JPH06136588A - Electrocasting method for production of nickel stamper for optical disk - Google Patents

Electrocasting method for production of nickel stamper for optical disk

Info

Publication number
JPH06136588A
JPH06136588A JP28220192A JP28220192A JPH06136588A JP H06136588 A JPH06136588 A JP H06136588A JP 28220192 A JP28220192 A JP 28220192A JP 28220192 A JP28220192 A JP 28220192A JP H06136588 A JPH06136588 A JP H06136588A
Authority
JP
Japan
Prior art keywords
current density
electroforming
stamper
increase
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28220192A
Other languages
Japanese (ja)
Other versions
JP3232703B2 (en
Inventor
Kazuyuki Chiba
和幸 千葉
Michio Okamoto
美智雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP28220192A priority Critical patent/JP3232703B2/en
Publication of JPH06136588A publication Critical patent/JPH06136588A/en
Application granted granted Critical
Publication of JP3232703B2 publication Critical patent/JP3232703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To improve substrate characteristics and to reduce substrate production cost by increasing a current density with an increase in electrocasting time and maintaining the specified current density in succession thereto, then repeating the same operation again. CONSTITUTION:The nickel stamper for optical disks is produced by electrocasting. The current density is, thereupon, increased with the increase in the electrocasting time in a process 1. In succession, the specified current density is maintained in the process 2. The current density is increased again with the increase in the time in a process 3. The specified current density is maintained in a process 4. The ratio of the increase in the current density in the process 1 is specified to 2 to 100A/dm<2>/hr. The quantity of electricity in the process 1 is specified to 0.1 to 33% of the total quantity of electricity required for the electrocasting. The value of the current density in the process 2 is specified to 2 to 10A/dm<2>. The quantity of electricity in the process 2 is specified to 3 to 20% of the total quantity of electricity. As a result, the durability of the stamper is improved and injection molding conditions are stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク用ニッケル
スタンパ製造のための電鋳方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroforming method for producing a nickel stamper for optical disks.

【0002】[0002]

【従来の技術】光ディスクは、フロッピーディスクやハ
ードディスクに比べ、その容量の大きさ及び記録密度の
高さなどに特徴があり、現在盛んに研究開発が行われて
いる。一般に、光ディスク用の基板は、上記の優れた特
徴を保持しながら、大量生産が可能なようにスタンパを
用いて射出成形によって生産されている。この際、スタ
ンパには、グル−ブやピットが形成されており、これら
が、光ディスクに転写されるようになっている。従っ
て、スタンパには、原盤としての高度な精度および射出
成形の際の耐久性が要求される。この耐久性は射出条件
にはもちろん、スタンパの信号面硬度にも大きく依存す
る。
2. Description of the Related Art Optical discs are characterized by their large capacity and high recording density as compared with floppy discs and hard discs, and are currently being actively researched and developed. In general, a substrate for an optical disk is produced by injection molding using a stamper so that it can be mass-produced while maintaining the above excellent characteristics. At this time, a groove and a pit are formed on the stamper, and these are transferred to the optical disc. Therefore, the stamper is required to have high precision as a master and durability during injection molding. This durability greatly depends not only on the injection conditions but also on the signal surface hardness of the stamper.

【0003】これまでの光ディスク用スタンパの製造方
法は、例えば、以下に示すような方法で行われている。
すなわち、表面研磨したガラス基板にレジストを必要な
厚さにスピンコ−ト法で均一に塗布し、プリベ−ク後レ
−ザ−カッティングマシ−ンで所望のパターンに露光し
た後、レジストを現像してピット及び/又はグル−ブを
形成する。このピット及び/又はグル−ブを有するレジ
スト付きガラス基板表面上に銀あるいはニッケルなどを
無電解メッキ法、スパッタ法、あるいは真空蒸着法など
により被覆し、導電性を保持させた後、電鋳により任意
の厚みのニッケルを折出させる。その後、ニッケルをガ
ラス基板より剥離し、スタンパ信号面に残ったレジスト
を溶剤により除去し、洗浄する。そのあと裏面を研磨・
洗浄し次いで内・外径を加工してスタンパとして完成さ
せる。
The conventional method of manufacturing an optical disk stamper is performed, for example, by the following method.
That is, a resist having a required thickness is uniformly applied to a surface-polished glass substrate by a spin coat method, and after exposure to a desired pattern by a laser cutting machine after prebaking, the resist is developed. To form pits and / or grooves. The surface of the glass substrate with resist having the pits and / or grooves is coated with silver or nickel by electroless plating, sputtering, vacuum deposition, or the like to maintain conductivity and then electroforming. Nickel of arbitrary thickness is projected. Then, the nickel is peeled off from the glass substrate, the resist remaining on the signal surface of the stamper is removed by a solvent, and cleaning is performed. Then polish the back side
After cleaning, the inner and outer diameters are processed to complete a stamper.

【0004】従来、ニッケルを折出させる際の電鋳方法
としては、電鋳時間の増大と共に電流密度を徐々に増加
する電鋳前期過程と電鋳時間の増大に関わりなく一定の
電流密度を維持する電鋳後期過程からなっていた。電鋳
前期過程はニッケルの厚みを徐々に増大させることによ
って、電鋳の際の発熱によるレジストのガラス原盤から
の剥離を防止するために行われている。また、電鋳後期
過程は得られるスタンパの物理特性を一定にするため
に、一定の電流密度で電鋳を行っている。
Conventionally, as a method of electroforming when nickel is extruded, a constant current density is maintained irrespective of the electroforming early stage process in which the current density is gradually increased as the electroforming time is increased and the electroforming time is increased. It consisted of the latter stage of electroforming. The early stage of electroforming is carried out by gradually increasing the thickness of nickel to prevent the resist from peeling off from the glass master due to heat generated during electroforming. In the latter stage of electroforming, electroforming is performed at a constant current density in order to make the physical properties of the stamper obtained constant.

【0005】しかしながら、このように2種類の過程で
電鋳を行うと、スタンパの信号面硬度を支配する電鋳初
期過程において、電流密度が一定でないためにスタンパ
硬度の再現性が低下するだけでなく、期待された信号面
硬度を有するスタンパの製造が困難になる。これは射出
成型条件の大きな変更をもたらすだけでなく、成型によ
り得られるプラスチック基板の枚数が大きく変わること
になるという問題点があった。
However, when the electroforming is performed in two kinds of processes as described above, the reproducibility of the stamper hardness is deteriorated because the current density is not constant in the initial stage of electroforming in which the signal surface hardness of the stamper is controlled. Therefore, it becomes difficult to manufacture a stamper having the expected signal surface hardness. This not only causes a large change in injection molding conditions, but also has a problem in that the number of plastic substrates obtained by molding changes significantly.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、信号面硬度の支配的因子である電鋳初
期過程において、硬度制御のために電流密度が一定であ
る過程を電鋳初期過程に設けることにより、信号面硬度
の制御が比較的容易であり、再現性があり、しかも歩留
まりの高い光ディスク用スタンパ製造のための電鋳方法
を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and to provide a process in which the current density is constant for hardness control in the initial stage of electroforming, which is the dominant factor of signal surface hardness. An object of the present invention is to provide an electroforming method for manufacturing a stamper for an optical disc, which is relatively easy to control the signal surface hardness, has reproducibility, and has a high yield by being provided in the initial stage of electroforming.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために鋭意検討を行った結果、電鋳により
光ディスク用スタンパを製造する際の電流波形およびそ
の時の電気量をより細かく制御することにより期待され
た信号面硬度を有するスタンパを得られることを見出
し、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the current waveform and the quantity of electricity at that time when manufacturing a stamper for an optical disk by electroforming are better. It has been found that a stamper having the expected signal surface hardness can be obtained by finely controlling, and the present invention has been completed.

【0008】すなわち本発明は、電鋳時間の増大と共に
電流密度を増加させる過程1、続いて信号面硬度を制御
するための一定の電流密度を維持する過程2、再び時間
の増大と共に電流密度を増加させる過程3、および一定
の電流密度を維持する過程4からなる電流密度波形を用
いて電鋳を行うことを特徴とする光ディスク用ニッケル
スタンパ製造のための電鋳方法である。
That is, according to the present invention, the process 1 of increasing the current density with the increase of the electroforming time, the process 2 of maintaining a constant current density for controlling the signal surface hardness, and the process 2 of increasing the current density again with the increase of the time. An electroforming method for producing a nickel stamper for an optical disk is characterized in that electroforming is performed using a current density waveform including a step 3 of increasing and a step 4 of maintaining a constant current density.

【0009】以下、本発明を図を用いて詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0010】本発明の電流密度波形の模式的な一例を図
1に示す。比較のために、図2にこれまで用いられてい
た電流密度波形を示す。
FIG. 1 shows a schematic example of the current density waveform of the present invention. For comparison, FIG. 2 shows a current density waveform used so far.

【0011】過程1の電流密度の増大の割合は、レジス
ト表面に被覆された導電性膜の種類、厚み、そして電気
抵抗値などにもよるが、2ないし100A/dm/h
rが望ましい。2A/dm/hr未満であると、電解
液が弱酸性であるために導電膜の溶解が起きたり、ニッ
ケル析出の競争反応である水素ガスの発生が優先して起
こりスタンパの厚みに再現性が失われてしまったり、ま
た、100A/dm/hrを越えると、上記したよう
に電気抵抗による発熱のためにレジストのガラス原盤か
らの剥離が生じるおそれがある。さらに、この過程の電
気量は全電気量に対して0.1%ないし3%であること
が望ましく、0.1%未満であると徐々に電流密度を増
大させることの目的が達成されず、3%を越えるとスタ
ンパの信号面硬度の制御の再現性が乏しくなる場合があ
る。この過程1においては、上述のように電流密度を時
間と共に増大させてゆくが、過程1における最終的電流
密度としては、過程2で所望する値と等しくすることが
望ましい。
The rate of increase in the current density in the step 1 depends on the type, thickness, and electric resistance of the conductive film coated on the resist surface, but it is 2 to 100 A / dm 2 / h.
r is desirable. When it is less than 2 A / dm 2 / hr, the electrolytic solution is weakly acidic, so that the conductive film is dissolved or hydrogen gas, which is a competitive reaction of nickel deposition, is preferentially generated, and the thickness of the stamper is reproducible. Is lost, or if it exceeds 100 A / dm 2 / hr, the resist may peel off from the glass master due to the heat generated by the electric resistance as described above. Furthermore, the amount of electricity in this process is preferably 0.1% to 3% with respect to the total amount of electricity, and if it is less than 0.1%, the purpose of gradually increasing the current density cannot be achieved. If it exceeds 3%, the reproducibility of the control of the signal surface hardness of the stamper may be poor. In the process 1, the current density is increased with time as described above, but it is desirable that the final current density in the process 1 be equal to the value desired in the process 2.

【0012】過程2における一定の電流密度の値は、す
なわちこの値によりスタンパの信号面硬度が支配される
のであるが、電鋳液の組成、目的とするスタンパの信号
面硬度などにより異なるが、2ないし10A/dm
望ましい。2A/dm未満であると副電解反応が優先
して起きたり、内部応力が大きくなったりするため硬度
の再現性が低下したり、スタンパが変形する場合があ
る。10A/dmを越えると、従来の電流密度波形と
大差なくなってしまう。
The value of the constant current density in step 2, that is, the signal surface hardness of the stamper is governed by this value, but it depends on the composition of the electroforming liquid, the desired signal surface hardness of the stamper, and the like. 2 to 10 A / dm 2 is desirable. If it is less than 2 A / dm 2 , the side electrolysis reaction may occur preferentially, the internal stress may increase, and thus the reproducibility of hardness may be deteriorated or the stamper may be deformed. When it exceeds 10 A / dm 2 , there is almost no difference from the conventional current density waveform.

【0013】この時の電気量は全電気量に対して3%な
いし20%であることが望ましい。3%未満であると信
号面硬度は過程3および4の条件により優先的に支配さ
れ期待された信号面硬度が得られにくくなるだけでな
く、その再現性も乏しくなる。また、20%以上として
も何等差支えないが、信号面硬度の増大はほとんど見ら
れず、しかもこの過程における電流密度が小さいために
スタンパの製造時間が長くなるだけである。
The amount of electricity at this time is preferably 3% to 20% of the total amount of electricity. If it is less than 3%, the signal surface hardness is preferentially controlled by the conditions of steps 3 and 4, and it becomes difficult to obtain the expected signal surface hardness, and the reproducibility thereof is poor. Although it does not matter if it is 20% or more, almost no increase in the hardness of the signal surface is observed, and since the current density in this process is small, the stamper manufacturing time only increases.

【0014】過程3の電流密度の増大の割合は、すでに
ニッケルがある程度の厚さまで電析しているために過程
1よりも大きくすることができ、その値は特に限定され
るものではないが、10ないし200A/dm/hr
が望ましい。10A/dm/hr未満であってもよい
が時間がかかるだけである。また、200A/dm
hrを越えると、電解反応によるジュール熱の発生のた
めに電鋳液温が局所的に急激に変化するため、再現性が
乏しくなる。また、ガラス原盤の割れが生じるおそれが
ある。この過程の電気量はスタンパの信号面硬度に再現
性が得られる限り特に限定されないが、全電気量に対し
て0.5%ないし10%であることが望ましく、0.5
%未満であると電鋳時の発熱、10%を越えると電鋳時
間の増大を引き起こす可能性がある。この過程3におい
ては、上述のように電流密度を時間と共に増大させてゆ
くが、過程3における最終的電流密度としては、過程4
で所望する値と等しくすることが望ましい。
The rate of increase in the current density in step 3 can be made larger than in step 1 because nickel is already electrodeposited to a certain thickness, and the value is not particularly limited. 10 to 200 A / dm 2 / hr
Is desirable. It may be less than 10 A / dm 2 / hr, but it only takes time. In addition, 200 A / dm 2 /
When it exceeds hr, the temperature of the electroforming liquid rapidly changes locally due to the generation of Joule heat due to the electrolytic reaction, resulting in poor reproducibility. Moreover, the glass master may be cracked. The amount of electricity in this process is not particularly limited as long as the signal surface hardness of the stamper is reproducible, but is preferably 0.5% to 10% with respect to the total amount of electricity.
If it is less than 10%, heat generation during electroforming may occur, and if it exceeds 10%, electroforming time may increase. In the process 3, the current density is increased with time as described above, but the final current density in the process 3 is the process 4
It is desirable to make it equal to the desired value.

【0015】過程4の電流密度は、電鋳液組成、電鋳上
がりの裏面粗さなどにより任意に決定することができる
が、8ないし30A/dmとすることが望ましい。8
A/dm未満であると本発明の効果がほとんどなく、
30A/dmより大きいと電鋳終了のわずかなタイミ
ングのズレや電気量計の測定誤差などにより、スタンパ
の厚みが所望したものと異なってしまう恐れがある。
The current density in step 4 can be arbitrarily determined depending on the composition of the electroforming solution, the roughness of the back surface after electroforming, etc., but is preferably 8 to 30 A / dm 2 . 8
If it is less than A / dm 2 , the effect of the present invention is hardly exerted,
If it is more than 30 A / dm 2 , the thickness of the stamper may be different from the desired one due to a slight timing deviation of electroforming or a measurement error of the coulometer.

【0016】レジスト表面の導電性の付与の方法は、特
に限定されるものではないが、スパッタ法、真空蒸着
法、および無電解メッキ法などの通常の方法を例示する
ことができる。また、その際に用いられる金属も特に限
定されるものではなく、銀、ニッケル、あるいはそれら
を主成分とする合金などを例示することができる。
The method of imparting electrical conductivity to the resist surface is not particularly limited, but a usual method such as a sputtering method, a vacuum vapor deposition method and an electroless plating method can be exemplified. Further, the metal used in that case is not particularly limited, and silver, nickel, or an alloy containing them as a main component can be exemplified.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、スタンパの信号面硬度を制御することがで
き、スタンパの耐久性の向上、射出成型条件の安定化、
およびそれによる基板特性の改善、基板生産コストの低
減などの効果がある。
As apparent from the above description, according to the present invention, the signal surface hardness of the stamper can be controlled, the durability of the stamper can be improved, and the injection molding conditions can be stabilized.
Further, there are effects such as improvement of substrate characteristics and reduction of substrate production cost.

【0018】[0018]

【実施例】本発明をさらに詳細に説明するために以下に
実施例をあげるが、本発明はこれらに限定されるもので
はない. 実施例1 450g/lのスルファミン酸ニッケル4水和物、35
g/lのほう酸、5g/lの塩化ニッケル6水和物およ
びピット防止剤を主成分とする50℃の電鋳液におい
て、過程1の電流密度の増大の割合を50A/dm
hr、過程2の一定電流密度を3A/dm、過程3の
電流密度の増大の割合を100A/dm/hr、過程
4の一定電流密度を10A/dmとし、またそれぞれ
の電気量の割合は1%、10%、5%および84%とし
て、信号面硬度が約260である光ディスク用ニッケル
スタンパを製造した。
The following examples are given to illustrate the present invention in more detail, but the present invention is not limited thereto. Example 1 450 g / l nickel sulfamate tetrahydrate, 35
In a 50 ° C. electroforming solution containing g / l boric acid, 5 g / l nickel chloride hexahydrate and a pit inhibitor as main components, the rate of increase in current density in step 1 was 50 A / dm 2 /
hr, the constant current density of process 2 is 3 A / dm 2 , the rate of increase of the current density of process 3 is 100 A / dm 2 / hr, the constant current density of process 4 is 10 A / dm 2, and Nickel stampers for optical discs having a signal surface hardness of about 260 were manufactured with the proportions of 1%, 10%, 5% and 84%.

【0019】実施例2 過程2の一定電流密度を4A/dmとした以外は、実
施例1と同様の方法で信号面硬度が約250である光デ
ィスク用ニッケルスタンパを製造した。
Example 2 A nickel stamper for an optical disk having a signal surface hardness of about 250 was manufactured in the same manner as in Example 1 except that the constant current density in Step 2 was 4 A / dm 2 .

【0020】実施例3 過程2の一定電流密度を8A/dmとした以外は、実
施例1と同様の方法で信号面硬度が約220である光デ
ィスク用ニッケルスタンパを製造した。
Example 3 A nickel stamper for an optical disk having a signal surface hardness of about 220 was manufactured in the same manner as in Example 1 except that the constant current density in Step 2 was set to 8 A / dm 2 .

【0021】実施例4 過程2の電気量の割合を20%、過程4の電気量の割合
を74%とした以外は、実施例1と同様の方法で信号面
硬度が約265である光ディスク用ニッケルスタンパを
製造した。
Example 4 For an optical disc having a signal surface hardness of about 265 in the same manner as in Example 1 except that the ratio of the amount of electricity in the process 2 was 20% and the ratio of the amount of electricity in the process 4 was 74%. A nickel stamper was manufactured.

【0022】実施例5 過程2の電気量の割合を3%、過程4の電気量の割合を
82%とした以外は、実施例1と同様の方法で信号面硬
度が約240である光ディスク用ニッケルスタンパを製
造した。
Example 5 For an optical disc having a signal surface hardness of about 240 in the same manner as in Example 1 except that the ratio of the amount of electricity in the process 2 was 3% and the ratio of the amount of electricity in the process 4 was 82%. A nickel stamper was manufactured.

【0023】実施例6 過程1の電流密度の増大の割合を10A/dm/hr
とした以外は、実施例1と同様の方法で信号面硬度が約
265である光ディスク用ニッケルスタンパを製造し
た。 実施例7過程1の電流密度の増大の割合を100
A/dm/hrとした以外は、実施例1と同様の方法
で信号面硬度が約255である光ディスク用ニッケルス
タンパを製造した。
Example 6 The increase rate of the current density in the process 1 was set to 10 A / dm 2 / hr.
A nickel stamper for an optical disk having a signal surface hardness of about 265 was manufactured in the same manner as in Example 1 except that the above was used. Example 7 The rate of increase in current density in step 1 is set to 100.
A nickel stamper for an optical disc having a signal surface hardness of about 255 was manufactured in the same manner as in Example 1 except that A / dm 2 / hr was used.

【0024】[0024]

【図面の間単な説明】[Simple explanation of the drawings]

【0025】[0025]

【図1】 本発明による電流密度波形の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a current density waveform according to the present invention.

【0026】[0026]

【図2】 従来用いられている電流密度波形の一例を示
す図である。
FIG. 2 is a diagram showing an example of a conventionally used current density waveform.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月2日[Submission date] December 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による電流密度波形の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a current density waveform according to the present invention.

【図2】 従来用いられている電流密度波形の一例を示
す図である。
FIG. 2 is a diagram showing an example of a conventionally used current density waveform.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク用ニッケル
スタンパ製造のための電鋳方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroforming method for producing a nickel stamper for optical disks.

【0002】[0002]

【従来の技術】光ディスクは、フロッピーディスクやハ
ードディスクに比べ、その容量の大きさ及び記録密度の
高さなどに特徴があり、現在盛んに研究開発が行われて
いる。一般に、光ディスク用の基板は、上記の優れた特
徴を保持しながら、大量生産が可能なようにスタンパを
用いて射出成形によって生産されている。この際、スタ
ンパには、グル−ブやピットが形成されており、これら
が、光ディスクに転写されるようになっている。従っ
て、スタンパには、原盤としての高度な精度および射出
成形の際の耐久性が要求される。この耐久性は射出条件
にはもちろん、スタンパの信号面硬度にも大きく依存す
る。
2. Description of the Related Art Optical discs are characterized by their large capacity and high recording density as compared with floppy discs and hard discs, and are currently being actively researched and developed. In general, a substrate for an optical disk is produced by injection molding using a stamper so that it can be mass-produced while maintaining the above excellent characteristics. At this time, a groove and a pit are formed on the stamper, and these are transferred to the optical disc. Therefore, the stamper is required to have high precision as a master and durability during injection molding. This durability greatly depends not only on the injection conditions but also on the signal surface hardness of the stamper.

【0003】これまでの光ディスク用スタンパの製造方
法は、例えば、以下に示すような方法で行われている。
すなわち、表面研磨したガラス基板にレジストを必要な
厚さにスピンコ−ト法で均一に塗布し、プリベ−ク後レ
−ザ−カッティングマシ−ンで所望のパターンに露光し
た後、レジストを現像してピット及び/又はグル−ブを
形成する。このピット及び/又はグル−ブを有するレジ
スト付きガラス基板表面上に銀あるいはニッケルなどを
無電解メッキ法、スパッタ法、あるいは真空蒸着法など
により被覆し、導電性を保持させた後、電鋳により任意
の厚みのニッケルを折出させる。その後、ニッケルをガ
ラス基板より剥離し、スタンパ信号面に残ったレジスト
を溶剤により除去し、洗浄する。そのあと裏面を研磨・
洗浄し次いで内・外径を加工してスタンパとして完成さ
せる。
The conventional method of manufacturing an optical disk stamper is performed, for example, by the following method.
That is, a resist having a required thickness is uniformly applied to a surface-polished glass substrate by a spin coat method, and after exposure to a desired pattern by a laser cutting machine after prebaking, the resist is developed. To form pits and / or grooves. The surface of the glass substrate with resist having the pits and / or grooves is coated with silver or nickel by electroless plating, sputtering, vacuum deposition, or the like to maintain conductivity and then electroforming. Nickel of arbitrary thickness is projected. Then, the nickel is peeled off from the glass substrate, the resist remaining on the signal surface of the stamper is removed by a solvent, and cleaning is performed. Then polish the back side
After cleaning, the inner and outer diameters are processed to complete a stamper.

【0004】従来、ニッケルを折出させる際の電鋳方法
としては、電鋳時間の増大と共に電流密度を徐々に増加
する電鋳前期過程と電鋳時間の増大に関わりなく一定の
電流密度を維持する電鋳後期過程からなっていた。電鋳
前期過程はニッケルの厚みを徐々に増大させることによ
って、電鋳の際の発熱によるレジストのガラス原盤から
の剥離を防止するために行われている。また、電鋳後期
過程は得られるスタンパの物理特性を一定にするため
に、一定の電流密度で電鋳を行っている。
Conventionally, as a method of electroforming when nickel is extruded, a constant current density is maintained irrespective of the electroforming early stage process in which the current density is gradually increased as the electroforming time is increased and the electroforming time is increased. It consisted of the latter stage of electroforming. The early stage of electroforming is carried out by gradually increasing the thickness of nickel to prevent the resist from peeling off from the glass master due to heat generated during electroforming. In the latter stage of electroforming, electroforming is performed at a constant current density in order to make the physical properties of the stamper obtained constant.

【0005】しかしながら、このように2種類の過程で
電鋳を行うと、スタンパの信号面硬度を支配する電鋳初
期過程において、電流密度が一定でないためにスタンパ
硬度の再現性が低下するだけでなく、期待された信号面
硬度を有するスタンパの製造が困難になる。これは射出
成型条件の大きな変更をもたらすだけでなく、成型によ
り得られるプラスチック基板の枚数が大きく変わること
になるという問題点があった。
However, when the electroforming is performed in two kinds of processes as described above, the reproducibility of the stamper hardness is deteriorated because the current density is not constant in the initial stage of electroforming in which the signal surface hardness of the stamper is controlled. Therefore, it becomes difficult to manufacture a stamper having the expected signal surface hardness. This not only causes a large change in injection molding conditions, but also has a problem in that the number of plastic substrates obtained by molding changes significantly.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、信号面硬度の支配的因子である電鋳初
期過程において、硬度制御のために電流密度が一定であ
る過程を電鋳初期過程に設けることにより、信号面硬度
の制御が比較的容易であり、再現性があり、しかも歩留
まりの高い光ディスク用スタンパ製造のための電鋳方法
を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and to provide a process in which the current density is constant for hardness control in the initial stage of electroforming, which is the dominant factor of signal surface hardness. An object of the present invention is to provide an electroforming method for manufacturing a stamper for an optical disc, which is relatively easy to control the signal surface hardness, has reproducibility, and has a high yield by being provided in the initial stage of electroforming.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために鋭意検討を行った結果、電鋳により
光ディスク用スタンパを製造する際の電流波形およびそ
の時の電気量をより細かく制御することにより期待され
た信号面硬度を有するスタンパを得られることを見出
し、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the current waveform and the quantity of electricity at that time when manufacturing a stamper for an optical disk by electroforming are better. It has been found that a stamper having the expected signal surface hardness can be obtained by finely controlling, and the present invention has been completed.

【0008】すなわち本発明は、電鋳時間の増大と共に
電流密度を増加させる過程1、続いて信号面硬度を制御
するための一定の電流密度を維持する過程2、再び時間
の増大と共に電流密度を増加させる過程3、および一定
の電流密度を維持する過程4からなる電流密度波形を用
いて電鋳を行うことを特徴とする光ディスク用ニッケル
スタンパ製造のための電鋳方法である。
That is, according to the present invention, the process 1 of increasing the current density with the increase of the electroforming time, the process 2 of maintaining a constant current density for controlling the signal surface hardness, and the process 2 of increasing the current density again with the increase of the time. An electroforming method for producing a nickel stamper for an optical disk is characterized in that electroforming is performed using a current density waveform including a step 3 of increasing and a step 4 of maintaining a constant current density.

【0009】以下、本発明を図を用いて詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0010】本発明の電流密度波形の模式的な一例を図
1に示す。比較のために、図2にこれまで用いられてい
た電流密度波形を示す。
FIG. 1 shows a schematic example of the current density waveform of the present invention. For comparison, FIG. 2 shows a current density waveform used so far.

【0011】過程1の電流密度の増大の割合は、レジス
ト表面に被覆された導電性膜の種類、厚み、そして電気
抵抗値などにもよるが、2ないし100A/dm2/h
rが望ましい。2A/dm2/hr未満であると、電解
液が弱酸性であるために導電膜の溶解が起きたり、ニッ
ケル析出の競争反応である水素ガスの発生が優先して起
こりスタンパの厚みに再現性が失われてしまったり、ま
た、100A/dm2/hrを越えると、上記したよう
に電気抵抗による発熱のためにレジストのガラス原盤か
らの剥離が生じるおそれがある。さらに、この過程の電
気量は全電気量に対して0.1%ないし3%であること
が望ましく、0.1%未満であると徐々に電流密度を増
大させることの目的が達成されず、3%を越えるとスタ
ンパの信号面硬度の制御の再現性が乏しくなる場合があ
る。この過程1においては、上述のように電流密度を時
間と共に増大させてゆくが、過程1における最終的電流
密度としては、過程2で所望する値と等しくすることが
望ましい。
The rate of increase of the current density in the process 1 depends on the kind and thickness of the conductive film coated on the resist surface, the electric resistance value, etc., but is 2 to 100 A / dm 2 / h.
r is desirable. If it is less than 2 A / dm 2 / hr, the electrolysis solution is weakly acidic, so that the conductive film is dissolved, and hydrogen gas, which is a competitive reaction of nickel deposition, is preferentially generated and the stamper thickness is reproducible. Is lost, or when it exceeds 100 A / dm 2 / hr, the resist may peel off from the glass master due to the heat generated by the electric resistance as described above. Furthermore, the amount of electricity in this process is preferably 0.1% to 3% with respect to the total amount of electricity, and if it is less than 0.1%, the purpose of gradually increasing the current density cannot be achieved. If it exceeds 3%, the reproducibility of the control of the signal surface hardness of the stamper may be poor. In the process 1, the current density is increased with time as described above, but it is desirable that the final current density in the process 1 be equal to the value desired in the process 2.

【0012】過程2における一定の電流密度の値は、す
なわちこの値によりスタンパの信号面硬度が支配される
のであるが、電鋳液の組成、目的とするスタンパの信号
面硬度などにより異なるが、2ないし10A/dm2
望ましい。2A/dm2未満であると副電解反応が優先
して起きたり、内部応力が大きくなったりするため硬度
の再現性が低下したり、スタンパが変形する場合があ
る。10A/dm2を越えると、従来の電流密度波形と
大差なくなってしまう。
The value of the constant current density in step 2, that is, the signal surface hardness of the stamper is governed by this value, but it depends on the composition of the electroforming liquid, the desired signal surface hardness of the stamper, and the like. 2 to 10 A / dm 2 is desirable. If it is less than 2 A / dm 2 , the side electrolysis reaction may occur preferentially, the internal stress may increase, and thus the reproducibility of hardness may be deteriorated or the stamper may be deformed. When it exceeds 10 A / dm 2 , there is almost no difference from the conventional current density waveform.

【0013】この時の電気量は全電気量に対して3%な
いし20%であることが望ましい。3%未満であると信
号面硬度は過程3および4の条件により優先的に支配さ
れ期待された信号面硬度が得られにくくなるだけでな
く、その再現性も乏しくなる。また、20%以上として
も何等差支えないが、信号面硬度の増大はほとんど見ら
れず、しかもこの過程における電流密度が小さいために
スタンパの製造時間が長くなるだけである。
The amount of electricity at this time is preferably 3% to 20% of the total amount of electricity. If it is less than 3%, the signal surface hardness is preferentially controlled by the conditions of steps 3 and 4, and it becomes difficult to obtain the expected signal surface hardness, and the reproducibility thereof is poor. Although it does not matter if it is 20% or more, almost no increase in the hardness of the signal surface is observed, and since the current density in this process is small, the stamper manufacturing time only increases.

【0014】過程3の電流密度の増大の割合は、すでに
ニッケルがある程度の厚さまで電析しているために過程
1よりも大きくすることができ、その値は特に限定され
るものではないが、10ないし200A/dm2/hr
が望ましい。10A/dm2/hr未満であってもよい
が時間がかかるだけである。また、200A/dm2
hrを越えると、電解反応によるジュール熱の発生のた
めに電鋳液温が局所的に急激に変化するため、再現性が
乏しくなる。また、ガラス原盤の割れが生じるおそれが
ある。この過程の電気量はスタンパの信号面硬度に再現
性が得られる限り特に限定されないが、全電気量に対し
て0.5%ないし10%であることが望ましく、0.5
%未満であると電鋳時の発熱、10%を越えると電鋳時
間の増大を引き起こす可能性がある。この過程3におい
ては、上述のように電流密度を時間と共に増大させてゆ
くが、過程3における最終的電流密度としては、過程4
で所望する値と等しくすることが望ましい。
The rate of increase in the current density in step 3 can be made larger than in step 1 because nickel is already electrodeposited to a certain thickness, and the value is not particularly limited. 10 to 200 A / dm 2 / hr
Is desirable. It may be less than 10 A / dm 2 / hr, but it only takes time. Also, 200 A / dm 2 /
When it exceeds hr, the temperature of the electroforming liquid rapidly changes locally due to the generation of Joule heat due to the electrolytic reaction, resulting in poor reproducibility. Moreover, the glass master may be cracked. The amount of electricity in this process is not particularly limited as long as the signal surface hardness of the stamper is reproducible, but is preferably 0.5% to 10% with respect to the total amount of electricity.
If it is less than 10%, heat generation during electroforming may occur, and if it exceeds 10%, electroforming time may increase. In the process 3, the current density is increased with time as described above, but the final current density in the process 3 is the process 4
It is desirable to make it equal to the desired value.

【0015】過程4の電流密度は、電鋳液組成、電鋳上
がりの裏面粗さなどにより任意に決定することができる
が、8ないし30A/dm2とすることが望ましい。8
A/dm2未満であると本発明の効果がほとんどなく、
30A/dm2より大きいと電鋳終了のわずかなタイミ
ングのズレや電気量計の測定誤差などにより、スタンパ
の厚みが所望したものと異なってしまう恐れがある。
The current density in step 4 can be arbitrarily determined according to the composition of the electroforming solution, the roughness of the back surface after electroforming, etc., but is preferably 8 to 30 A / dm 2 . 8
If it is less than A / dm 2 , the effect of the present invention is almost negligible,
If it is more than 30 A / dm 2 , the thickness of the stamper may be different from the desired one due to a slight timing deviation of electroforming or a measurement error of the coulometer.

【0016】レジスト表面の導電性の付与の方法は、特
に限定されるものではないが、スパッタ法、真空蒸着
法、および無電解メッキ法などの通常の方法を例示する
ことができる。また、その際に用いられる金属も特に限
定されるものではなく、銀、ニッケル、あるいはそれら
を主成分とする合金などを例示することができる。
The method of imparting electrical conductivity to the resist surface is not particularly limited, but a usual method such as a sputtering method, a vacuum vapor deposition method and an electroless plating method can be exemplified. Further, the metal used in that case is not particularly limited, and silver, nickel, or an alloy containing them as a main component can be exemplified.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、スタンパの信号面硬度を制御することがで
き、スタンパの耐久性の向上、射出成型条件の安定化、
およびそれによる基板特性の改善、基板生産コストの低
減などの効果がある。
As apparent from the above description, according to the present invention, the signal surface hardness of the stamper can be controlled, the durability of the stamper can be improved, and the injection molding conditions can be stabilized.
Further, there are effects such as improvement of substrate characteristics and reduction of substrate production cost.

【0018】[0018]

【実施例】本発明をさらに詳細に説明するために以下に
実施例をあげるが、本発明はこれらに限定されるもので
はない. 実施例1 450g/lのスルファミン酸ニッケル4水和物、35
g/lのほう酸、5g/lの塩化ニッケル6水和物およ
びピット防止剤を主成分とする50℃の電鋳液におい
て、過程1の電流密度の増大の割合を50A/dm2
hr、過程2の一定電流密度を3A/dm2、過程3の
電流密度の増大の割合を100A/dm2/hr、過程
4の一定電流密度を10A/dm2とし、またそれぞれ
の電気量の割合は1%、10%、5%および84%とし
て、信号面硬度が約260である光ディスク用ニッケル
スタンパを製造した。
The following examples are given to illustrate the present invention in more detail, but the present invention is not limited thereto. Example 1 450 g / l nickel sulfamate tetrahydrate, 35
In a 50 ° C. electroforming solution containing g / l boric acid, 5 g / l nickel chloride hexahydrate and a pit inhibitor as main components, the rate of increase in current density in step 1 was 50 A / dm 2 /
hr, the constant current density in process 2 is 3 A / dm 2 , the rate of increase in the current density in process 3 is 100 A / dm 2 / hr, the constant current density in process 4 is 10 A / dm 2, and Nickel stampers for optical discs having a signal surface hardness of about 260 were manufactured with the proportions of 1%, 10%, 5% and 84%.

【0019】実施例2 過程2の一定電流密度を4A/dm2とした以外は、実
施例1と同様の方法で信号面硬度が約250である光デ
ィスク用ニッケルスタンパを製造した。
Example 2 A nickel stamper for an optical disk having a signal surface hardness of about 250 was manufactured in the same manner as in Example 1 except that the constant current density in Step 2 was 4 A / dm 2 .

【0020】実施例3 過程2の一定電流密度を8A/dm2とした以外は、実
施例1と同様の方法で信号面硬度が約220である光デ
ィスク用ニッケルスタンパを製造した。
Example 3 A nickel stamper for an optical disk having a signal surface hardness of about 220 was manufactured in the same manner as in Example 1 except that the constant current density in Step 2 was set to 8 A / dm 2 .

【0021】実施例4 過程2の電気量の割合を20%、過程4の電気量の割合
を74%とした以外は、実施例1と同様の方法で信号面
硬度が約265である光ディスク用ニッケルスタンパを
製造した。
Example 4 For an optical disc having a signal surface hardness of about 265 in the same manner as in Example 1 except that the ratio of the amount of electricity in the process 2 was 20% and the ratio of the amount of electricity in the process 4 was 74%. A nickel stamper was manufactured.

【0022】実施例5 過程2の電気量の割合を3%、過程4の電気量の割合を
82%とした以外は、実施例1と同様の方法で信号面硬
度が約240である光ディスク用ニッケルスタンパを製
造した。
Example 5 For an optical disc having a signal surface hardness of about 240 in the same manner as in Example 1 except that the ratio of the amount of electricity in the process 2 was 3% and the ratio of the amount of electricity in the process 4 was 82%. A nickel stamper was manufactured.

【0023】実施例6 過程1の電流密度の増大の割合を10A/dm2/hr
とした以外は、実施例1と同様の方法で信号面硬度が約
265である光ディスク用ニッケルスタンパを製造し
た。
Example 6 The increase rate of the current density in the process 1 was set to 10 A / dm 2 / hr.
A nickel stamper for an optical disk having a signal surface hardness of about 265 was manufactured in the same manner as in Example 1 except that the above was used.

【0024】実施例7 過程1の電流密度の増大の割合を100A/dm2/h
rとした以外は、実施例1と同様の方法で信号面硬度が
約255である光ディスク用ニッケルスタンパを製造し
た。
Example 7 The increase rate of the current density in the process 1 was set to 100 A / dm 2 / h.
A nickel stamper for an optical disc having a signal surface hardness of about 255 was manufactured in the same manner as in Example 1 except that the stamper was r.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光ディスク用ニッケルスタンパ製造のた
めの電鋳方法において、電鋳時間の増大と共に電流密度
を増加させる過程1、続いて一定の電流密度を維持する
過程2、再び時間の増大と共に電流密度を増加させる過
程3、および一定の電流密度を維持する過程4からなる
電流密度波形を用いて電鋳を行うことを特徴とする光デ
ィスク用ニッケルスタンパ製造のための電鋳方法。
1. In an electroforming method for manufacturing a nickel stamper for an optical disk, a step 1 of increasing a current density with an increase in electroforming time, a step 2 of maintaining a constant current density, and a current with an increase of time again. An electroforming method for producing a nickel stamper for an optical disk, characterized in that electroforming is performed using a current density waveform comprising a step 3 of increasing the density and a step 4 of maintaining a constant current density.
【請求項2】 電鋳時間の増大と共に電流密度を増加さ
せる過程1における電流密度の増大の割合が、2A/d
/hr〜100A/dm/hrである請求項1に
記載の光ディスク用ニッケルスタンパ製造のための電鋳
方法。
2. The rate of increase of the current density in the step 1 of increasing the current density with the increase of electroforming time is 2 A / d.
The electroforming method for producing a nickel stamper for an optical disk according to claim 1, wherein the electroforming method is m 2 / hr to 100 A / dm 2 / hr.
【請求項3】 電鋳時間の増大と共に電流密度を増加さ
せる過程1における電気量が、電鋳に要する全電気量に
対して0.1%〜3%である請求項1または請求項2に
記載の光ディスク用ニッケルスタンパ製造のための電鋳
方法。
3. The amount of electricity in the process 1 of increasing the current density with the increase of electroforming time is 0.1% to 3% with respect to the total amount of electricity required for electroforming. An electroforming method for producing a nickel stamper for an optical disc as described.
【請求項4】 一定の電流密度を維持する過程2におけ
る電流密度の値が、2A/dm〜10A/dmであ
る請求項1〜3のいずれか1項に記載の光ディスク用ニ
ッケルスタンパ製造のための電鋳方法。
4. The manufacture of a nickel stamper for an optical disk according to claim 1, wherein the value of the current density in the step 2 of maintaining the constant current density is 2 A / dm 2 to 10 A / dm 2. For electroforming.
【請求項5】 一定の電流密度を維持する過程2におけ
る電気量が、電鋳に要する全電気量に対して3%〜20
%である請求項1〜4のいずれか1項に記載の光ディス
ク用ニッケルスタンパ製造のための電鋳方法。
5. The amount of electricity in step 2 of maintaining a constant current density is 3% to 20 with respect to the total amount of electricity required for electroforming.
%, The electroforming method for producing a nickel stamper for an optical disk according to any one of claims 1 to 4.
【請求項6】 時間の増大と共に電流密度を増加させる
過程3における電流密度の増大の割合が、10A/dm
/hr〜200A/dm/hrである請求項1〜5
のいずれか1項に記載の光ディスク用ニッケルスタンパ
製造のための電鋳方法。
6. The rate of increase of the current density in the step 3 of increasing the current density with the increase of time is 10 A / dm.
2 / hr to 200 A / dm 2 / hr.
An electroforming method for producing a nickel stamper for an optical disk according to any one of 1.
【請求項7】 時間の増大と共に電流密度を増加させる
過程3における電気量が、電鋳に要する全電気量に対し
て0.5%〜10%である請求項1〜6のいずれか1項
に記載の光ディスク用ニッケルスタンパ製造のための電
鋳方法。
7. The amount of electricity in the step 3 of increasing the current density with the increase of time is 0.5% to 10% with respect to the total amount of electricity required for electroforming. An electroforming method for producing a nickel stamper for an optical disk according to.
【請求項8】 一定の電流密度を維持する過程4におけ
る電流密度の値が、8A/dm〜30A/dmであ
る請求項1〜7のいずれか1項に記載の光ディスク用ニ
ッケルスタンパ製造のための電鋳方法。
8. The manufacture of a nickel stamper for an optical disk according to claim 1, wherein the value of the current density in the step 4 of maintaining a constant current density is 8 A / dm 2 to 30 A / dm 2. For electroforming.
JP28220192A 1992-09-29 1992-09-29 Electroforming method for manufacturing nickel stamper for optical disk Expired - Fee Related JP3232703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28220192A JP3232703B2 (en) 1992-09-29 1992-09-29 Electroforming method for manufacturing nickel stamper for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28220192A JP3232703B2 (en) 1992-09-29 1992-09-29 Electroforming method for manufacturing nickel stamper for optical disk

Publications (2)

Publication Number Publication Date
JPH06136588A true JPH06136588A (en) 1994-05-17
JP3232703B2 JP3232703B2 (en) 2001-11-26

Family

ID=17649388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28220192A Expired - Fee Related JP3232703B2 (en) 1992-09-29 1992-09-29 Electroforming method for manufacturing nickel stamper for optical disk

Country Status (1)

Country Link
JP (1) JP3232703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399208A (en) * 1989-12-19 1995-03-21 Nippon Paint Co., Ltd. Method for phosphating metal surface with zinc phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399208A (en) * 1989-12-19 1995-03-21 Nippon Paint Co., Ltd. Method for phosphating metal surface with zinc phosphate

Also Published As

Publication number Publication date
JP3232703B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JPH06136588A (en) Electrocasting method for production of nickel stamper for optical disk
US7632628B2 (en) Stamper and method for production thereof
JPH05101451A (en) Production of stamper for optical disk
JPH01246391A (en) Production of stamper
JPS60174891A (en) Production of molding die
JP3087137B2 (en) Stamper master
JPS5920486A (en) Manufacture of metallic mold for precision molding
JPS59222593A (en) Production of metallic mold for molding
JPH055904B2 (en)
JPS6190344A (en) Stamper for molding optical disk
JP3087136B2 (en) Stamper master
JPH052779A (en) Production of stamper
JPS61221392A (en) Stamper
JPH0314910B2 (en)
JPH0734282A (en) Electroforming method of nickel stamper for optical disk
JPS6036472B2 (en) Method of forming nickel film
JPS607630A (en) Improved molding stamper and manufacture thereof
US20040166446A1 (en) Method for manufacturing metal master of information recording disc and metal master
JPS62236155A (en) Production of optical disk stamper
JPS58104190A (en) Production of die
JPH052778A (en) Electrocasting device and production of stamper by using this device
JPH0250995A (en) Production of stamper for duplicating optical disk
JP2764457B2 (en) Information recording stamper
JPH03180483A (en) Electrocasting method
JPS63105987A (en) Production of stamper for optical memory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090921

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090921

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees