JPH06136496A - Production of aluminum alloy sheet with high formability - Google Patents
Production of aluminum alloy sheet with high formabilityInfo
- Publication number
- JPH06136496A JPH06136496A JP30964792A JP30964792A JPH06136496A JP H06136496 A JPH06136496 A JP H06136496A JP 30964792 A JP30964792 A JP 30964792A JP 30964792 A JP30964792 A JP 30964792A JP H06136496 A JPH06136496 A JP H06136496A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- less
- grain size
- alloy
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車用のボディパネ
ル,エアクリーナ,オイルタンクなどのように、強度と
成形性を要求される成形加工品に使用される高成形性ア
ルミニウム合金板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly formable aluminum alloy sheet for use in a molded product requiring strength and formability such as an automobile body panel, an air cleaner and an oil tank. .
【0002】[0002]
【従来の技術】従来一般に自動車ボディパネルなどの成
形用板材としては冷延鋼板が多用されていたが、最近で
は自動車の車体を軽量化してその燃費を改善するため、
アルミニウム合金板を使用する要望が強まっている。こ
のような用途に使用されるアルミニウム合金板として
は、Al−Mg系の5052合金(Al−2.5wt%
Mg−0.25wt%Cr合金)O材や、5182合金
(Al−4.5wt%Mg−0.35wt%Mn合金)
O材、あるいはAl−Cu系の2036合金(Al−
2.6wt%Cu−0.25Wt%Mn−0.45wt
%Mg)T4材などがある。この内、Al−Mg系の合
金板は成形性と強度が共に優れるので、きびしい成形を
受ける部材にしばしば用いられている。2. Description of the Related Art Conventionally, cold-rolled steel sheets have been widely used as a sheet material for forming automobile body panels and the like, but recently, in order to reduce the weight of an automobile body and improve its fuel consumption,
The demand for using aluminum alloy plates is increasing. As an aluminum alloy plate used for such an application, an Al-Mg-based 5052 alloy (Al-2.5 wt%
Mg-0.25 wt% Cr alloy) O material and 5182 alloy (Al-4.5 wt% Mg-0.35 wt% Mn alloy)
O material or Al-Cu type 2036 alloy (Al-
2.6 wt% Cu-0.25 Wt% Mn-0.45 wt
% Mg) T4 material. Of these, the Al—Mg alloy plate is excellent in both formability and strength, and is often used for members that undergo severe forming.
【0003】このAl−Mg系合金板は通常、鋳造→均
質化処理→熱間圧延→焼鈍という工程で製造され、必要
に応じて冷間圧延の途中に中間焼鈍を施すこともある。
なお、板の平坦性がとくに要求される場合は、焼鈍の後
にテンションレベラー,ローラーレベラー,スキンパス
圧延等の手段により整直矯正が施されることもある。This Al--Mg alloy sheet is usually manufactured by the steps of casting → homogenization treatment → hot rolling → annealing, and if necessary, intermediate annealing may be performed during cold rolling.
When flatness of the plate is particularly required, straightening may be performed by means such as a tension leveler, a roller leveler, and a skin pass rolling after annealing.
【0004】[0004]
【発明が解決しようとする課題】上記従来のAl−Mg
系合金板は、アルミニウム合金としては延性が優れてい
るが、その伸びは高々30%程度であり、冷延鋼板の伸
びが40%以上あるのに対し劣っている。このため、特
に張出し、曲げ、伸びフランジ加工など、伸びが支配要
因とされる成形性が冷延鋼板に比べて劣っているのが実
情である。The above conventional Al-Mg
The aluminum alloy sheet has excellent ductility as an aluminum alloy, but its elongation is at most about 30%, which is inferior to the elongation of the cold rolled steel sheet of 40% or more. For this reason, the formability of which elongation is a dominant factor, such as overhanging, bending, and stretch-flanging, is inferior to that of cold-rolled steel sheets.
【0005】さて、Al−Mg系合金板においては、M
g含有量が多いほど伸びが向上することが知られてい
る。従って、伸びを向上させるためMg含有率を従来
(2.5〜5wt%)よりも多くしたAl−高Mg合金
板が検討されている。しかるに、Mg含有量が多くなる
と、熱間圧延性が低下し、圧延が不可能になるという問
題点がある。また発明者らの検討によると、Al−高M
g合金板においては、伸びが大きく、しかも成形時にリ
ューダースーマーク(ストレッチャーストレインマー
ク)や肌荒れの発生を防ぐためには、その平均結晶粒径
を20〜120μm、望ましくは30〜80μmに調整
する必要がある(特願平4−102456号)。ところ
が、その後さらに検討したところ、Mg含有量が極めて
多い場合には結晶粒径が微細化する傾向にあり、平均結
晶粒径を上記の大きさに調整するのが困難であることが
判明した。In the Al-Mg alloy plate, M
It is known that the higher the g content, the higher the elongation. Therefore, in order to improve the elongation, an Al-high Mg alloy plate having a higher Mg content than that of the prior art (2.5 to 5 wt%) has been studied. However, when the Mg content is high, there is a problem that hot rolling property is deteriorated and rolling becomes impossible. In addition, according to the study by the inventors, Al-high M
The g-alloy plate has a large elongation, and in order to prevent the occurrence of Luder Sumark (stretcher strain mark) and rough skin at the time of forming, it is necessary to adjust the average crystal grain size to 20 to 120 μm, preferably 30 to 80 μm. (Japanese Patent Application No. 4-102456). However, as a result of further study thereafter, it was found that when the Mg content was extremely high, the crystal grain size tended to become finer, and it was difficult to adjust the average crystal grain size to the above size.
【0006】[0006]
【課題を解決するための手段】本発明は上記に鑑みてな
されたものであって、従来のAl−Mg系合金板の伸び
を改善して冷延鋼板並の40%程度とし、かつ熱間圧延
性が優れ、さらにリューダースマークや肌荒れの発生の
ない成形用アルミニウム合金板を提供るものである。す
なわち本発明は、Mg5〜10wt%、Be0.000
1〜0.01wt%を含有し、かつMn,Cr,Zr,
Vのうち1種または2種以上を合計で0.01〜0.2
wt%含有し、さらにTi0.005〜0,1wt%ま
たは、Ti0.005〜0.1wt%とB0.0000
1〜0.05wt%を含有し、残部が通常の不純物とA
lからなり、かつ最大結晶粒径が1000μm未満であ
るアルミニウム合金鋳塊を、450〜540℃で24時
間以下の均質化処理を施した後、熱間圧延し、熱間圧延
後ただちにまたは続く冷間圧延の途中で360〜550
℃で1〜100時間の折出物粗大化処理を1回以上施
し、所定の板厚まで最終冷間圧延し、次いで450〜5
50℃で120秒以下の焼鈍を施すことにより、その平
均結晶粒径を20〜120μmとすることを特徴とする
高成形性アルミニウム合金板の製造方法を請求項1と
し、前記のアルミニウム合金鋳塊は、不純物としてのF
e,Si,Cuがそれぞれ0.2wt%未満に規制され
ていることを特徴とする請求項1記載の高成形性アルミ
ニウム合金板の製造方法を請求項2とするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and improves the elongation of a conventional Al-Mg alloy sheet to about 40% of that of a cold rolled steel sheet, and The present invention provides an aluminum alloy sheet for forming, which has excellent rollability and is free of Luders marks and rough skin. That is, in the present invention, Mg is 5 to 10 wt% and Be is 0.000.
1 to 0.01 wt% and contains Mn, Cr, Zr,
0.01 to 0.2 in total of one or more of V
wt% and further contains Ti 0.005 to 0.1 wt% or Ti 0.005 to 0.1 wt% and B 0.0000.
1 to 0.05 wt%, the rest is normal impurities and A
aluminum alloy ingot having a maximum crystal grain size of less than 1000 μm is homogenized at 450 to 540 ° C. for 24 hours or less, then hot-rolled, and immediately or continuously after hot-rolling. 360-550 during hot rolling
The extruded product coarsening treatment at 1 ° C for 1 to 100 hours is performed once or more, final cold rolling is performed to a predetermined plate thickness, and then 450 to 5
The method for producing a highly formable aluminum alloy sheet is characterized in that the average crystal grain size is set to 20 to 120 µm by annealing at 50 ° C for 120 seconds or less. Is F as an impurity
The method for producing a highly formable aluminum alloy plate according to claim 1 is characterized in that each of e, Si and Cu is regulated to less than 0.2 wt%.
【0007】[0007]
【作用】まず、本発明の対象となる合金成分の限定理由
について説明する。Mgは強度と伸びを付与するために
添加する。しかしてMgが5wt%未満では本合金板は
40%程度の伸びが得られず、一方10wt%を越える
と、圧延性が急激に低下し、製造が困難となる。Beは
溶解鋳造時の溶湯酸化防止と、均質化処理中の鋳塊の酸
化によるMgの減失と表面変色を防ぐため添加する。し
かして0.0001wt%未満ではその効果が不十分で
あり、0.01%を越えると毒性が問題となる。First, the reason for limiting the alloy components to which the present invention is applied will be described. Mg is added to give strength and elongation. However, if the Mg content is less than 5 wt%, the present alloy sheet will not be able to obtain an elongation of about 40%, while if it exceeds 10 wt%, the rolling property will drop sharply, making it difficult to manufacture. Be is added in order to prevent molten metal oxidation during melt casting, and to prevent loss of Mg and surface discoloration due to oxidation of the ingot during homogenization treatment. However, if it is less than 0.0001 wt%, its effect is insufficient, and if it exceeds 0.01%, toxicity becomes a problem.
【0008】Mn,Cr,V,Zrは熱間圧延性を改善
するために添加する。本発明者らは、種々検討の結果、
Al−高Mg合金の熱間圧延性は熱間圧延前、すなわち
均質化処理後の鋳塊の結晶粒が粗大でその最大結晶粒径
が1000μm以上となると非常に劣化することを知見
した。さらに、これに対してMn,Cr,V,Zrを添
加することにより均質化処理中の粗大結晶粒の発生を抑
制して、熱間圧延性が顕著に改善されることを見いだし
た。Mn,Cr,V,Zrは、均質化処理の昇温過程に
おいて極めて微細な折出物としてアルミニウム基地中に
折出し、この微細折出物は均質化処理中の粗大結晶粒
(二次再結晶)の成長を抑制する効果がある。これらの
元素は1種または2種以上を合計0.01〜0.2wt
%添加するが、 0.01wt%未満では上記効果が不
十分であり、0.2wt%をこえると粗大な金属間化合
物を形成し伸びが低下する。Mn, Cr, V, and Zr are added to improve hot rolling property. The present inventors, as a result of various studies,
It has been found that the hot rolling property of the Al-high Mg alloy is very deteriorated before the hot rolling, that is, when the crystal grains of the ingot after the homogenization treatment are coarse and the maximum crystal grain size is 1000 μm or more. Further, it was found that the addition of Mn, Cr, V, and Zr suppresses the generation of coarse crystal grains during the homogenization treatment, and the hot rolling property is remarkably improved. Mn, Cr, V, and Zr were extruded into the aluminum matrix as extremely fine protrusions during the temperature raising process of the homogenization treatment, and these fine protrusions were coarse crystal grains (secondary recrystallization during the homogenization treatment). ) Has the effect of suppressing the growth. These elements are one kind or two or more kinds in total, and are 0.01 to 0.2 wt.
%, The effect is insufficient if it is less than 0.01 wt%, and if it exceeds 0.2 wt%, a coarse intermetallic compound is formed and elongation is reduced.
【0009】Ti、またはTiとBは、鋳塊組織を均一
微細化し、その最大結晶粒を1000μm未満とするた
めに添加する。しかしてTiが0.005wt%未満で
はその効果が少なく、0.1wt%を越えると粗大な金
属間化合物を形成し伸びが低下する。他方BはTiと共
存して鋳塊組織微細化効果をさらに高めるので、0.0
0001〜0.05wt%添加するのが望ましい。しか
してBが0.00001wt%未満ではその効果が少な
く、0.05wt%を越えると粗大なTiB2 粒子を形
成し、伸びが低下する。[0009] Ti, or Ti and B, is added in order to make the structure of the ingot uniform and fine, and to make the maximum crystal grain less than 1000 µm. However, if Ti is less than 0.005 wt%, the effect is small, and if it exceeds 0.1 wt%, a coarse intermetallic compound is formed and elongation is reduced. On the other hand, B coexists with Ti to further enhance the effect of refining the ingot structure.
It is desirable to add 0001 to 0.05 wt%. However, if B is less than 0.00001 wt%, its effect is small, and if it exceeds 0.05 wt%, coarse TiB 2 particles are formed and elongation is reduced.
【0010】Fe,Si,Cuは、本合金において不純
物となるものであり、それぞれ0.2wt%未満に制限
する。これらの含有量がそれぞれ0.2wt%以下の場
合、FeとSiは金属間化合物を形成するため伸びを低
下させ、Cuは熱間圧延中に結晶粒界に偏析し粒界強度
を下げるため、熱間圧延時に割れが発生しやすくなる。
とくに本発明のようなAl−高Mg合金ではCuの規制
が製造上重要であり、0.1wt%未満とするのが望ま
しい。なお、その他の不純物(Zn,Pbなど)は合計
0.3wt%以下ならば、本発明の効果を奏する上で特
に問題はない。Fe, Si, and Cu are impurities in the present alloy, and are limited to less than 0.2 wt% each. When the content of each of these is 0.2 wt% or less, Fe and Si form an intermetallic compound to reduce the elongation, and Cu segregates to the grain boundaries during hot rolling to reduce the grain boundary strength. Cracks are likely to occur during hot rolling.
In particular, in the Al-high Mg alloy as in the present invention, the regulation of Cu is important in manufacturing, and it is desirable to set it to less than 0.1 wt%. If the total amount of other impurities (Zn, Pb, etc.) is 0.3 wt% or less, there is no particular problem in achieving the effect of the present invention.
【0011】次に本発明の製造条件について説明する。
まず、上述のような成分組成の、最大結晶粒径が100
0μm未満であるアルミニウム合金鋳塊に対し、その最
大結晶粒径が1000μm以上とならないように450
〜550℃で24時間以下の均質化処理を施す。最大結
晶粒径が1000μm以上となると続く熱間圧延におい
て結晶粒界に応力集中が著しくなり、粒界破断を誘発し
て圧延割れが顕著となり、製造が不可能となる。この結
晶粒は微細であるほど熱間圧延性は良好となり、最大結
晶粒径は200μm以下とするのが望ましい。均質化処
理は溶質原子の分布均一化をはかり、強度と伸びを向上
し、焼鈍後の組織を均一化するために施す。その温度が
450℃未満では効果が不十分であり、540℃を越え
るか、または時間が24時間を越えると結晶粒が粗大に
成長(二次再結晶)して、その最大結晶粒径が1000
μm以上となり熱間圧延性が劣化する。この均質化処理
の前、すなわち鋳造後の組織が粗大であると、均質化処
理を施しても結晶粒はもはや微細化をすることはあり得
ず、従って、Ti,またはTiとBの添加により鋳塊組
織を微細化しておく必要があるのである。Next, the manufacturing conditions of the present invention will be described.
First, the maximum crystal grain size of the above component composition is 100
For an aluminum alloy ingot having a size of less than 0 μm, the maximum crystal grain size should not exceed 1000 μm.
A homogenization treatment is performed at 550 ° C. for 24 hours or less. When the maximum crystal grain size is 1000 μm or more, stress concentration becomes remarkable at the crystal grain boundaries in the subsequent hot rolling, which induces grain boundary rupture and rolling cracks become prominent, making manufacturing impossible. The finer the crystal grains, the better the hot rolling property, and it is desirable that the maximum grain size is 200 μm or less. The homogenization treatment is performed to homogenize the distribution of solute atoms, improve strength and elongation, and homogenize the structure after annealing. If the temperature is less than 450 ° C, the effect is insufficient, and if the temperature exceeds 540 ° C or the time exceeds 24 hours, the crystal grains grow coarsely (secondary recrystallization) and the maximum crystal grain size is 1000
If it is more than μm, the hot rolling property deteriorates. If the microstructure before this homogenization treatment, that is, after casting, is coarse, the crystal grains can no longer become finer even if the homogenization treatment is performed, and therefore, by the addition of Ti or Ti and B, It is necessary to refine the ingot structure.
【0012】次に、このような均質化処理を施したその
最大結晶粒径が1000μm未満であるアルミニウム合
金鋳塊を熱間圧延する。熱間圧延においては少なくとも
最初の3パスの圧下率を低くする(望ましくは3%以
下)ことが熱延割れを防ぐために望ましい。また熱延開
始温度は320〜470℃とすることがやはり熱延割れ
を防ぐために望ましい。Next, the aluminum alloy ingot having the maximum crystal grain size of less than 1000 μm, which has been subjected to such homogenization treatment, is hot-rolled. In hot rolling, it is desirable to reduce the rolling reduction in at least the first three passes (desirably 3% or less) in order to prevent hot rolling cracks. Further, the hot rolling start temperature is preferably 320 to 470 ° C. to prevent hot rolling cracks.
【0013】続いて、熱間圧延後ただちに、または続く
冷間圧延の途中で360〜550℃で1〜100時間の
折出物粗大化処理を1回以上施す。この折出物粗大化処
理は、熱間圧延性の改善のために添加したMn,Cr,
V,Zrの金属化合物を粗大に成長させ、最終焼鈍後の
再結晶粒を20μm以上とするためにおこなう。Mn,
Cr,V,Zrは前述のように均質化処理の昇温過程に
おいて極めて微細な折出物としてアルミニウム基地中に
折出し、均質化処理中の粗大結晶粒(二次再結晶)の成
長を抑制する効果がある。ところがこの微細折出物が最
終焼鈍時においても結晶粒成長抑制効果を有し、最終焼
鈍後の再結晶粒を極めて微細なものにしてしまい、伸び
の低下とリューダースマークの発生をもたらす。折出物
粗大化処理を施してMn,Cr,V,Zrの微細析出物
をオストワルド成長させて結晶粒成長を阻害しない大き
さ(概ね0.2μm以上)に粗大化させることにより、
最終焼鈍後の再結晶径の適正化をはかることができる。
折出物粗大化処理の温度が360℃未満、時間が1時間
未満では上記効果が不十分であり、550℃を越えると
バーニング(局部溶融)を生じ、100時間を越えると
効果が飽和して不経済のうえ、表面酸化が著しくなる。Then, immediately after the hot rolling or during the subsequent cold rolling, the coarsening treatment for extrudates is carried out once or more at 360 to 550 ° C. for 1 to 100 hours. This extruded product coarsening treatment was carried out by adding Mn, Cr, added in order to improve the hot rolling property.
This is carried out in order to coarsely grow the metal compound of V and Zr and to make the recrystallized grains after the final annealing be 20 μm or more. Mn,
As described above, Cr, V, and Zr are extruded into the aluminum matrix as extremely fine protrusions during the temperature raising process of the homogenization treatment, and suppress the growth of coarse crystal grains (secondary recrystallization) during the homogenization treatment. Has the effect of However, this fine extrudate has an effect of suppressing crystal grain growth even during the final annealing, making recrystallized grains after the final annealing extremely fine, resulting in a decrease in elongation and the generation of Luder's marks. By subjecting the protrusion coarsening treatment to the fine precipitates of Mn, Cr, V, and Zr to grow by Ostwald and coarsen to a size (generally 0.2 μm or more) that does not hinder the crystal grain growth,
The recrystallized diameter after the final annealing can be optimized.
If the temperature of the coarsening treatment of extruded products is less than 360 ° C. and the time is less than 1 hour, the above effect is insufficient. If it exceeds 550 ° C., burning (local melting) occurs, and if it exceeds 100 hours, the effect is saturated. In addition to being uneconomical, surface oxidation becomes significant.
【0014】その後、連続焼鈍炉(CAL)などにより
450〜550℃で120秒以下の高温短時間焼鈍を施
し、平均結晶粒径を20〜120μmとする。ここで平
均結晶粒径を上記の如く制限した理由を説明する。平均
結晶粒径が20μm未満であると本合金組成のようなA
l−高Mg合金板ではリューダースマークの発生が顕著
となるとともに、伸びが低下する。逆に平均結晶粒径が
120μmを越えると成形品の肌荒れが著しくなると同
時にやはり伸びが低下する。After that, high temperature short time annealing at 450 to 550 ° C. for 120 seconds or less is carried out in a continuous annealing furnace (CAL) or the like to obtain an average crystal grain size of 20 to 120 μm. Here, the reason why the average crystal grain size is limited as described above will be described. If the average crystal grain size is less than 20 μm, A
In the 1-high Mg alloy plate, the Luders marks are significantly generated and the elongation is reduced. On the other hand, when the average crystal grain size exceeds 120 μm, the surface roughness of the molded product becomes remarkable and the elongation also decreases.
【0015】このような理由で平均結晶粒径は20〜1
20μmとする必要があり、連続焼鈍炉(CAL)など
により450〜550℃で120秒以下の高温短時間焼
鈍を施す。焼鈍温度が450℃未満では再結晶が不十分
か、あるいは再結晶しても平均結晶粒径は20μm未満
である。一方、焼鈍温度が550℃を越えるとバーニン
グ(局部溶融)を生じ、120秒を越えると部分的に1
20μmを越える結晶粒が生成し、かつ生産性が低下す
る。また、焼鈍を定置式のパッチ炉で行うと、結晶粒径
が仮に20〜120μmであったとしても伸びが少なく
しかも異方性があり。リューダースマークの発生が顕著
である。For this reason, the average crystal grain size is 20 to 1
It is necessary to set the thickness to 20 μm, and high temperature short time annealing for 120 seconds or less at 450 to 550 ° C. is performed by a continuous annealing furnace (CAL) or the like. If the annealing temperature is less than 450 ° C, recrystallization is insufficient, or even if recrystallization is performed, the average crystal grain size is less than 20 µm. On the other hand, if the annealing temperature exceeds 550 ° C, burning (local melting) occurs, and if it exceeds 120 seconds, it partially becomes 1
Crystal grains exceeding 20 μm are generated, and productivity is reduced. Further, when annealing is performed in a stationary patch furnace, even if the crystal grain size is 20 to 120 μm, the elongation is small and anisotropic. The occurrence of Luders marks is remarkable.
【0016】このような最終焼鈍を施した後、必要に応
じてテンションレベラー、ローラーレベラー、スキンパ
ス圧延等の手段により整直矯正を施してもよい。またや
はり必要に応じて酸やアルカリで表面を洗浄してもよ
い。After such final annealing, if necessary, straightening correction may be performed by means such as a tension leveler, a roller leveler, and a skin pass rolling. If necessary, the surface may be washed with acid or alkali.
【0017】[0017]
【実施例】以下、本発明を実施例に基づいて、さらに詳
細に説明する。 (実施例1)表1に示すNo.1〜No.12の組成の
アルミニウム合金を常法に従いDC鋳造(厚さ400m
m,巾1650mm,長さ4500mm)し、500℃
で1時間の均質化処理後、圧延開始温度460℃、最初
の3回の圧延パスの圧下率を2%、4パス目以降最終パ
ス(28パス)の圧下率を3〜4%の範囲で順次増加さ
せ、板厚5mmまで熱間圧延した。次いでこの熱間圧延
板に対し520℃で20時間の折出物粗大化処理を施
し、さらに板厚1mmまで冷間圧延した。続いて連続焼
鈍炉により520℃で10秒間加熱して再結晶させ、O
材とした。このようにして得られたアルミニウム合金板
の平均結晶粒径を測定し、さらに引張試験により引張強
さ、耐力、伸び、リューダースマークの発生状況を調査
した結果を表2に示す。EXAMPLES The present invention will now be described in more detail based on examples. (Example 1) No. 1 shown in Table 1 1-No. DC casting of aluminum alloy of composition 12 (thickness 400 m
m, width 1650 mm, length 4500 mm), 500 ° C
After homogenizing for 1 hour, the rolling start temperature is 460 ° C., the rolling reduction in the first three rolling passes is 2%, and the rolling reduction in the final pass (28 passes) after the fourth pass is in the range of 3 to 4%. It was gradually increased and hot rolled to a plate thickness of 5 mm. Next, this hot-rolled sheet was subjected to a coarsening treatment for extrudates at 520 ° C. for 20 hours, and further cold-rolled to a sheet thickness of 1 mm. Then, it is recrystallized by heating at 520 ° C. for 10 seconds in a continuous annealing furnace, and O
It was made of wood. The average crystal grain size of the aluminum alloy plate thus obtained is measured, and the tensile strength, yield strength, elongation, and the state of occurrence of Luders marks are examined by a tensile test, and the results are shown in Table 2.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】表1、表2より明らかなように、本発明例
組成のNo.1〜No.5は熱間圧延性が良好であり、
伸びも40%以上と高い。これに対しMg量の少ないN
o.6、Mn,Cr,Zr,Vの総量が0.2wt%を
越えるNo.9、Si,Feの多いNo.10は伸びが
低い。また、Ti,B無添加のNo.7は鋳造後の結晶
粒が大きく、Mn,Cr,Zr,V無添加のNo.8は
均質化処理後の結晶粒が大きく、いずれも熱間圧延で割
れが発生した。Cu,Mg量の多い No.11、N
o.12も熱間圧延で割れが発生し、製造不能であっ
た。As is clear from Tables 1 and 2, the composition Nos. 1-No. 5 has good hot rolling property,
The growth is also high at 40% or more. On the other hand, N containing less Mg
o. No. 6, in which the total amount of Mn, Cr, Zr, and V exceeds 0.2 wt%. No. 9 containing a large amount of Si and Fe. 10 has low elongation. In addition, No. No. 7 with large crystal grains after casting, No. Mn, Cr, Zr, and V not added. No. 8 had large crystal grains after the homogenization treatment, and in all of them, cracking occurred during hot rolling. A large amount of Cu and Mg No. 11, N
o. No. 12 was also unmanufacturable because cracking occurred during hot rolling.
【0021】(実施例2)実施例1のNo.4の合金の
DC鋳塊を表3に示す各種の条件で均質化処理後、圧延
開始温度390℃、パススケジュールは実施例1と同一
の条件で板厚5mmまで熱間圧延し、熱間圧延性を比較
した。その結果を表3に併記した。(Embodiment 2) No. 1 of the first embodiment. After homogenizing the DC ingot of the alloy No. 4 under various conditions shown in Table 3, the rolling start temperature was 390 ° C., the pass schedule was the same as in Example 1, and hot rolling was performed to a plate thickness of 5 mm, followed by hot rolling. Sex was compared. The results are also shown in Table 3.
【0022】[0022]
【表3】 [Table 3]
【0023】表3より明らかなように、本発明の製造方
法によるNo.13〜No.17は、いずれも熱間圧延
性が良好である。これに対し、均質化処理の温度が高い
かまたは時間の長いNo.18〜No.20は均質化処
理後の最大結晶粒が1000μm以上であり、熱間圧延
中に割れが発生し、圧延続行不能であた。また均質化処
理条件が本発明の範囲内であっても均質化処理後の最大
結晶粒径が1000μmを越えた場合(No.21,2
2)は、やはり熱間圧延中に割れが発生した。As is apparent from Table 3, No. 1 according to the manufacturing method of the present invention was used. 13-No. No. 17 has good hot rolling property. On the other hand, in the case where the homogenization temperature is high or the time is long, 18-No. No. 20 had a maximum crystal grain of 1000 μm or more after homogenization treatment, cracks occurred during hot rolling, and it was impossible to continue rolling. Even if the homogenization conditions are within the range of the present invention, when the maximum crystal grain size after homogenization exceeds 1000 μm (No. 21, 2).
In 2), cracks still occurred during hot rolling.
【0024】(実施例3)実施例2のNo.14で得ら
れた熱間圧延板(板厚5mm)について、表4に示す条
件で冷間圧延、折出物粗大化処理、冷間圧延、焼鈍を順
次施し、板厚1mmのアルミニウム合金板とした。この
ようにして得られたアルミニウム合金板の平均結晶粒径
を測定し、さらに引張試験により引張強さ、耐力、伸
び、リューダースマークの発生状況を調査した結果を表
5に示す。(Embodiment 3) No. 2 of Embodiment 2. The hot-rolled sheet (sheet thickness 5 mm) obtained in No. 14 was sequentially subjected to cold rolling, extruded product coarsening treatment, cold rolling and annealing under the conditions shown in Table 4 to obtain an aluminum alloy sheet having a sheet thickness of 1 mm. did. The average crystal grain size of the aluminum alloy plate thus obtained is measured, and the tensile strength, yield strength, elongation, and generation of Luders marks are investigated by a tensile test, and the results are shown in Table 5.
【0025】[0025]
【表4】 [Table 4]
【0026】[0026]
【表5】 [Table 5]
【0027】表4および表5より明らかなように、本発
明の熱間圧延条件No.23〜No.27のアルミニウ
ム合金板は伸びが40%以上と高く、リューダースマー
クの発生もない。これに対し析出物粗大化処理がないか
温度または時間のはずれるNo.28〜No.31は焼
鈍後の平均結晶粒径が微細過ぎて伸びが低く、リューダ
ースマークも発生する。As is clear from Tables 4 and 5, the hot rolling condition No. 23-No. The aluminum alloy plate of No. 27 has a high elongation of 40% or more and does not generate Luders marks. On the other hand, No. 28-No. In No. 31, the average crystal grain size after annealing is too fine and the elongation is low, and Luders marks also occur.
【0028】[0028]
【発明の効果】このように本発明によれば、伸びが大き
く成形性に優れ、熱間圧延性が良好で生産性に優れ、か
つリューダースマークの発生もない成形用アルミニウム
合金板が得られ、工業上顕著な効果を奏するものであ
る。As described above, according to the present invention, there can be obtained an aluminum alloy sheet for forming which has a large elongation, is excellent in formability, has good hot rolling property, is excellent in productivity, and is free from the generation of Luders marks. It has a remarkable industrial effect.
【手続補正書】[Procedure amendment]
【提出日】平成4年11月18日[Submission date] November 18, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】このような最終焼鈍を施した後、必要に応
じてテンションレベラー、ローラーレベラー、スキンパ
ス圧延等の手段により整直矯正を施してもよい。またや
はり必要に応じて酸やアルカリで表面を洗浄してもよ
い。以上のように製造された本発明に係るアルミニウム
合金板は、強度と深絞り性に優れ、自動車のボディパネ
ル,エアクリーナ,オイルタンク等の成形に適してい
る。また、これらの成形品は広範囲の温度環境(例えば
−100℃〜常温)において、優れた耐加工脆性特性を
示す。 After such final annealing, if necessary, straightening correction may be performed by means such as a tension leveler, a roller leveler, and a skin pass rolling. If necessary, the surface may be washed with acid or alkali. Aluminum according to the present invention manufactured as described above
Alloy sheets are excellent in strength and deep drawability,
Suitable for molding parts such as fuel tanks, air cleaners and oil tanks
It In addition, these molded products have a wide temperature environment (for example,
Excellent work embrittlement resistance at -100 ° C to room temperature)
Show.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0028[Correction target item name] 0028
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0028】[0028]
【発明の効果】このように本発明によれば、伸びが大き
く成形性に優れ、熱間圧延性が良好で生産性に優れ、か
つリューダースマークの発生もない成形用アルミニウム
合金板が得られ、またその成形部品は耐加工脆性特性に
も優れており、工業上顕著な効果を奏するものである。As described above, according to the present invention, there can be obtained an aluminum alloy sheet for forming which has a large elongation, is excellent in formability, has good hot rolling property, is excellent in productivity, and is free from the generation of Luders marks. In addition, the molded parts have resistance to work brittleness
Is also excellent and has a remarkable industrial effect.
Claims (2)
〜0.01wt%を含有し、かつMn,Cr,Zr,V
のうち1種または2種以上を合計で0.01〜0.2w
t%含有し、さらにTi0.005〜0,1wt%また
は、Ti0.005〜0.1wt%とB0.00001
〜0.05wt%を含有し、残部が通常の不純物とAl
からなり、かつ最大結晶粒径が1000μm未満である
アルミニウム合金鋳塊を、450〜540℃で24時間
以下の均質化処理を施した後、熱間圧延し、熱間圧延後
ただちにまたは続く冷間圧延の途中で360〜550℃
で1〜100時間の折出物粗大化処理を1回以上施し、
所定の板厚まで最終冷間圧延し、次いで450〜550
℃で120秒以下の焼鈍を施すことにより、その平均結
晶粒径を20〜120μmとすることを特徴とする高成
形性アルミニウム合金板の製造方法。1. Mg5-10 wt%, Be0.0001
~ 0.01 wt%, and Mn, Cr, Zr, V
0.01 to 0.2w in total of 1 or 2 or more of them
t 0.005%, Ti 0.005 to 0.1 wt% or Ti 0.005 to 0.1 wt% and B0.00001
~ 0.05wt%, the rest is normal impurities and Al
Aluminum alloy ingot having a maximum crystal grain size of less than 1000 μm is subjected to homogenization treatment at 450 to 540 ° C. for 24 hours or less, and then hot-rolled, followed immediately or by cold rolling. 360-550 ° C during rolling
1 to 100 hours for the coarsening treatment of the extrudate once or more,
Final cold rolling to a specified plate thickness, then 450-550
A method for producing a highly formable aluminum alloy sheet, characterized in that the average crystal grain size is set to 20 to 120 µm by annealing at 120 ° C for 120 seconds or less.
としてのFe,SiCuがそれぞれ0.2wt%未満に
規制されていることを特徴とする請求項1記載の高成形
性アルミニウム合金板の製造方法。2. The method for producing a highly formable aluminum alloy sheet according to claim 1, wherein Fe and SiCu as impurities are regulated to less than 0.2 wt% in the aluminum alloy ingot, respectively. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30964792A JPH06136496A (en) | 1992-10-23 | 1992-10-23 | Production of aluminum alloy sheet with high formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30964792A JPH06136496A (en) | 1992-10-23 | 1992-10-23 | Production of aluminum alloy sheet with high formability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06136496A true JPH06136496A (en) | 1994-05-17 |
Family
ID=17995566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30964792A Pending JPH06136496A (en) | 1992-10-23 | 1992-10-23 | Production of aluminum alloy sheet with high formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06136496A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2113576A4 (en) * | 2007-01-24 | 2017-11-29 | Advanced Alloys GmbH | Method for producing a structural material made of magnesium-containing aluminium-based alloy |
JP2018204100A (en) * | 2017-04-15 | 2018-12-27 | ザ・ボーイング・カンパニーThe Boeing Company | Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same |
JP2019011505A (en) * | 2017-04-15 | 2019-01-24 | ザ・ボーイング・カンパニーThe Boeing Company | Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same |
JP2021508782A (en) * | 2017-12-28 | 2021-03-11 | フェールマン アロイズ ゲーエムベーハー ウント コー. カーゲー | Use in additional manufacturing of aluminum-containing alloys |
JP2021508783A (en) * | 2017-12-28 | 2021-03-11 | フェールマン ゲーエムベーハー | Aluminum alloy |
-
1992
- 1992-10-23 JP JP30964792A patent/JPH06136496A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2113576A4 (en) * | 2007-01-24 | 2017-11-29 | Advanced Alloys GmbH | Method for producing a structural material made of magnesium-containing aluminium-based alloy |
JP2018204100A (en) * | 2017-04-15 | 2018-12-27 | ザ・ボーイング・カンパニーThe Boeing Company | Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same |
JP2019011505A (en) * | 2017-04-15 | 2019-01-24 | ザ・ボーイング・カンパニーThe Boeing Company | Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same |
JP2021508782A (en) * | 2017-12-28 | 2021-03-11 | フェールマン アロイズ ゲーエムベーハー ウント コー. カーゲー | Use in additional manufacturing of aluminum-containing alloys |
JP2021508783A (en) * | 2017-12-28 | 2021-03-11 | フェールマン ゲーエムベーハー | Aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2823797B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JP4781536B2 (en) | Damage-tolerant aluminum alloy product and manufacturing method thereof | |
US5423925A (en) | Process for manufacturing Al-Mg alloy sheets for press forming | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
WO2020120267A1 (en) | Method of making 6xxx aluminium sheets with high surface quality | |
EP0646655B1 (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability | |
JPH08232052A (en) | Production of aluminum alloy sheet for automobile outer sheet | |
JPH10152762A (en) | Production of hard aluminum alloy sheet excellent in di workability | |
JPH06136496A (en) | Production of aluminum alloy sheet with high formability | |
JP2663078B2 (en) | Aluminum alloy for T6 treatment with stable artificial aging | |
JPH07310153A (en) | Production of aluminum alloy sheet excellent in strength ductility and stability | |
JP2595836B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same | |
JP2856936B2 (en) | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same | |
JPH05345963A (en) | Manufacture of high formability aluminum alloy sheet | |
JPH0718389A (en) | Production of al-mg series alloy sheet for forming | |
JPH0543974A (en) | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production | |
JPH06136497A (en) | Production of aluminum alloy sheet with high formability | |
JP2001262265A (en) | Hot rolling stock of high formability aluminum alloy sheet | |
JPH0756055B2 (en) | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability | |
JPH05271836A (en) | Aluminum alloy material excellent in strength and ductility and its production | |
JPH06228696A (en) | Aluminum alloy sheet for di can body | |
JP3539996B2 (en) | Manufacturing method of high strength aluminum alloy sheet for forming | |
JPH05295478A (en) | Aluminum alloy extruded material excellent in bendability and its manufacture | |
RU2779736C1 (en) | Method for manufacturing products from almgsc series alloy | |
JP2948416B2 (en) | High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability |