JPH0613634A - Solar cell, its manufacture and its connection method - Google Patents

Solar cell, its manufacture and its connection method

Info

Publication number
JPH0613634A
JPH0613634A JP4167658A JP16765892A JPH0613634A JP H0613634 A JPH0613634 A JP H0613634A JP 4167658 A JP4167658 A JP 4167658A JP 16765892 A JP16765892 A JP 16765892A JP H0613634 A JPH0613634 A JP H0613634A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
solar cells
back surface
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4167658A
Other languages
Japanese (ja)
Other versions
JP2915702B2 (en
Inventor
Takayuki Minamimori
孝幸 南森
Toshihiro Machida
智弘 町田
Yoshihiko Takeda
喜彦 竹田
Tadashi Tonegawa
正 利根川
Makoto Nishida
誠 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4167658A priority Critical patent/JP2915702B2/en
Publication of JPH0613634A publication Critical patent/JPH0613634A/en
Application granted granted Critical
Publication of JP2915702B2 publication Critical patent/JP2915702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To connect solar cells to each other altogether in series on the rear side by a method wherein one end of the solar cells is dipped into silver paste to form an end electrode and the solar cells are put on a positioning jig and subjected to a heat treatment. CONSTITUTION:Silver paste 41 is put in a tank 40. Solar cells SC are held by a fixing jig 42. The end of the solar cells whose rear has a remaining n<+>-type diffused layer 2-1 is dipped into the silver paste 41 until it overlaps main electrodes 11 and lifted and exposed to a light from a lamp 6 to form an end electrode 9. Trenches 22 are so formed in a stainless board 21 as to be laid across the adjacent two solar cells. Solder-coated copper pieces 23 are put into the trenches 22. Pins 24...24 for positioning four corners of each solar cell SC are provided. The 12 solar cells are mounted into one row with the intervals of the pins 24 and let through an electric furnace in a nitrogen atmosphere. With this one heat treatment, the end 9 of the solar cell and the wiring electrode 7 of the rear of the adjacent solar cell can be soldered to each other with the copper pieces 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光エネルギーを電気エ
ネルギーに変換する太陽電池において、受光面電極と裏
面電極の他に端面電極が形成されている太陽電池、その
製造方法およびモジュール内の素子間の接続を裏面側で
行なう太陽電池の接続方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell for converting light energy into electric energy, in which an end face electrode is formed in addition to a light-receiving surface electrode and a back surface electrode, a method of manufacturing the same and an element in a module. The present invention relates to a method for connecting solar cells in which the connection between them is made on the back surface side.

【0002】[0002]

【従来の技術】図8は市販されている従来の電力用シリ
コン太陽電池の一例の斜視図である。シリコン基板1の
受光面側には図示されていないがPN接合が形成され、
さらにその表面には主電極11とサブ電極12からなる
受光面電極10が形成されている。
2. Description of the Related Art FIG. 8 is a perspective view of an example of a conventional silicon solar cell for electric power which is commercially available. Although not shown, a PN junction is formed on the light-receiving surface side of the silicon substrate 1,
Further, a light-receiving surface electrode 10 including a main electrode 11 and a sub electrode 12 is formed on the surface thereof.

【0003】図9は図1の太陽電池の裏面を示す平面図
である。シリコン基板1の裏面にはAlペースト電極6
と、その上にモジュールを作製する際に素子間を接続す
るための配線用電極7が形成され、これらによって裏面
電極5が構成されている。
FIG. 9 is a plan view showing the back surface of the solar cell of FIG. An Al paste electrode 6 is formed on the back surface of the silicon substrate 1.
And the wiring electrode 7 for connecting the elements when the module is manufactured is formed thereon, and the back surface electrode 5 is constituted by these.

【0004】受光面電極10の主電極11と裏面電極5
の配線用電極7は、銀ペーストの印刷法で形成され、そ
の上にはんだが被覆されている。
The main electrode 11 and the back electrode 5 of the light-receiving surface electrode 10
The wiring electrode 7 is formed by a silver paste printing method, and solder is coated thereon.

【0005】このような太陽電池を用いて、モジュール
を構成する際には、図10に示すように、太陽電池SC
の受光面電極10の主電極11と裏面電極5の配線用電
極7に、インタコネクタ20をはんだ付けすることによ
って直列接続されている。
When a module is constructed using such a solar cell, as shown in FIG.
The main electrode 11 of the light-receiving surface electrode 10 and the wiring electrode 7 of the back surface electrode 5 are connected in series by soldering the interconnector 20.

【0006】ところで、市販のモジュール内の太陽電池
の枚数は、必要とする出力によって異なるが、たとえ
ば、100mm角の単結晶シリコン太陽電池を36枚直
列接続されたモジュールの場合を考える。この場合、受
光面電極10の主電極11にはんだ付けされたインタコ
ネクタ20は、隣の素子の裏面側の配線用電極7にはん
だ付けで接続される。
By the way, the number of solar cells in a commercially available module varies depending on the required output. For example, consider the case of a module in which 36 100 mm square single crystal silicon solar cells are connected in series. In this case, the interconnector 20 soldered to the main electrode 11 of the light-receiving surface electrode 10 is connected to the wiring electrode 7 on the back surface side of the adjacent element by soldering.

【0007】[0007]

【発明が解決しようとする課題】前述のインタコネクタ
のはんだ付け工程は、素子の表面を隣の素子の裏面に接
続するため繁雑であるから、手作業で行なわれているの
が現状である。その上、この接続方法では接続箇所が多
く(図8および図9に示される太陽電池を36個直列接
続する場合は144箇所)、時間を要するので人件費が
高く問題である。また、従来の接続方法では、裏面にイ
ンタコネクタ20を回すために素子間に3〜4mmの間
隔を設ける必要があり、モジュールのパッキングファク
タ(モジュール面積に対する全素子面積)を高められな
い一因となっており、ガラス、樹脂およびアルミニウム
枠などのモジュール材料の削減を妨げている。これら
は、従来の太陽電池のモジュール作製工程のコスト高の
一因となっている。
The above-mentioned soldering process of the interconnector is complicated because the front surface of an element is connected to the back surface of an adjacent element, and therefore, it is the current situation that it is performed manually. In addition, this connection method has many connection points (144 points when 36 solar cells shown in FIGS. 8 and 9 are connected in series) and requires a lot of time, which causes a high labor cost and is a problem. Further, in the conventional connection method, it is necessary to provide an interval of 3 to 4 mm between the elements in order to turn the interconnector 20 on the back surface, which is one of the reasons that the packing factor of the module (total element area relative to the module area) cannot be increased. This is a hindrance to the reduction of module materials such as glass, resin and aluminum frame. These contribute to the high cost of the conventional solar cell module manufacturing process.

【0008】本発明の目的は、素子間の接続を裏面側で
直列接続できる太陽電池を提供すること、その製造方法
およびこの太陽電池を用いて複数の太陽電池を裏面側で
一括して直列接続し、パッキングファクタの高いモジュ
ールを作製する接続方法を提供することにある。
An object of the present invention is to provide a solar cell in which elements can be connected in series on the back surface side, a method for manufacturing the same, and a plurality of solar cells are collectively connected in series on the back surface side using this solar cell. It is another object of the present invention to provide a connection method for producing a module having a high packing factor.

【0009】[0009]

【課題を解決するための手段】本発明の太陽電池におい
ては、受光面電極を延長して基板の側面から裏面の一部
に至る端面電極を設けた。この端面電極は銀ペーストの
中に太陽電池基板の1端を浸漬して製造する。素子間の
接続は導体を位置決めした治具に、隣接する太陽電池の
一方の裏面電極と他方の太陽電池の端面電極の裏面とが
導体で連結されるように載置し、熱処理によって一括し
て裏面側で直列接続する。
In the solar cell of the present invention, the light-receiving surface electrode is extended to provide an end surface electrode extending from the side surface of the substrate to a part of the back surface. This end face electrode is manufactured by immersing one end of the solar cell substrate in silver paste. To connect the elements, place them on a jig that positions the conductors so that one back electrode of the adjacent solar cell and the back surface of the end electrode of the other solar cell are connected by a conductor, and then heat treatment collectively. Connect in series on the back side.

【0010】[0010]

【作用】本発明の太陽電池およびその接続方法を用いる
ことにより、多数の太陽電池の直列接続が一括して行な
えるため、モジュールプロセスのコストを低減すること
ができる。
By using the solar cell and the connecting method thereof according to the present invention, the series connection of a large number of solar cells can be carried out at once, so that the cost of the module process can be reduced.

【0011】[0011]

【実施例】図1は、本発明による太陽電池の一例の斜視
図である。太陽電池SCには、受光面にPN接合を有す
るシリコン基板1の表面の受光面側の半導体層に接続さ
れる主電極11およびサブ電極12よりなる受光面電極
10、受光面電極10に接続されシリコン基板1の端面
から裏面の一部を覆う端面電極9およびPN接合の裏面
の半導体層に接続される裏面電極5が設けられている。
この裏面電極5は図9と同様にAlペースト電極6と配
線用電極7によって構成されている。
1 is a perspective view of an example of a solar cell according to the present invention. The solar cell SC is connected to the light-receiving surface electrode 10 including the main electrode 11 and the sub-electrode 12 and the light-receiving surface electrode 10 connected to the semiconductor layer on the light-receiving surface side of the surface of the silicon substrate 1 having the PN junction on the light-receiving surface. An end surface electrode 9 covering a part of the back surface from the end surface of the silicon substrate 1 and a back surface electrode 5 connected to the semiconductor layer on the back surface of the PN junction are provided.
This back surface electrode 5 is composed of an Al paste electrode 6 and a wiring electrode 7 as in FIG.

【0012】図2(a)〜(e)は、図1の太陽電池を
得るための各工程の略断面図であって、図1のL−L´
断面に関するものである。図2(a)に示すように、大
きさ100mm角、P型で1Ω・cmの比抵抗値を有す
る単結晶のシリコン基板1を準備する。この基板を不純
物源としてのPOCl3 の雰囲気内で850℃、20分
間の拡散を行なう。
2 (a) to 2 (e) are schematic cross-sectional views of respective steps for obtaining the solar cell of FIG.
It relates to the cross section. As shown in FIG. 2A, a single crystal silicon substrate 1 having a size of 100 mm square and a P-type having a specific resistance value of 1 Ω · cm is prepared. This substrate is diffused for 20 minutes at 850 ° C. in an atmosphere of POCl 3 as an impurity source.

【0013】図2(b)は、拡散を行なった後の状態を
示し、シリコン基板1の全面にN+拡散層2が形成され
ている。続いて、常圧CVD法により反射防止膜となる
TiO2 膜3を表面と側面に堆積した。
FIG. 2B shows a state after the diffusion, in which the N + diffusion layer 2 is formed on the entire surface of the silicon substrate 1. Then, a TiO 2 film 3 serving as an antireflection film was deposited on the front surface and the side surface by the atmospheric pressure CVD method.

【0014】次に、図2(c)のように、研摩により裏
面の大部分および一方の側面のN+拡散層2を除去す
る。この研摩は、図3に示すように、シリコン基板1を
真空吸着板30に固定して、スプレー水31を供給しな
がら、往復運動しているダイヤモンド粒を焼結させた研
摩板32に押付けながら研摩して、裏面および一方の側
面のN+ 拡散層2を除去する。
Next, as shown in FIG. 2C, most of the back surface and the N + diffusion layer 2 on one side surface are removed by polishing. In this polishing, as shown in FIG. 3, the silicon substrate 1 is fixed to the vacuum adsorption plate 30, the spray water 31 is supplied, and the reciprocating diamond grains are pressed against the sintered polishing plate 32. Polishing is performed to remove the N + diffusion layer 2 on the back surface and one side surface.

【0015】次に図2(d)に示すように、基板を洗
浄,乾燥後、Alペーストを裏面に印刷焼成してAlペ
ースト電極6とBSF層4を形成後、銀ペーストを用い
て配線用電極7を印刷焼成法で形成した。
Next, as shown in FIG. 2D, after cleaning and drying the substrate, an Al paste is printed and baked on the back surface to form an Al paste electrode 6 and a BSF layer 4, and then a silver paste is used for wiring. The electrode 7 was formed by the printing and firing method.

【0016】次に、図2(e)に示すように、銀ペース
トを用いて主電極11を含む受光面電極10を印刷し
て、200℃で乾燥させた後、後述の図4に示す浸漬法
により端面電極9を形成して、窒素・酸素の雰囲気内で
600℃の温度で焼成した。
Next, as shown in FIG. 2 (e), the light-receiving surface electrode 10 including the main electrode 11 is printed using silver paste, dried at 200 ° C., and then immersed as shown in FIG. 4 described later. The end face electrode 9 was formed by the method and fired at a temperature of 600 ° C. in a nitrogen / oxygen atmosphere.

【0017】図4は端面電極9の製造方法の一例を示
す。タンク40の中には銀ペースト41が収容されてお
り、固定用治具42により、受光面電極が形成された太
陽電池SCを把持し、図2(c)に示される裏面にN+
拡散層2−1の残されているほうの端面を、銀ペースト
41の中に主電極11と重なるまで浸漬する。これをラ
ンプ6を照射して乾燥させながら引上げることにより、
端面電極9が形成される。
FIG. 4 shows an example of a method of manufacturing the end face electrode 9. A silver paste 41 is contained in the tank 40, and the fixing jig 42 holds the solar cell SC having the light-receiving surface electrode formed thereon, and N + is formed on the back surface shown in FIG. 2C.
The remaining end surface of the diffusion layer 2-1 is immersed in the silver paste 41 until it overlaps with the main electrode 11. By irradiating this with the lamp 6 and pulling it up while drying,
The end face electrode 9 is formed.

【0018】最後にディップ法により、受光面電極1
0、端面電極9および裏面の配線用電極7にはんだコー
トとして、本発明の太陽電池が完成する。
Finally, the light-receiving surface electrode 1 is formed by the dip method.
0, the end surface electrode 9 and the wiring electrode 7 on the back surface are solder-coated to complete the solar cell of the present invention.

【0019】次に、素子間の接続方法について述べる。
図5は、素子間接続のために使用される治具の平面図で
ある。破線で示される四角は太陽電池SCを配列する予
定位置を示す。長いステンレス基板21に加工された溝
22は隣接する太陽電池の双方にわたるようにされてい
る。この溝22の中に厚さ150μmで表面がはんだコ
ートされた銅片23を入れた。太陽電池SCを固定する
ために、太陽電池SCの四辺を位置決めするピン24,
24,…を設け、その直径を1mmと細くした。このピ
ン24の間隔で12枚の太陽電池を1列に載置し、19
0〜200℃に温度制御された窒素雰囲気中の電気炉内
を1分間通した。この1回の熱処理によって、図6に示
すように、ある太陽電池の端面電極9と隣の太陽電池の
裏面の配線用電極7を銅片23ではんだ付けすることが
できる。
Next, a method of connecting the elements will be described.
FIG. 5 is a plan view of a jig used for connecting elements. A square shown by a broken line indicates a planned position where the solar cells SC are arranged. The groove 22 formed in the long stainless steel substrate 21 is formed so as to extend over both adjacent solar cells. A copper piece 23 having a thickness of 150 μm and a surface coated with solder was put in the groove 22. Pins 24 for positioning the four sides of the solar cell SC to fix the solar cell SC,
24, ... Are provided and the diameter thereof is reduced to 1 mm. Twelve solar cells are placed in a row at intervals of this pin 24, and
It was passed through an electric furnace in a nitrogen atmosphere whose temperature was controlled at 0 to 200 ° C. for 1 minute. By this one-time heat treatment, as shown in FIG. 6, the end surface electrode 9 of a certain solar cell and the wiring electrode 7 on the back surface of the adjacent solar cell can be soldered with the copper piece 23.

【0020】図7は他の接続方法の例である。破線で示
された四角は図5と同様に太陽電池SCの配列予定位置
を示す。ステンレス基板21の上に、はんだペーストの
印刷焼成によって形成されたはんだ層25のある耐熱性
ポリイミドシート26を置いた。このはんだ層25は隣
接する太陽電池の一方の端面電極9と他方の配線用電極
7を接続するように位置決めされている。このはんだ層
25で直列接続される位置に太陽電池SCを配置し、素
子固定のためのガラス板を載せた状態で、前述の実施例
と同じ条件で熱処理を行なうことにより、ある太陽電池
の端面電極9と隣の太陽電池の裏面の配線用電極7をは
んだ層25で接続することができる。
FIG. 7 is an example of another connection method. The squares indicated by broken lines indicate the planned arrangement positions of the solar cells SC, as in FIG. A heat-resistant polyimide sheet 26 having a solder layer 25 formed by printing and firing a solder paste was placed on the stainless steel substrate 21. This solder layer 25 is positioned so as to connect one end surface electrode 9 of the adjacent solar cell and the other wiring electrode 7. The solar cell SC is arranged at a position where it is connected in series by the solder layer 25, and a heat treatment is performed under the same conditions as those in the above-mentioned embodiment with the glass plate for fixing the element placed on the end surface of a solar cell. The electrode 9 and the wiring electrode 7 on the back surface of the adjacent solar cell can be connected by the solder layer 25.

【0021】[0021]

【発明の効果】以上のように、本発明によれば、簡単な
工程で一度に多数の素子を直列接続できる。従来のよう
に1枚毎に接続する繁雑さが解消されるので、高速自動
化が容易となるため、特に人件費削減によるモジュール
工程の大幅なコスト低減が達成できる。同時に、モジュ
ールのパッキングファクタを高めることができるので、
ガラス,樹脂などのモジュール材料を削減することがで
きるので、この発明の経済的効果は極めて大きい。
As described above, according to the present invention, a large number of devices can be connected in series at a time by a simple process. Since the complexity of connecting one by one as in the prior art is eliminated, high-speed automation is facilitated, and a significant cost reduction of the module process can be achieved especially by reducing labor costs. At the same time, the packing factor of the module can be increased, so
Since the module materials such as glass and resin can be reduced, the economical effect of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による太陽電池の一例の斜視図である。FIG. 1 is a perspective view of an example of a solar cell according to the present invention.

【図2】(a)〜(e)は、それぞれ図1のL−L´断
面に関する各製造工程の略断面図である。
2 (a) to (e) are schematic cross-sectional views of respective manufacturing steps regarding the LL ′ cross section of FIG. 1.

【図3】裏面および側面の研摩方法の斜視図である。FIG. 3 is a perspective view of a back surface and side surface polishing method.

【図4】端面電極形成方法の側面図である。FIG. 4 is a side view of an end face electrode forming method.

【図5】素子間接続用治具の平面図である。FIG. 5 is a plan view of a jig for connecting elements.

【図6】図5の治具を用いて接続した太陽電池の裏面の
接続状態の平面図である。
6 is a plan view of a connected state of the back surface of the solar cell connected using the jig of FIG.

【図7】素子間接続用の他の装置を示す平面図である。FIG. 7 is a plan view showing another device for connecting elements.

【図8】従来の太陽電池の斜視図である。FIG. 8 is a perspective view of a conventional solar cell.

【図9】従来の太陽電池の裏面図である。FIG. 9 is a back view of a conventional solar cell.

【図10】従来の接続方法の側面図である。FIG. 10 is a side view of a conventional connection method.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 N+ 拡散層 3 TiO2 膜 4 BSF層 5 裏面電極 6 Alペースト電極 7 配線用電極 9 端面電極 10 受光面電極 11 主電極 12 サブ電極1 Silicon Substrate 2 N + Diffusion Layer 3 TiO 2 Film 4 BSF Layer 5 Back Electrode 6 Al Paste Electrode 7 Wiring Electrode 9 End Face Electrode 10 Light-Receiving Surface Electrode 11 Main Electrode 12 Sub-electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 利根川 正 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 西田 誠 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Tonegawa 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Co., Ltd. Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面に形成されたPN接合の受光
面側の第1の導電型の半導体層と接続される受光面電極
と、基板の端面を経て裏面の一部に至る端面電極によっ
て構成される第1の電極と、 PN接合を形成する第2の導電型の半導体層と基板の裏
面で接続される第2の電極と、 を有する太陽電池。
1. A light-receiving surface electrode connected to a first conductive type semiconductor layer on the light-receiving surface side of a PN junction formed on the front surface of a substrate, and an end surface electrode reaching a part of the back surface through the end surface of the substrate. A solar cell comprising: a first electrode that is configured; and a second electrode that is connected to the second conductive type semiconductor layer that forms a PN junction on the back surface of the substrate.
【請求項2】 銀ペースト材料の中に太陽電池基板の1
端を浸漬して受光面電極に接続された端面電極を形成す
る太陽電池の製造方法。
2. A solar cell substrate in a silver paste material.
A method for manufacturing a solar cell in which an end is immersed to form an end face electrode connected to a light-receiving surface electrode.
【請求項3】 素子間接続用の導体を位置決めした治具
に、隣接する太陽電池の一方の裏面電極と他方の太陽電
池の端面電極の裏面とを導体で連結するように載置し、
熱処理によって複数の太陽電池を一括して裏面側で直列
接続することを特徴とする太陽電池の接続方法。
3. A jig on which a conductor for connecting elements is positioned so that one back electrode of an adjacent solar cell and the back surface of an end face electrode of the other solar cell are connected by a conductor,
A method for connecting solar cells, wherein a plurality of solar cells are collectively connected in series by heat treatment on the back surface side.
JP4167658A 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same Expired - Fee Related JP2915702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4167658A JP2915702B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4167658A JP2915702B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0613634A true JPH0613634A (en) 1994-01-21
JP2915702B2 JP2915702B2 (en) 1999-07-05

Family

ID=15853841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4167658A Expired - Fee Related JP2915702B2 (en) 1992-06-25 1992-06-25 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2915702B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299676A (en) * 2001-04-03 2002-10-11 Honda Motor Co Ltd Solar cell module manufacturing method and jig for manufacturing solar cell module
JP2005347703A (en) * 2004-06-07 2005-12-15 Npc:Kk Tab lead fitting equipment for solar battery cell
CN107318269A (en) * 2015-03-31 2017-11-03 株式会社钟化 Solar cell and its manufacture method, solar module and wiring plate
US10849404B2 (en) 2016-08-26 2020-12-01 A.W. Faber-Castell Cosmetics Gmbh Pencil comprising an integrally injection-moulded layered casing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299676A (en) * 2001-04-03 2002-10-11 Honda Motor Co Ltd Solar cell module manufacturing method and jig for manufacturing solar cell module
JP2005347703A (en) * 2004-06-07 2005-12-15 Npc:Kk Tab lead fitting equipment for solar battery cell
CN107318269A (en) * 2015-03-31 2017-11-03 株式会社钟化 Solar cell and its manufacture method, solar module and wiring plate
US10008622B2 (en) 2015-03-31 2018-06-26 Kaneka Corporation Solar cell, method for manufacturing same, solar cell module and wiring sheet
US10205040B2 (en) 2015-03-31 2019-02-12 Kaneka Corporation Solar cell, method for manufacturing same, solar cell module and wiring sheet
CN107318269B (en) * 2015-03-31 2020-02-14 株式会社钟化 Solar cell, method for manufacturing same, solar cell module, and wiring board
US10849404B2 (en) 2016-08-26 2020-12-01 A.W. Faber-Castell Cosmetics Gmbh Pencil comprising an integrally injection-moulded layered casing

Also Published As

Publication number Publication date
JP2915702B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US4517403A (en) Series connected solar cells and method of formation
EP2184787A1 (en) Rear surface bonding type solar cell, rear surface bonding type solar cell having wiring board, solar cell string and soar cell module
JPS59115576A (en) Wiring method for solar battery
WO2012173203A1 (en) Solar cell and method for manufacturing same
JP2001345458A (en) Solar cell
WO2018152659A1 (en) Back-contact solar cell string and preparation method therefor, module and system
WO1994027327A1 (en) Series interconnected photovoltaic cells and method for making same
JPH09116175A (en) Electrode structure of photovoltaic device
JP2001068699A (en) Solar cell
JP4185332B2 (en) Solar cell and solar cell module using the same
US4789641A (en) Method of manufacturing amorphous photovoltaic-cell module
JPS5839071A (en) Solar battery element
CN106816486A (en) A kind of battery strings of N-type IBC solar cells patch connection and preparation method thereof, component and system
JP2004140024A (en) Solar cell, solar cell module using it, and its producing method
JP2014036069A (en) Solar cell module and manufacturing method thereof
JP2915702B2 (en) Solar cell and method of manufacturing the same
JPH05259487A (en) Manufacture of solar cell
JP2000340812A (en) Solar battery
JP5516441B2 (en) Solar cell module and manufacturing method thereof
JP4658380B2 (en) Solar cell element and solar cell module using the same
US20170012144A1 (en) Solar cell and solar cell module
JP2008053435A (en) Solar cell module and manufacturing method thereof
JPH0314052Y2 (en)
JP6785964B2 (en) Solar cells and solar modules
JP3696757B2 (en) Solar cell connection method, connecting metal fitting, and solar cell module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees