動床ボイラーへ供給されるが負荷変化時の運用方法と
して、例えば特開平5−263611号公報に記載され
たものが知られている。この特開平5−263611号
公報に記載された加圧流動床プラントについて図7,図
8について説明すると、1は加圧容器、2は加圧流動床
ボイラー、3はガスタービン、4は空気圧縮機、5はス
タックガスクーラー、6は蒸気タービン、7はセラミッ
クフィルター、8は石炭供給装置、9は昇圧機であり、
加圧流動床ボイラー2には空気圧縮機4にて圧縮され空
気が高圧空気として導入される。また加圧流動床ボイラ
ー2には石炭供給装置8より石炭が供給され高圧空気を
用いて燃焼することにより高温の燃焼ガスを得ることが
できるようになっている。高温燃焼ガスはセラミックフ
ィルタ7を介してガスタービン3に供給されて膨張し、
空気圧縮機4と発電機10を駆動する。その後、ガスタ
ービン排ガスは、スタックガスクーラー5で給水と熱交
換したのち、最終的に低温のガスタービン排ガスとなっ
て大気に放出される。一方、スタックガスクーラー5で
加熱された高温給水は加圧流動床ボイラー2に供給さ
れ、加圧流動床ボイラー2内での石炭の燃焼熱により高
温高圧蒸気となり、蒸気タービン6へ送られ蒸気タービ
ン6を回転駆動する。さらに膨張した低温再熱蒸気を再
び加圧流動床ボイラー2に送り、熱回収させて高温再熱
蒸気とし、再び蒸気タービンに送り、蒸気タービンを回
転駆動させる。蒸気タービン6は発電機11を駆動し、
電気出力を得る。蒸気タービン6で仕事をした蒸気は低
温低圧蒸気となって復水器で海水と熱交換され、凝縮し
て復水となる。復水は復水器の出口に設置された高圧供
給ポンプにて昇圧され前記のスタックガスクーラー5へ
送られる。また前記従来の装置では、空気量を制御する
手段として、図7、図8に示す如く圧縮機出口の空気を
ガスタービン排気側、或いは大気放出或いはガスタービ
ン入口へのバイパスラインを有していた。
The air at the outlet of the air compressor is supplied to the pressurized fluidized bed boiler in normal operation, but as an operating method when the load changes, for example, the one described in JP-A-5-263611 is known. The pressurized fluidized bed plant described in Japanese Patent Laid-Open No. 5-263611 will be described with reference to FIGS. 7 and 8. 1 is a pressure vessel, 2 is a pressurized fluidized bed boiler, 3 is a gas turbine, and 4 is air compression. Machine, 5 is a stack gas cooler, 6 is a steam turbine, 7 is a ceramic filter, 8 is a coal feeder, 9 is a booster,
The compressed air is introduced into the pressurized fluidized bed boiler 2 by the air compressor 4 as high pressure air. Further, the pressurized fluidized bed boiler 2 is supplied with coal from the coal supply device 8 and combusted using high pressure air to obtain high temperature combustion gas. The hot combustion gas is supplied to the gas turbine 3 through the ceramic filter 7 and expanded,
The air compressor 4 and the generator 10 are driven. After that, the gas turbine exhaust gas exchanges heat with the feed water in the stack gas cooler 5, and finally becomes low-temperature gas turbine exhaust gas, which is released to the atmosphere. On the other hand, the high-temperature feed water heated by the stack gas cooler 5 is supplied to the pressurized fluidized bed boiler 2, and the combustion heat of coal in the pressurized fluidized bed boiler 2 produces high-temperature and high-pressure steam, which is sent to the steam turbine 6 and sent to the steam turbine 6. 6 is rotationally driven. Further, the expanded low temperature reheated steam is sent again to the pressurized fluidized bed boiler 2 to recover heat to be high temperature reheated steam, and then sent to the steam turbine again to rotate the steam turbine. The steam turbine 6 drives a generator 11,
Get electrical output. The steam that has worked in the steam turbine 6 becomes low-temperature low-pressure steam, which is heat-exchanged with seawater in the condenser and condensed to be condensed water. Condensed water is pressurized by a high pressure supply pump installed at the outlet of the condenser and sent to the stack gas cooler 5. Further, in the above-mentioned conventional apparatus, as means for controlling the air amount, as shown in FIGS. 7 and 8, the compressor outlet air has a bypass line to the gas turbine exhaust side or to the atmosphere discharge or the gas turbine inlet. .

【0005】[0005]

【発明が解決しようとする課題】ところでガスタービン
により駆動されている空気圧縮機は、IGV(Inlet Gu
ide Vane)という空気制御機構が圧縮機入口の空気吸い
込み部に設置されており、これによって空気吸い込み量
を制御していた。またIGVだけでは不十分な場合、静
翼を可動とすることで更に空気吸い込み量を絞ってい
た。このIGVは部分負荷で燃焼用空気が少なくて良い
ときは起動時に空気量を絞る必要がある時作動して、石
炭投入量などにほぼ比例或いは起動時の要求量に見合っ
た空気量を制御するが、あまり空気量を絞ると空気圧縮
機のサーシング領域に抵触することで空気量を絞ること
ができなかった。一般のガスタービンに接続された空気
圧縮機ではこの絞る量はIGVに静翼可変を追加してぼ
ぼ60%程度が最大である(図9)。そのため次の課題
が生じている。即ち、燃焼必要量に対して空気量が過大
のため燃焼時の酸素濃度が高くNOxの発生が増加す
る。また空気圧縮機がIGVで絞る限界の動力(例えば
60%)が低い負荷でも必要なため、部分負荷でのプラ
ント効率が悪かった。また前記特開平5−263611
号公報の様な方法で空気をバイパスする案では、ボイラ
ーへ供給する空気量は大気側へ捨てることで減じている
ものの、空気圧縮機で加圧されて温度が上昇した空気を
熱の下流側に捨てることでの効率の悪化を招いていると
いう問題点があった。
An air compressor driven by a gas turbine is an IGV (Inlet Gu
An air control mechanism called ide Vane) was installed in the air intake section at the compressor inlet, which controlled the air intake amount. Further, when the IGV alone is insufficient, the air intake amount is further reduced by making the stationary blade movable. This IGV operates when it is necessary to throttle down the amount of air at startup when it is sufficient to use a small amount of combustion air at a partial load, and controls the amount of air that is approximately proportional to the amount of coal input, or that is commensurate with the required amount at startup. However, if the air volume was reduced too much, the air volume could not be reduced due to the contact with the urging area of the air compressor. In an air compressor connected to a general gas turbine, this throttle amount is maximum about 60% by adding a variable vane to the IGV (Fig. 9). Therefore, the following problems have arisen. That is, since the amount of air is excessive with respect to the required amount of combustion, the oxygen concentration during combustion is high and the generation of NOx increases. Further, since the limit power (for example, 60%) that the air compressor throttles by IGV is required even under a low load, the plant efficiency under a partial load is poor. In addition, the above-mentioned Japanese Unexamined Patent Publication
In the method of bypassing air by the method described in Japanese Patent Publication, although the amount of air supplied to the boiler is reduced by discarding it to the atmosphere side, the air that has been pressurized by the air compressor and has risen in temperature rises on the downstream side of heat. There was a problem that the efficiency was deteriorated by throwing it away.

【0006】そこで本発明は、空気圧縮機で圧縮され温
度上昇した空気を空気圧縮機入口に再循環することで低
い負荷並びに起動時の空気圧縮機の通過空気質量を負荷
並びに起動時に目的量に応じて絞り流動床ボイラーへ供
給する空気を低減させることでNOx 発生量を減少させ
る。また空気圧縮機で温度上昇した空気を再循環するこ
とで熱量を無駄にせず、流動床ボイラーへ投入すること
でプラント効率の向上をはかることにより、前記従来の
課題を解決することを目的としている。
Therefore, according to the present invention, by recirculating the air that has been compressed by the air compressor and whose temperature has risen to the inlet of the air compressor, the low load and the mass of air passing through the air compressor at the time of start are set to the target amount at the time of load and start. Accordingly, the amount of NOx generated is reduced by reducing the air supplied to the throttle fluidized bed boiler. Further, it is an object of the present invention to solve the above-mentioned conventional problems by recirculating the air whose temperature has been raised by an air compressor without wasting a heat amount and by improving the plant efficiency by feeding the heat into a fluidized bed boiler. .

【0007】[0007]

【課題を解決するための手段】このため本発明は、ガス
タービンにより駆動される空気圧縮機と、石炭と空気圧
縮機からの空気を燃焼することで燃焼ガスを生成する加
圧流動床ボイラーと、通常運転時燃焼ガスにより駆動さ
れるガスタービンと、ガスタービンの排ガスを給水等へ
熱交換するスタックガスクーラーとスタックガスクーラ
ー及び流動床ボイラーとの熱交換で発生した蒸気により
駆動する蒸気タービン及びプラントを構成する補機で構
成される加圧流動床プラントにおいて、圧縮空気を空気
圧縮機入口にバイパスするバイパス配管と同配管上に設
けられた制御弁を備えてなるもので、これを課題解決の
ための手段とするものである。
Therefore, the present invention provides an air compressor driven by a gas turbine, and a pressurized fluidized bed boiler that produces combustion gas by burning coal and air from the air compressor. , A gas turbine driven by combustion gas during normal operation, a steam turbine driven by steam generated by heat exchange between a stack gas cooler for exchanging heat from exhaust gas of the gas turbine to feed water, etc. and a stack gas cooler and a fluidized bed boiler, and A pressurized fluidized bed plant consisting of auxiliary equipment that constitutes the plant is equipped with a bypass pipe for bypassing compressed air to the air compressor inlet and a control valve provided on the same pipe. Is a means for.

【0008】[0008]

【作用】プラント負荷と加圧流動床ボイラーへの空気
量、プラント効率及びNOx 発生量を図3、図4、図5
に示す。また再循環がある場合とない場合の運転特性を
図6に示す。本発明の如く再循環弁を開けることで圧縮
機出口の高温の空気が圧縮機入口の大気温度の空気と混
じり、これによって吸い込み空気温度が上昇する。空気
圧縮機の特性は実際の空気体積流量で特性が決まるた
め、再循環空気を混ぜることで吸い込み空気温度が上昇
し、空気圧縮機の吸い込み空気風量が減少する。その結
果同じIGV開度でも圧縮機で圧縮する空気の質量は減
り、その結果再循環量を差し引いた加圧流動床ボイラー
への空気供給量は減少する。またその結果ガスタービン
へ供給されるガス量が減り、系統圧力が減少することで
圧縮機の特性上サージングに対する余裕が増え、更に運
転余裕が増える。それによりNOx 発生量が激減して後
流に設置される脱硝装置の負荷が軽くなると共に、起動
時など脱硝効果を生み出す。また負荷変化中の過渡期に
使用すればサージング領域からはずれた運用が可能で負
荷変化速度の向上にも貢献可能である。
The plant load, the amount of air to the pressurized fluidized bed boiler, the plant efficiency and the amount of NOx generated are shown in FIGS. 3, 4 and 5.
Shown in FIG. 6 shows the operating characteristics with and without recirculation. By opening the recirculation valve as in the present invention, the hot air at the compressor outlet mixes with the air at the compressor inlet atmospheric temperature, which raises the intake air temperature. Since the characteristics of the air compressor are determined by the actual air volume flow rate, mixing the recirculated air increases the intake air temperature and reduces the intake air volume of the air compressor. As a result, the mass of air compressed by the compressor is reduced even with the same IGV opening, and as a result, the amount of air supplied to the pressurized fluidized bed boiler after subtracting the amount of recirculation is reduced. Further, as a result, the amount of gas supplied to the gas turbine is reduced and the system pressure is reduced, so that the margin for surging increases due to the characteristics of the compressor, and the operating margin further increases. As a result, the amount of NOx generated is drastically reduced, and the load on the denitration equipment installed downstream is lightened, and the denitration effect at the time of startup is produced. If it is used in the transitional period during load change, it can be operated outside the surging area and contribute to the improvement of load change speed.

【0009】[0009]

【実施例】以下本発明の一実施例を図面について説明す
ると、図1,図2は本発明の実施例に係るプラント系統
図である。図において、加圧流動床プラントは加圧容器
1、加圧流動床ボイラー2、ガスタービン3、空気圧縮
機4、スタックガスクーラー5、蒸気タービン6、セラ
ミックフィルター7、並びに石炭供給装置8を主たる機
器として構成されている。10はガスタービンに直結さ
れた発電機であり起動時などガスタービンの出力が空気
圧縮機の動力を下回るときは電動機として機能する。ま
た11は蒸気タービンに直結している発電機である。加
圧流動床ボイラー2には空気圧縮機4にて加圧された空
気が導入される。また石炭供給装置8からは昇圧機9を
通して昇圧された空気と共に石炭が供給される。また石
炭供給がスラリー等の湿式供給の場合は直接流動床内へ
供給される。加圧流動床ボイラーは石炭石などの流動材
がベッド材として入っていて流動床を構成している。流
動床内には蒸気を発生又は加圧するチューブが入ってい
て、発生した蒸気は蒸気タービン6を駆動する。加圧流
動床ボイラー2で発生した高温高圧のガスはセラミック
フィルター7で除塵された後ガスタービンを回転させ熱
エネルギーを機械エネルギーに変換して圧力が大気圧に
近くなり、かつ温度が低くなったガスがスタックガスク
ーラー5で水、蒸気系と熱交換して煙突12から排出さ
れる。空気圧縮機出口の加圧された空気は空気制御弁1
3を通して空気フィルター15の入口又は出口に再循環
され混合後、IGVを経由して空気圧縮機4で加圧され
る。図1はガスタービンの起動方式が発電機の周波数制
御による例であるが、図2のようにガスタービン起動用
コンバスタ16を設置することもある。図2に示すもの
ではガスタービン起動時にライン17の弁18を開けて
空気圧縮機4からの燃焼用空気を一部分岐させ、コンバ
スタ16の燃焼用空気に供する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 are plant system diagrams according to the embodiments of the present invention. In the figure, the pressurized fluidized bed plant mainly includes a pressurized vessel 1, a pressurized fluidized bed boiler 2, a gas turbine 3, an air compressor 4, a stack gas cooler 5, a steam turbine 6, a ceramic filter 7, and a coal supply device 8. It is configured as a device. Reference numeral 10 is a generator directly connected to the gas turbine, and functions as an electric motor when the output of the gas turbine is lower than the power of the air compressor at the time of starting. Further, 11 is a generator directly connected to the steam turbine. Air pressurized by the air compressor 4 is introduced into the pressurized fluidized bed boiler 2. Further, coal is supplied from the coal supply device 8 together with the air whose pressure is increased through the booster 9. When the coal is supplied by a wet method such as slurry, it is directly supplied into the fluidized bed. The pressurized fluidized bed boiler contains a fluidized material such as coal stone as a bed material to form a fluidized bed. A tube for generating or pressurizing steam is contained in the fluidized bed, and the generated steam drives the steam turbine 6. The high temperature and high pressure gas generated in the pressurized fluidized bed boiler 2 is dedusted by the ceramic filter 7 and then the gas turbine is rotated to convert thermal energy into mechanical energy so that the pressure becomes close to the atmospheric pressure and the temperature becomes low. The gas exchanges heat with the water and steam systems in the stack gas cooler 5 and is discharged from the chimney 12. The compressed air at the outlet of the air compressor is controlled by the air control valve 1
After being recirculated through 3 to the inlet or outlet of the air filter 15 and mixed, it is pressurized by the air compressor 4 via the IGV. Although FIG. 1 shows an example in which the gas turbine starting method is based on frequency control of the generator, a gas turbine starting combustor 16 may be installed as shown in FIG. In the configuration shown in FIG. 2, the valve 18 of the line 17 is opened at the time of starting the gas turbine to partly branch the combustion air from the air compressor 4 and supply it to the combustion air of the combustor 16.

【0010】[0010]

【発明の効果】以上詳細に説明した如く本発明によれ
ば、空気圧縮機の出口部から空気制御弁を通して空気吸
い込み口へ循環することでIGVを通過して圧縮機に導
入する空気温度は上昇して、加圧流動床ボイラーへ供給
される空気質量の関係は図3の通り減少させることがで
き、再循環することで負荷に見合った空気量の供給が可
能となった。またこの結果例えばプラント最低負荷のN
Ox 発生量が約20%減る結果が得られることになる。
また負荷と効率の関係を図4に示すと最低負荷から50
%負荷の間で数%の効率向上を招いている。更に低い負
荷だけでなく起動時は加圧流動床ボイラーでの燃焼は通
常運転に比べ更に酸素濃度の高い運転、即ち、石炭投入
量に比べ空気量が多い状態となる。このような起動時で
も本発明により空気を空気圧縮機入口に再循環する事で
ガス系の運転圧力を下げ流動床の空塔速度を維持しなが
らも、低き空気量での運転が可能となる。また付随的な
利点として本発明による再循環空気の混合口を空気圧縮
機入口に設置される空気フィルター凍結防止も兼ねるこ
とが可能である等の優れた効果を奏することができる。
As described in detail above, according to the present invention, the temperature of the air introduced into the compressor through the IGV is increased by circulating the air from the outlet of the air compressor to the air intake through the air control valve. Then, the relationship of the mass of air supplied to the pressurized fluidized bed boiler can be reduced as shown in FIG. 3, and the amount of air corresponding to the load can be supplied by recirculating. As a result of this, for example, the minimum load N
The result is that the amount of Ox generated is reduced by about 20%.
In addition, the relationship between load and efficiency is shown in Fig.
It leads to efficiency improvement of several% between% loads. In addition to a lower load, the combustion in the pressurized fluidized bed boiler has a higher oxygen concentration than the normal operation at the time of startup, that is, a state in which the amount of air is larger than the amount of coal input. Even at such start-up, the present invention recirculates air to the inlet of the air compressor to lower the operating pressure of the gas system and maintain the superficial velocity of the fluidized bed, while enabling operation with a low air amount. Become. Further, as an additional advantage, it is possible to obtain an excellent effect that the mixing port of the recirculated air according to the present invention can also serve as the prevention of freezing of the air filter installed at the inlet of the air compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラント系統図である。FIG. 1 is a plant system diagram of the present invention.

【図2】他の実施例としての本発明のプラント系統図で
ある。
FIG. 2 is a plant system diagram of another embodiment of the present invention.

【図3】プラント負荷と流動床ボイラーへの空気量を示
した図である。
FIG. 3 is a diagram showing plant load and the amount of air to a fluidized bed boiler.

【図4】プラント負荷とプラント効率を示した図であ
る。
FIG. 4 is a diagram showing plant load and plant efficiency.

【図5】プラント負荷とNOx 発生量を示した図であ
る。
FIG. 5 is a diagram showing plant load and NOx generation amount.

【図6】圧縮機の運転特性を示した図である。FIG. 6 is a diagram showing operating characteristics of a compressor.

【図7】従来技術によるプラント系統図である。FIG. 7 is a plant system diagram according to a conventional technique.

【図8】従来技術によるプラント系統図である。FIG. 8 is a plant system diagram according to a conventional technique.

【図9】絞り段数と空気量の図である。FIG. 9 is a diagram of the number of throttle stages and the amount of air.

【符号の説明】[Explanation of symbols]

1 加圧容器 2 加圧流動床ボイラー 3 ガスタービン 4 空気圧縮機 5 スタークガスクーラー 6 蒸気タービン 7 セラミックフィルター 8 石炭供給装置 9 昇圧機 10,11 発電機 13 空気制御弁 1 Pressurized Container 2 Pressurized Fluidized Bed Boiler 3 Gas Turbine 4 Air Compressor 5 Stark Gas Cooler 6 Steam Turbine 7 Ceramic Filter 8 Coal Supply Device 9 Booster 10, 11 Generator 13 Air Control Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンにより駆動される空気圧縮
機と、石炭と空気圧縮機からの空気を燃焼することで燃
焼ガスを生成する加圧流動床ボイラーと、通常運転時燃
焼ガスにより駆動されるガスタービンと、ガスタービン
の排ガスを給水等へ熱交換するスタックガスクーラーと
スタックガスクーラー及び流動床ボイラーとの熱交換で
発生した蒸気により駆動する蒸気タービン及びプラント
を構成する補機で構成される加圧流動床プラントにおい
て、圧縮空気を空気圧縮機入口にバイパスするバイパス
配管と同配管上に設けられた制御弁を備えてなること特
徴とする加圧流動床プラント。
1. An air compressor driven by a gas turbine, a pressurized fluidized bed boiler that generates combustion gas by burning coal and air from the air compressor, and a combustion gas driven during normal operation. It consists of a gas turbine, a stack gas cooler for exchanging heat from the exhaust gas of the gas turbine to feed water, etc., and a steam turbine driven by steam generated by heat exchange between the stack gas cooler and a fluidized bed boiler, and auxiliary equipment that constitutes a plant. A pressurized fluidized bed plant comprising a bypass pipe for bypassing compressed air to an air compressor inlet and a control valve provided on the pipe.
JP31059694A 1994-12-14 1994-12-14 Pressurized fluidized bed plant Pending JPH08166109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31059694A JPH08166109A (en) 1994-12-14 1994-12-14 Pressurized fluidized bed plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31059694A JPH08166109A (en) 1994-12-14 1994-12-14 Pressurized fluidized bed plant

Publications (1)

Publication Number Publication Date
JPH08166109A true JPH08166109A (en) 1996-06-25

Family

ID=18007162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31059694A Pending JPH08166109A (en) 1994-12-14 1994-12-14 Pressurized fluidized bed plant

Country Status (1)

Country Link
JP (1) JPH08166109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000586A1 (en) * 1997-06-27 1999-01-07 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized-bed combined cycle power generation system
JP2012172968A (en) * 2011-02-23 2012-09-10 Samsung Techwin Co Ltd Steam supply system
WO2015033770A1 (en) * 2013-09-03 2015-03-12 月島機械株式会社 Pressurized fluidized bed incinerator facility and method for controlling pressurized fluidized bed incinerator facility
US10208758B2 (en) 2015-11-12 2019-02-19 Industrial Technology Research Institute Internal hot gas bypass device coupled with inlet guide vane for centrifugal compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000586A1 (en) * 1997-06-27 1999-01-07 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized-bed combined cycle power generation system
JP2012172968A (en) * 2011-02-23 2012-09-10 Samsung Techwin Co Ltd Steam supply system
WO2015033770A1 (en) * 2013-09-03 2015-03-12 月島機械株式会社 Pressurized fluidized bed incinerator facility and method for controlling pressurized fluidized bed incinerator facility
JP2015049012A (en) * 2013-09-03 2015-03-16 月島機械株式会社 Pressurized fluidized bed incinerator facilities and pressurized fluidized bed incinerator facilities control method
US10208758B2 (en) 2015-11-12 2019-02-19 Industrial Technology Research Institute Internal hot gas bypass device coupled with inlet guide vane for centrifugal compressor

Similar Documents

Publication Publication Date Title
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
CN106089342B (en) Electricity generation system
JP5791616B2 (en) Power generation device, capture-compatible power generation device, and operation method thereof
US20140331686A1 (en) Gas turbine combined cycle system
JP4991986B2 (en) Pressure incinerator equipment and its startup method
JPH10184315A (en) Gas turbine generating device
JP5840559B2 (en) Exhaust gas recirculation type gas turbine power plant operating method and exhaust gas recirculation type gas turbine power plant
WO1999045321A1 (en) An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
US6672069B1 (en) Method and device for increasing the pressure of a gas
JPH08166109A (en) Pressurized fluidized bed plant
JPH07332109A (en) Compressed air storage type power generating plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2001020755A (en) Exhaust re-circulation type gas turbine system and combined cycle generator facility with the gas turbine system
JP7008296B2 (en) Air gas turbine device by reverse Brayton cycle and its control method
JPH04358708A (en) Gasified compound power generation plant
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JP3585544B2 (en) Operating method of integrated coal gasification combined cycle power plant
JP4288845B2 (en) Gas turbine system
JPH08158890A (en) Driving method of coal gasification composite power plant
RU2767677C1 (en) Method of reducing the power of a gas turbine plant below its permissible lower limit of the control range
JP4550677B2 (en) High humidity gas turbine equipment and operation method thereof
JPH10176505A (en) Composite power plant
JP2002021579A (en) Method of controlling combined cycle plant provided with gas turbine and must-heat recovery boiler, and controller therefor