JP2004140024A - Solar cell, solar cell module using it, and its producing method - Google Patents

Solar cell, solar cell module using it, and its producing method Download PDF

Info

Publication number
JP2004140024A
JP2004140024A JP2002300784A JP2002300784A JP2004140024A JP 2004140024 A JP2004140024 A JP 2004140024A JP 2002300784 A JP2002300784 A JP 2002300784A JP 2002300784 A JP2002300784 A JP 2002300784A JP 2004140024 A JP2004140024 A JP 2004140024A
Authority
JP
Japan
Prior art keywords
solar cell
receiving surface
cell
electrode
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300784A
Other languages
Japanese (ja)
Inventor
Toru Nunoi
布居 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002300784A priority Critical patent/JP2004140024A/en
Publication of JP2004140024A publication Critical patent/JP2004140024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module at a lower cost by performing series connection of thin solar cells conveniently at a high speed, to provide its producing method, and to provide a thin solar cell in which wiring can be connected at a high speed when the solar cell module is produced. <P>SOLUTION: The solar cell module comprises a semiconductor layer part 11 including a plurality of semiconductor layers and having a photoelectric conversion function, an electrode part 12 provided on the light receiving surface side of the semiconductor layer part 11, and an electrode part 13 provided on the rear surface side of the semiconductor layer part 11. At least the light receiving surface electrode part 12 consists of a plurality of rows of dot-like separation electrodes 12a arranged in the direction B substantially perpendicular to the connecting direction A of leads 26 at the time of modularization or a plurality of linear separation electrodes arranged in the substantially perpendicular direction B. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池セル、それを用いた太陽電池モジュールおよびその製造方法に関し、特に太陽電池モジュールを構成するに好適な電極と配線方法、並びに構造に関するものである。
【0002】
【従来の技術】
通常、単結晶シリコンや多結晶シリコン基板を用いてpn接合を有する太陽電池セル100は、図7に示すように、一般的に厚さ0.4mm程度のp型シリコン基板101に対し、受光面側に化学的に凹凸形状を加工した後、熱拡散法でn型層102を形成し、一方裏面側にはアルミニウム元素拡散などによりp+高濃度層103を形成したものが公知である(例えば、特許文献1参照)。なお、n型層102の表面には反射防止膜104の形成も行われる。受光面側の受光面電極105は、太陽電池用銀ペースト材料の印刷と焼成により行われる。この際、受光面電極105の形状としては、細線部分(以下、グリッド電極105aと称す)と太線部分(以下、メイングリッド電極105bと称す)を組合せたパターンを用いて、受光面のシリコン表面をできるだけ広くする工夫がなされている。一方、裏面側電極106では、アルミニウムを主成分とするペースト材料を略全面にわたり印刷、焼成することで形成する。このようにして作製した複数個の太陽電池セル100から太陽電池モジュールを製作する際は、図8の断面図に示すように、一の太陽電池セル100の受光面側のメイングリッド電極と、隣接する他の太陽電池セルの裏面電極とを、銅リボンなどの配線材107をはんだで接続し、このようにセルを10直列以上に結線した状態で、ガラス108の片面に透明樹脂109を介して接着すると共に、透明樹脂110を介して防湿フィルム111やモジュールの電極端子などが設けられる。
【0003】
配線技術の他の例としては、多数の金属ワイヤーをセル表面に導電性接着剤で貼りつけて、そのワイヤー端を隣接セルの裏面に延ばして接続することで直列配線することでも行われる(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開2002−222973号公報
【特許文献2】
特開平10−51018号公報(第4頁、図1、図2)
【0005】
【発明が解決しようとする課題】
しかしながら、前者(例えば、特許文献1)では、直列配線のためには幅2〜3mm、厚さ0.2mm程度の銅配線材107を折り曲げ加工した後、セル間をはんだ接続するため、コスト低減のためセル厚さを更に薄くしようとすれば、セル自体の破損率が急速に高まるとともに配線接続の高速化には限界を来していた。
また、後者(例えば、特許文献2)の方法も、セル表面から隣接セル裏面への接続の手間は基本的に前者と同等以上であり、配線接続の高速化はやはり困難である。
【0006】
本発明の主要な目的の一つは、薄型太陽電池セルの直列接続を簡便かつ高速に行えるようにすることで、一層低コストな太陽電池モジュールおよびその製造方法を提供することにある。
本発明の主要なもう一つの目的は、太陽電池モジュールの製作の際の配線接続の高速化を行い得る薄型太陽電池セルを提供することにある。
【0007】
【課題を解決するための手段】
かくして本発明によれば、複数の半導体層が積層され、光電変換機能を有する半導体層部と、この半導体層部の受光面側に設けられる受光面電極部と、半導体層部の裏面側に設けられる裏面電極部とを備えた太陽電池セルであって、受光面電極部が、モジュール化の際の導線による接続方向と略直交する方向に並ぶドット状分離電極の複数列または前記略直交する方向に延びる複数本の線状分離電極からなる太陽電池セルが提供される。
【0008】
つまり、本発明の太陽電池セルは、その受光面側の受光面電極部が、複数に分離され、それによって、半導体層部に対し受光面電極部による機械応力を分散でき、半導体層部が薄くなっても機械的に耐えられるようにするものであり、具体的に言えば、従来の太陽電池セル(図7参照)における受光面側の電極のメイングリッド電極(太線電極部分)が省略されてなる複数本の線状分離電極、またはこれら複数本の線状分離電極を分割縮小してなる複数列のドット状分離電極として形成されているわけである。これについて詳しくは後述する。
【0009】
ここで、本発明において、複数の半導体層が積層され、光電変換機能を有する半導体層部は、主としてシリコン基板を使用して公知技術により形成することができるが、シリコン基板以外にも、シリコンゲルマニウム基板、ガリウム砒素基板等の化合物半導体基板などの公知材料を使用することもできる。例えば、基本的な構造としては、光入射側からn、p、あるいは光入射側からp、nでも可能である。更には、光入射側をnでなく高濃度化したn+に、あるいは光入射側をpでなく高濃度化したp+とすることもできる。これらの受光面側の半導体層(以下、受光面側接合層と称することがある)は従来から用いられる熱拡散法、イオンインプランテーション法により形成できる。また、受光面側接合層の表面には反射防止膜を形成してもよい。一方、光入射と反対側の裏面には、BSF層や、裏面反射層(back surface reflector)を形成したり、表面再結合を防止するための酸化膜形成、窒化膜形成を行ってもよい。なお、反射防止膜や裏面反射膜としては、各種酸化膜などを用いることができる。
【0010】
本発明において、受光面電極部の各分離電極は、例えばAg粉末を主成分とする導電性ペーストを印刷、焼成する印刷法や、Ag及び/又はAlの蒸着法などにより形成することができる。
また、受光面電極部の各分離電極のパターン形状は、上述したように、▲1▼複数個のドット状分離電極が受光面に略規則的に分散配置されたパターン形状と、▲2▼一定幅の直線として相互に平行に所定ピッチで形成された複数本の線状分離電極からなるパターン形状を挙げることができる。従来ではセル受光面に高価な銀ペースト電極材料を用いてセル表面積の5%程度の面積でグリッド形状の電極(図7参照)を印刷していたが、本発明では受光面電極部をドット状または線状の分離電極とすることにより電極面積を低減でき、特にドット状の電極パターンではセル表面積の1%程度の面積にまで大幅に低減することができ、コストダウンを図り得る。またこれによって、電極が表面再結合速度を大きくして特性低下を招いていた要因が大幅に低減し、このことで光電変換効率を改善できる著しい効果を得ることができる。
【0011】
本発明において、受光面電極部の各分離電極のパターン形状が上記▲1▼の場合、各分離電極の形状、大きさ寸法としては、モジュール化の際の導線による接続方向を短辺とする長方形状の場合には、0.05〜2.0mm×0.5〜3.0mm(好ましくは0.2mm×1.0mm)の大きさ寸法を挙げることができる。また、円形、ひし形、楕円などとしてもよく、その寸法としては上記範囲が望ましい。
また、各分離電極間のピッチとしては、上記接続方向の電極間ピッチ(各列間ピッチ)を0.5〜5mm、好ましくは2mmとし、かつ上記接続方向と略直交する方向の電極間ピッチ(各ドット間ピッチ)を0.5〜5mm、好ましくは2mmとする最適値を挙げることができる。各分離電極間のピッチを上記範囲に設定することにより、高い光電変換効率の太陽電池セルを得ることができる。なお、上記接続方向あるいは上記接続方向と略直交する方向のいずれであっても、各分離電極間のピッチが0.5mmよりも小さいと電極間が狭くなり、太陽電池セルの受光面に対する電極占有率が増加して光電変換効率の大幅な改善とはなり難い。また、上記接続方向あるいは上記接続方向と略直交する方向のいずれであっても、各分離電極間のピッチが5mmよりも大きいと受光面側半導体層部(n+層)の抵抗成分が増加して曲線因子FFを低下させてしまう。これを補う方法としては、シート抵抗を極端に小さくしなければならないが、そのようにするには拡散時間などが長大化してコストアップとなる。
一方、受光面電極部の各分離電極のパターン形状が上記▲2▼の場合、線状の各分離電極の幅としては0.05〜0.5mm、長さはセル幅と略等しくすることができる。そして、上記接続方向と略直交する方向の各分離電極間のピッチは0.5〜5mmとすることができる。
なお、本発明の太陽電池セルの受光面電極部において、ドット状の分離電極パターンは、線状の分離電極パターンに比して、電極占有率が小さいためセル光電変換率が高くなるという利点の他は、モジュール化した際の導線へ集電される電流の分離電極(印刷電極)を流れる距離が短いため、電気抵抗をより小さく抑え、より高い集電効果によるより高い光電変換効率を得ることができる利点もある。
【0012】
また、本発明において、裏面側の裏面電極部は、(1)全面電極からなるもの、(2)受光面電極部の上記▲1▼と同じく、モジュール化の際の導線による接続方向と略直交する方向に並ぶドット状分離電極の複数列からなるもの、あるいは(3)受光面電極部の上記▲2▼と同じく、モジュール化の際の導線による接続方向と略直交する方向に延びる複数本の線状分離電極からなるものとすることができる。
本発明において、裏面電極部の各分離電極のパターン形状が上記(1)の場合、粉末アルミニウムを主成分とするペースト材料をシリコン基板の裏面全面に印刷、焼成することにより全面電極を形成することができる。
また、上記(2)(3)の場合は、受光面電極部と同じく印刷法、蒸着法により各分離電極を形成することができる。なお、裏面電極における上記(2)では、ドット状分離電極の形状、大きさおよび電極間ピッチは、上記▲1▼の受光面電極部と同じくすることができる。また、裏面電極における上記(2)では、線状分離電極の幅、長さおよび電極間ピッチは、上記▲2▼の受光面電極部と同じくすることができる。
【0013】
本発明によれば、受光面となる片方表面の電極(受光面電極部)を分離形成することによって、太陽電池セル同士を電気的に直列に接続して太陽電池モジュールを製作する過程において、一の太陽電池セルの受光面電極部の各分離電極と、隣接する他の太陽電池セルの裏面電極部とを電気的に接続する際の受光面側の応力集中を回避することができ、太陽電池セルの割れを低減することができる。また、受光面電極部と同様に、裏面電極部も複数列のドット状分離電極あるいは複数本の線状分離電極から構成すれば、モジュール化に際しての太陽電池セルの割れをより一層低減することができる。なお、裏面電極部が全面電極である場合には、裏面電界(buck surface field)効果、つまり裏面電極部側の高濃度化した半導体層(例えばp+部分)によりセル内部に電界を作ることで発生キャリアの収集効果を改善して、高いセル光電変換効率が得られる利点がある。
【0014】
また、本発明における太陽電池セルは、半導体層部の受光面側半導体層のシート抵抗値が50〜150Ω/□に設定されたものとしてもよい。このように構成することによって、この太陽電池セルを用いてモジュール化することにより、高い光電変換効率の太陽電池モジュールを得ることができる。特に、上記シート抵抗値が60〜120Ω/□とすれば、より高く安定した光電変換効率を得ることができて好ましい。なお、上記シート抵抗値が50Ω/□よりも小さいものでは太陽電池セルの発生電流が元々小さく本発明の適用する利点はない。一方、シート抵抗値が150Ω/□よりも大きいものでは、受光面側半導体層が0.2μm程度と薄くなり過ぎ、印刷電極材料が侵入してpn接合破壊を生じる。
【0015】
本発明は、別の観点によれば、上述した構成の太陽電池セルの複数個を複数本の導線にて電気的に直列に接続してなり、その接続が、一の太陽電池セルの受光面電極部の複数列のドット状分離電極に一端側が跨って電気的に接続された導線の他端側、または一の太陽電池セルの受光面電極部の複数本の線状分離電極に一端側が跨って電気的に接続された導線の他端側と、隣接する他の太陽電池セルの裏面電極部との間でなされてなる太陽電池モジュールが提供される。
このモジュール化に際しては、セルの直列結線時やガラス板への貼付け時に加わる機械的応力を回避し、上述のようなセル割れを低減することができる。
【0016】
また、本発明の太陽電池モジュールにおいては、隣接する各導線のピッチが、0.5〜5mm、好ましくは2mmに設定されたものとすれば、上述したように高い光電変換効率の太陽電池モジュールを得ることができる。
【0017】
本発明は、さらに別の観点によれば、上述の複数の太陽電池セルを電気的に直列に接続するセル接続工程を備え、このセル接続工程が、
導線を巻いたボビンが複数個並んだ第1ボビン列と、導線を巻いたボビンが複数個並んだ第2ボビン列とを略上下交互に交差状に移動させながら各導線を繰り出し、かつ第1ボビン列の各導線と第2ボビン列の各導線との間に複数の太陽電池セルを順次平織状に織り込むセル織り込み工程と、
各太陽電池セルの受光面電極部と裏面電極部に各導線を電気的に接続する導線接続工程と、
直列に隣接する各太陽電池セルのセル間において、第1ボビン列の各導線と第2ボビン列の各導線を隣接するセル間毎に交互に切断する導線切断工程とを備えた太陽電池モジュールの製造方法が提供される。
【0018】
つまり、本発明の太陽電池モジュールの製造方法では、第1ボビン列の各導線と第2ボビン列の各導線を縦糸とみなし、第1ボビン列の各導線と第2ボビン列の各導線の間に略直交方向に太陽電池セルをあたかも横糸のように順次織り込むことにより、複数の太陽電池が直列に結合される。次いで、各太陽電池セルの受光面および裏面に各導線を、例えば加熱溶着させて電気的に接続し、その後、直列に隣接する各太陽電池セルのセル間において、第1ボビン列の各導線と第2ボビン列の各導線をセル間毎に交互に切断することで複数の太陽電池を電気的に直列配線した状態とする。
このような太陽電池モジュールの製造方法によれば、複数の太陽電池を電気的に直列配線するのに要する時間を従来比の1/5程度にまで大幅に短縮することができ、太陽電池モジュールの生産効率が大幅に向上すると共に、製造装置にかかる生産能力当たりのコストについても従来比の1/2程度にまで低減でき、太陽電池モジュールの製造コストを大幅に削減することができる。
【0019】
【発明の実施の形態】
本発明の実施の形態を、図面を参照しながら詳説する。なお、本発明は実施の形態に限定されるものではない。
【0020】
図1は本発明の実施の形態に係る太陽電池セルの斜視図であって、直列配線した複数の太陽電池セルのうちの1個を切り取った状態を表し、図2は同実施の形態における太陽電池モジュールの断面図であり、図3は同実施の形態における太陽電池セルを用いた太陽電池モジュールの平面図であり、図4は同実施の形態における太陽電池モジュールの要部拡大断面図であって、隣接する太陽電池セル同士を銅線にて電気的に接続した状態を示している。なお、図1と図3において、矢印Aはモジュール化の際の導線による接続方向を表し、矢印Bはモジュール化の際の導線による接続方向と略直交する方向を表している。
【0021】
この実施の形態の太陽電池セル10は、複数の半導体層が積層されてなる光電変換機能を有する半導体層部11と、この半導体層部11の受光面側に設けられる受光面電極部12と、半導体層部11の裏面側に設けられる裏面電極部13と、半導体層部11の受光面に形成された反射防止膜14とを備えている。なお、図1において、26は受光面電極部12および裏面電極部13に電気的に接続された導線としての金属細線である。
【0022】
矩形板状の半導体層部11は、p型シリコン基板11aの受光面側にn+拡散層11bを有すると共に、p型シリコン基板11aの裏面側にp+層11cを有している。
受光面電極部12は、モジュール化の際の金属細線26による接続方向Aと略直交する方向Bに並ぶ複数列のドット状分離電極12aからなる。このドット状分離電極12aの形状、大きさ寸法としては、上記接続方向Aを短辺とする長方形状であって、0.2mm×0.5mmに形成されている。この分離電極12aは、上記接続方向Aと略直交する方向Bに2mmの電極間ピッチ(各ドット間ピッチ)Pで所定複数個が1列に並び、かつ上記接続方向Aに2mmの電極間ピッチ(各列間ピッチ)Pで所定複数列が配置されている。なお、図1では煩雑化を避けるため、分離電極12aは、各ドット間ピッチPで3個が1列に並び、かつこの列が各列間ピッチPで9列配置された場合を図示したが、実際は接続方向Aと略直交する方向Bに数10個の分離電極12aが1列に並び、この列が接続方向Aに10〜60列配置される(図3参照)。
なお、A方向のドット間のピッチは、一定ピッチである必要はなく、前記ピッチ範囲であれば概ねピッチに変化があってもよい。換言すれば、前記ピッチP方向には一列に配列しなくてもよい。他に、分離電極の内金属配線26に一部接続できない分離電極が存在してもその比率が10%以内であれば実用の特性上問題ではない。
【0023】
裏面電極部13は、上記接続方向Aと略直交する方向Bに延びる複数本(図1では10本)に分離した線状の分離電極13aからなり、各分離電極13aは上記接続方向Aのピッチ2mmで相互に平行に配置されている。
【0024】
図2と図3は、この太陽電池セル10を8個用いて製作した太陽電池モジュールMを示し、この場合、4個の太陽電池セル10を直列結線したセル列15を2組並列させている。各セル列15、15は一端側が導電部材8にて電気的に接続され、導電部材8とは反対側の他端側において、一方のセル列15は負極端子6が、他方のセル列15は正極端子7がそれぞれ電気的に接続されている。
【0025】
図1〜図4に示すように、モジュール化においては、4個の太陽電池セル10を複数本の金属細線26にて電気的に直列に接続する際、一の太陽電池セル10の受光面電極部12の複数列のドット状分離電極12aに一端側が跨って電気的に接続された金属細線26の他端側を、隣接する他の太陽電池セル10の裏面電極部13の複数本の線状分離電極13aに跨がせるようにして電気的に接続している。このとき、受光面電極部12および裏面電極部13に電気的に接続された各金属細線26のピッチは、受光面電極部12のドット状の各分離電極12a間のピッチPと略等しく設定されている。また、この場合、相互に隣接する太陽電池セル10、10同士の電気的接続個所は、受光面電極部12側または裏面電極部13側に並ぶ金属細線26の本数と等しくなる。このように4個ずつの太陽電池セル10が直列配線されてなるセル列15、15は、強化ガラス2と防湿フィルム5との間にEVAシート3、4を介して設置されることにより、太陽電池モジュールMが製作される。
【0026】
次に、上述の太陽電池セル10を用いた太陽電池モジュールMの製造方法、特に、複数の太陽電池セル10を電気的に直列に配線接続するセル接続工程について説明する。なお、図5は本発明の太陽電池モジュールの製造方法を説明する模式図であって、セル接続工程におけるセル織り込み工程と導線接続工程を表し、図6は図5の模式図の続きであって、セル接続工程における導線切断工程を表している。
【0027】
この太陽電池モジュールの製造におけるセル接続工程では、図5と図6に示すようなセル接続装置が用いられる。このセル接続装置は、同一軸心上に並列した複数個(少なくとも3個以上であり、この場合30個)のボビン30からなる第1ボビン列Lと、同一軸心上に並列した複数個(少なくとも3個以上であり、この場合30個)のボビン31からなる第2ボビン列Lと、これら各ボビン列L、Lの各ボビン30、31を回転可能に保持すると共に、各ボビン列L、Lを略上下交互(矢印C方向)に交差状に移動させる図示省略のボビン移動手段と備える。このボビン移動手段の初期状態においては、各ボビン列L、Lが上昇位置と下降位置で停止して待機している。なお、各ボビン30、31には予め金属細線26が巻設されている。また、各ボビン列L、Lの各ボビン30、31よりも搬送方向下流側には、上下一対の搬送ローラ32、33と、加熱炉34と、上下一対の搬送ローラ35、36と、矢印で示した導線切断手段37、37と、上下一対の搬送ローラ38、39とを順に備えている。なお、各対の搬送ローラは、同じ円周速度で回転する。また、導線切断手段37としては、例えばレーザ切断装置が用いられる。
【0028】
このようなセル接続装置を用いるセル接続工程では、図5に示すように、先ず、セル織り込み工程が行われる。このセル織り込み工程では、各ボビン列L、Lの各ボビン30、31が所定回転速度で回転して同時に全ての金属細線26が繰り出される。この際、上昇位置の第1ボビン列Lからは各金属細線26が斜め下方へ繰り出され、下降位置の第2ボビン列Lからは各金属細線26が斜め上方へ繰り出される。そして、上下位置の各ボビン列L、Lから繰り出された各金属細線26の間のセル供給位置Eに1枚の太陽電池セル10が差し込まれる。
【0029】
その後、ボビン移動手段によって各ボビン列L、Lが略上下交互に交差状に移動し、第1ボビン列Lが下降位置に停止し、かつ第2ボビン列Lが上昇位置に停止して位置が入れ替わることにより、第1ボビン列Lの各金属細線26と第2ボビン列Lの各金属細線26との間に太陽電池セル10が平織状に織り込まれる。つまり、複数本の金属細線26が縦糸となり、太陽電池セル10があたかも横糸のようにして織り込まれる。
【0030】
そして、上下位置が入れ替わった各列L、Lからの各金属細線26の間のセル供給位置Eに、次の太陽電池セル10が供給され、再び各ボビン列L、Lが略上下交互に交差状に移動して上下位置が入れ替わることによりセル10が織り込まれるというように、複数の太陽電池セル10が複数本の金属細線26によって順次織り込まれていく。このセル織り込み工程において、第1ボビン列Lの各ボビン30と第2ボビン列Lの各ボビン31とは同数であって対をなしており、各対のボビン30、31から繰り出された各金属細線26、26は擦り合わされるようにして交差し、かつセル受光面側の金属細線26はドット状分離電極の略中央位置に乗せられる(図1参照)。すなわち、この各対の金属細線26、26が、ドット状分離電極のピッチPと略等しいピッチで配線される。
【0031】
金属細線26によって織り込まれた太陽電池セル10は、搬送ローラ32、33によって下流側へ搬送される。上記各ボビン列L、Lのボビン30、31からの各金属細線26の繰り出し速度は、搬送ローラ32、33の回転による円周速度と略同じであり、かつ対をなす各ローラ32、33は連動回転している。これにより、各金属細線26にかかる張力が十分に小さく抑えられ、断線が生じないようにされている。なお、この搬送ローラ32、33の下流側に設置された搬送ローラ35、36および搬送ローラ38、39も各金属細線26の繰り出し速度と略等しい円周速度で連動回転している。
【0032】
搬送ローラ32、33を通過したセル列は、次のステップである導線接続工程にて各金属細線26がセル受光面とセル裏面に電気的に接続される。すなわち、セル列は、加熱炉34内を通過することにより、太陽電池セル10の受光面電極部および裏面電極部の各分離電極と各金属細線26とが加熱溶着して電気的に接続する。そして、加熱炉34内を通過したセル列は、搬送ローラ35、36によって下流側へ搬送される。
【0033】
その後、図6に示すように、セル列は、次のステップである導線切断工程にて各金属細線26が所定位置にて切断される。この導線切断工程においては、切断しようとする金属細線26に、光学系を通したレーザ光の焦点を合わせて照射することにより、各セル間における金属細線26、26の交差付近の第1ボビン列L側の全ての金属細線26または第2ボビン列L側の全ての金属細線26が切断される。つまり、直列に隣接する各太陽電池セル10のセル間において、第1ボビン列Lの各金属細線26と第2ボビン列Lの各金属細線26をセル間毎に交互に切断することによって、セル表裏面の金属細線26が各セル10を電気的に接続した状態に変える。なお、この導線切断工程では、搬送による金属細線26の振動がレーザの焦点深度よりも小さく設定される。
【0034】
このようにして作製された連続直列接続セル列は、搬送ローラ38、39により下流側へ引き出され、その後、所定セル枚数(この場合4枚)毎に金属細線26部分で切断される。そして、上述したように、このように4個ずつの太陽電池セル10に対して通常のラミネート加工(ガラス板に透明樹脂を介して張付ける)等を行うことにより太陽電池モジュールが完成する。
【0035】
このような太陽電池モジュールの製造方法によれば、複数の太陽電池を電気的に直列配線するのに要する時間を従来比の1/5程度にまで大幅に短縮することができ、太陽電池モジュールの生産効率が大幅に向上すると共に、製造装置にかかる生産能力当たりのコストについても従来比の1/2程度にまで低減でき、太陽電池モジュールの製造コストを大幅に削減することができる。
【0036】
[実施例1]
太陽電池セル及びこの太陽電池セルを用いた太陽電池モジュールを、下記の製造手順により製作した。なお、この実施例1の太陽電池セルは、実施の形態(図1)で説明した太陽電池セル10において、裏面電極部13を受光面電極部12と同様のドット状分離電極とした。
【0037】
先ず、外形125mm×80mm、厚さ0.22mmで比抵抗2Ω・cmのP型シリコン基板11aを、容積比1:3のフッ酸(50%)・硝酸混合溶液中に1分間浸漬することで、スライス時の破砕表面層約20μmを除去した。次に、その片面にBSGフィルムをスピンコートして後、900℃の熱処理炉中30分間でP+層11c形成のボロン拡散を行った。P+層11cのシート抵抗値は33Ω/□で深さは0.4μmであった。この面に耐酸テープを貼り、上記フッ酸硝酸溶液中で他面の不要なP+層を除去した。そして、このテープを有機溶剤で除去、清浄化した後、P+層11c表面に半導体用SiOコート剤を塗布乾燥した。続いて、500℃加熱で膜の緻密化処理後、POClを含む雰囲気の860℃電気炉中で25分間のりん拡散を行った。その後、HF系溶液中でPSG(りんガラス)層などを除去して、接合深さ約0.34μm、表面濃度1019cm−2以上の受光面側n+拡散層11bを得た。このn+拡散層11bのシート抵抗値は85Ω/□であった。次に、このn+拡散層11b表面にプラズマCVD装置を用いて窒化シリコン膜(SiN)を反射防止膜14として厚み約800Åを堆積形成した。なお、ガス種としてシラン及びアンモニアを用いた。次の電極形成では、最初に裏面にAg粉末とAl粉末を含むペーストを長方形状のドッド状パターン(0.5mm×1.5mm)でピッチPは4mm、ピッチPも4mmとして印刷、乾燥した。近赤外線炉中で焼成することによって裏面電極部13を形成した。次いで、受光面側電極形成として、n+層11b上のSiN反射防止膜14の上から、同様の長方形状のドッド状パターンでスクリーン印刷した。この電極材料としては、太陽電池用のAgを主成分とするペースト材料を用いた。そして、近赤外線炉を利用しながら約650℃の温度で焼成することによって受光面電極部12を形成して発明の太陽電池セルを完成した。なお、この実施例1では、表裏面での各電極部12、13において、セル接続方向Aと略直交する方向Bに30個×セル接続方向Aに19列の合計570個のドッド状分離電極を形成し、各電極部12、13の各分離電極は対向する位置関係となっている。
【0038】
作製した太陽電池セルについて、測定照射強度100mW/cmの疑似太陽光下で、電流電圧特性を測定したところ、短絡電流密度は31.7mA/cm2、開放電圧は602mV、曲線因子は0.721、セル光電変換効率は14.8%であった。この際、疑似太陽光源としてはキセノンランプとフィルターを用いた。また、照射強度の測定には校正されたサーモパイルを用いた。また、短絡電流密度の測定にはデジタル可変電圧電源を用いて、疑似太陽光下で、太陽電池を動作させて計測した。また、セル光電変換効率は、セル面積への入射エネルギーに対する変換された電気エネルギーの比率を算出することで得られた。また、セルの動作特性の測定には、分離電極を電気的に接続できる測定用プローブ(探針)を用いた。
【0039】
次に、作製した太陽電池セルのモジュール化を下記のようにして行った。
銅線に厚さ10μmのディップ法のはんだメッキを予め行い、合計の直径80μmの金属細線26を、第1ボビン列Lに30本、第2ボビン列Lに30本の合計60本を装填した。一方、セル供給位置Eには、セル長手方向が金属細線供給方向と略直交するように、上記作製したセル10を一枚ずつ供給しながら各ボビン列L、Lを同時に、かつ異なる方向に上下させながらセル10を金属細線26間に織り込んだ。この際、各ボビン列L、Lの対をなす金属細線26、26を、表裏面側の各ドット状分離電極におけるセル接続方向Aと略直交する方向Bの中央位置に+−100μm程度の位置精度で配置した。また、セル10とセル10の間隔は2mmとなるように設定した。
【0040】
続いて、金属細線26がセル受光面とセル裏面に形成した各分離電極と接触したセル列を、250℃に設定された長さ1mの可視光ランプ炉(加熱炉34)内に通過させた。この際、各分離電極と金属細線26は、数秒間、はんだ融点206℃以上の230℃となり、セル表裏面のそれぞれの分離電極と金属細線26とを電気的に接続した。
【0041】
次いで、上下2個所のレーザ光照射部を、セル間毎に交互に金属細線26と略直交する方向に25cm/sで移動させながらYAGレーザ光(波長1.06μm、強度0.2J/cm2、照射面積0.04cm、繰返し周波数 60Hz)を照射して、第1ボビン列Lの各金属細線26および第2ボビン列Lの各金属細線26を切断した。この際、レーザ光照射部の移動時には、セル列は一時停止させた。なお、直列接続されたセル列が各対の搬送ローラにより順次引出される速度(タクト)は、2秒/セルであった。
【0042】
次に、このセル列をセル4枚ごとに切断した。切断方法は別のレーザ光源で同様に行った。その後、公知のラミネーター装置(図示しない)内で、図2に示すように、強化ガラス2、EVA(エチレンービニルアセテート)シート3、直列結線されたセル列15、EVAシート4、防湿フィルム5の順に載置した後、空気排気、加熱、封着の手順で、太陽電池モジュールMを完成した。なお、図3に示すように、ラミネート化に際して、太陽電池モジュール39には負極端子6、正極端子7が取付けられている。全てのセル10は、金属細線26で直列配線された上で、上記2つのモジュール端子6、7に電気的に接続された。完成モジュールMは上記疑似太陽光下で動作させて、電流電圧特性を測定したところ、短絡電流密度は38.1mA/cm2、開放電圧は4.81V、曲線因子は0.719、モジュール光電変換効率は13.2%であった。
【0043】
[比較例1]
実施例1と同外形寸法、同品質のシリコン基板を用い、実施例1との違いは、シリコン基板厚さを実施例1の0.22mmよりも厚い0.40mmとしたこと、及び図7で説明したグリッド電極とメイングリッド電極を有する従来の電極構造とし、その他条件は全て実施例1と同一としてセル化を行い、比較例1とした。このように作製した比較例1のセルの動作特性を測定した結果、セル光電変換効率としては13.6%を得た。その後、従来の、幅2mm、厚さ0.2mmの銅リボン箔を接続導体とする従来配線方法を用いてモジュール化を行い、モジュールとしての動作特性を測定したところ、モジュール光電変換効率は11.9%であった。
【0044】
上記実施例1および比較例1の測定結果を表1にまとめた。
【0045】
【表1】

Figure 2004140024
【0046】
表1から、実施例1のセル短絡電流密度の向上は、受光面におけるセル電極面積が減少したこと、および電極部分の再結合速度の低減効果によると推測される。つまり、電極面積低減比率(実施例1は電極占有率2.5%、比較例1のそれは4.3%)以上に電流向上があることから再結合低減寄与効果があったと推測された。実施例1のモジュール曲線因子は、金属配線での直列抵抗が小さくなる特徴から比較例1に比べてFF低下がほとんどない。比較例1のモジュール変換効率11.9%に対して実施例1では13.2%の高い変換効率が得られた。
さらに、実施例1ではシリコン基板を厚さ0.22mmの薄型のものを用いたにもかかわらず、本発明の配線方法を適用したことにより、モジュール化後のセル破損率は、従来と同レベルの0.001%以下を保持できた。また、配線速度は比較例1(従来)のセル当たり7秒に対し、実施例1では2秒/セル程度が可能であった。
【0047】
[実施例2]
実施例2では、図1で説明した本発明の太陽電池セルを作製する際、分離電極間のピッチを変化させた。分離電極1個の寸法としては、幅0.3mm、長さ2mmとして、セル接続方向Aでの電極間ピッチPの異なる複数種類のセルを作製した。電極間ピッチPとしては、0.4mm、0.5mm、1.0mm、2.0mm、3.0mm、4.0mm、5.0mm、6.0mmの8種類とした。なお、各種の太陽電池セルのシート抵抗は60Ω/□に統一した。そして、電極間ピッチPが同一のセル8枚で図3に示すような太陽電池モジュールを、実施例1と同様の条件で作製した。
これら8種類の太陽電池モジュールの疑似太陽光下での動作特性の内、曲線因子、変換効率を測定し、その結果を表2に示した。
【0048】
【表2】
Figure 2004140024
【0049】
この結果から、セルの分離電極間のピッチとしては、2.0mmの場合にモジュール光電変換効率として最高値11.5%を示したが、分離電極間のピッチの範囲としては0.5〜5mmで実用的な太陽電池モジュールが得られた。なお、このピッチ範囲外の太陽電池モジュールでは実用性に欠けるモジュール光電変換効率9.8%以下しか得られなかった。
【0050】
[実施例3]
実施例3においては、各金属細線間のピッチの有効な範囲を明らかにするために、図1で示した長方形の分離電極の形状に代えて、円形の電極形状とした。円形の分離電極の形成に際しては、スクリーンパターンを全て直径0.3mmの円形としてAg電極材料を印刷した。そして金属細線の配線方向(図1矢印A方向)の分離電極間のピッチPとしては0.5mmとした。また、配線方向に垂直な方向(図1矢印B方向)の分離電極間のピッチPとしては、モジュール化の際の各金属細線間のピッチである0.3mm、0.5mm、1.0mm、2.0mm、3.0mm、4.0mm、5.0mm、6.0mmの8種類とした。このように、円形のドット状分離電極とした電極間ピッチの異なる8種類の太陽電池セルを上記実施例1と同様の手順で作製した。なお、太陽電池セルのシート抵抗は60Ω/□に統一した。そして、完成した太陽電池セルを種類毎に実施例1と同様の方法で配線して太陽電池モジュールを作製した。なお、ここで記載のない条件等はすべて実施例1に記載の通りとした。
【0051】
【表3】
Figure 2004140024
【0052】
この結果から、金属細線間のピッチとしては、3.0mmの場合にモジュール光電変換効率として最高値12.1%を示したが、金属細線間のピッチ範囲としては0.5〜5mmで実用的な太陽電池モジュールが得られた。なお、このピッチ範囲外の太陽電池モジュールでは実用性に欠けるモジュール光電変換効率9.9%以下しか得られなかった。
【0053】
[実施例4]
実施例4では、図1で説明した太陽電池セルにおいて、分離電極が0.25mm×2mmの長方形で、分離電極の金属細線に垂直な方向(図1矢印B方向)のピッチPが2mm、各金属細線間のピッチも2mmとして、n+層11bのシート抵抗を40〜170Ω/□の範囲で変化させてセルを作製し、続いてモジュール化、その変換効率特性を調べ、その結果を表4に示した。なお、これ以外の条件は実施例1と同様にした。
【0054】
【表4】
Figure 2004140024
【0055】
この結果から、シート抵抗としては90Ω/□の場合にモジュール光電変換効率として最高値11.9%を示したが、シート抵抗範囲としては50〜150Ω/□で実用的な太陽電池モジュールが得られた。なお、このシート抵抗範囲外の太陽電池モジュールでは実用性に欠けるモジュール光電変換効率9.1%以下しか得られなかった。
【0056】
【発明の効果】
本発明によれば、複数の導線にセルを一旦平織りにしてセル間を接続した後に、一部不要な金属配線を切断加工してセル間を電気的に直列配線することにより、セル厚さが薄くても、モジュール光電変換効率が高く、モジュール化による配線でのセル自体の破損率が低減し、かつ配線接続の高速化も同時に可能となることで一層低コストな太陽電池モジュールおよびその製造方法を提供することができる。また、本発明によれば、上記効果を奏することができる太陽電池セルを併せて提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る太陽電池セルの斜視図であって、直列配線した複数の太陽電池セルのうちの1個を切り取った状態を表す。
【図2】同実施の形態における太陽電池モジュールの断面図である。
【図3】同実施の形態における太陽電池セルを用いた太陽電池モジュールの平面図である。
【図4】同実施の形態における太陽電池モジュールの要部拡大断面図であって、隣接する太陽電池セル同士を銅線にて電気的に接続した状態を示している。
【図5】本発明の太陽電池モジュールの製造方法を説明する模式図であって、セル接続工程におけるセル織り込み工程と導線接続工程を表す。
【図6】図5の模式図の続きであって、セル接続工程における導線切断工程を表している。
【図7】従来の太陽電池セルを示す斜視図である。
【図8】従来の太陽電池セルを用いて製作した太陽電池モジュールを示す断面図である。
【符号の説明】
10 太陽電池セル
11 半導体層部
12 受光面電極部
13 裏面電極部
26 導線
A 接続方向
B 接続方向と略直交する方向
 第1ボビン列
 第2ボビン列
 電極間ピッチ
 電極間ピッチ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell, a solar cell module using the same, and a method for manufacturing the same, and more particularly to an electrode, a wiring method, and a structure suitable for constituting a solar cell module.
[0002]
[Prior art]
Normally, a solar cell 100 having a pn junction using a single crystal silicon or a polycrystalline silicon substrate, as shown in FIG. 7, generally has a light receiving surface on a p-type silicon substrate 101 having a thickness of about 0.4 mm. It is known that an n-type layer 102 is formed by a thermal diffusion method after chemically processing an uneven shape on the side, and ap + high concentration layer 103 is formed on the back side by aluminum element diffusion or the like (for example, Patent Document 1). Note that an antireflection film 104 is also formed on the surface of the n-type layer 102. The light-receiving surface electrode 105 on the light-receiving surface is formed by printing and baking a silver paste material for a solar cell. At this time, as the shape of the light receiving surface electrode 105, the silicon surface of the light receiving surface is formed using a pattern in which a thin line portion (hereinafter, referred to as a grid electrode 105a) and a thick line portion (hereinafter, referred to as a main grid electrode 105b) are combined. It is designed to be as wide as possible. On the other hand, the back electrode 106 is formed by printing and baking a paste material containing aluminum as a main component over substantially the entire surface. When a solar cell module is manufactured from the plurality of solar cells 100 thus manufactured, as shown in the cross-sectional view of FIG. A wiring member 107 such as a copper ribbon is connected to the back electrode of another solar cell to be soldered by soldering, and the cells are connected in ten or more series in this manner, and a transparent resin 109 is provided on one surface of the glass 108 via the transparent resin 109. At the same time, the moisture-proof film 111 and the electrode terminals of the module are provided via the transparent resin 110.
[0003]
Another example of the wiring technique is to perform a series wiring by attaching a large number of metal wires to the cell surface with a conductive adhesive and extending the ends of the wires to the back surface of the adjacent cells and connecting them (for example, , Patent Document 2).
[0004]
[Patent Document 1]
JP-A-2002-222973
[Patent Document 2]
JP-A-10-51018 (page 4, FIG. 1, FIG. 2)
[0005]
[Problems to be solved by the invention]
However, in the former (for example, Patent Literature 1), after the copper wiring member 107 having a width of about 2 to 3 mm and a thickness of about 0.2 mm is bent for series wiring, the cells are connected by soldering. Therefore, if the cell thickness is further reduced, the breakage rate of the cell itself is rapidly increased, and the speeding up of wiring connection is limited.
Also, in the latter method (for example, Patent Document 2), the trouble of connecting from the cell surface to the back surface of the adjacent cell is basically equal to or higher than the former, and it is still difficult to increase the speed of wiring connection.
[0006]
One of the main objects of the present invention is to provide a solar cell module at a lower cost and a method for manufacturing the same by enabling simple and high-speed connection of thin solar cells in series.
Another main object of the present invention is to provide a thin solar cell capable of speeding up wiring connection when manufacturing a solar cell module.
[0007]
[Means for Solving the Problems]
Thus, according to the present invention, a plurality of semiconductor layers are stacked, a semiconductor layer portion having a photoelectric conversion function, a light receiving surface electrode portion provided on a light receiving surface side of the semiconductor layer portion, and a semiconductor layer portion provided on a back surface side of the semiconductor layer portion Solar cell, comprising a plurality of rows of dot-shaped separation electrodes arranged in a direction substantially orthogonal to the direction of connection by the conducting wires at the time of modularization, or the direction substantially orthogonal to the solar cell. Provided is a solar cell comprising a plurality of linear separation electrodes extending in a direction.
[0008]
That is, in the solar cell of the present invention, the light-receiving surface electrode portion on the light-receiving surface side is divided into a plurality of parts, whereby the mechanical stress by the light-receiving surface electrode portion can be dispersed with respect to the semiconductor layer portion, and the semiconductor layer portion becomes thin. In other words, the main grid electrode (thick line electrode portion) of the electrode on the light receiving surface side of the conventional solar cell (see FIG. 7) is omitted. This is formed as a plurality of linear separation electrodes or a plurality of rows of dot-like separation electrodes obtained by dividing and reducing the plurality of linear separation electrodes. This will be described later in detail.
[0009]
Here, in the present invention, the semiconductor layer portion having a plurality of semiconductor layers stacked and having a photoelectric conversion function can be mainly formed by a known technique using a silicon substrate. Known materials such as a substrate and a compound semiconductor substrate such as a gallium arsenide substrate can also be used. For example, the basic structure may be n, p from the light incident side, or p, n from the light incident side. Further, the light incident side may be replaced with n + instead of n, or the light incident side may be replaced with p + instead of p. These semiconductor layers on the light receiving surface side (hereinafter, sometimes referred to as light receiving surface side bonding layers) can be formed by a conventional thermal diffusion method or ion implantation method. Further, an antireflection film may be formed on the surface of the light-receiving surface side bonding layer. On the other hand, a BSF layer or a back surface reflector (back surface reflector) may be formed on the back surface opposite to the light incidence, and an oxide film and a nitride film may be formed to prevent surface recombination. Various oxide films and the like can be used as the antireflection film and the back surface reflection film.
[0010]
In the present invention, each separation electrode of the light receiving surface electrode portion can be formed by, for example, a printing method in which a conductive paste containing Ag powder as a main component is printed and baked, or an Ag and / or Al vapor deposition method.
Further, as described above, the pattern shape of each separation electrode of the light-receiving surface electrode portion is as follows: (1) a pattern shape in which a plurality of dot-shaped separation electrodes are substantially regularly dispersed on the light-receiving surface; As the straight line of the width, a pattern shape including a plurality of linear separation electrodes formed at a predetermined pitch in parallel with each other can be exemplified. Conventionally, grid-shaped electrodes (see FIG. 7) were printed on the light receiving surface of the cell using an expensive silver paste electrode material with an area of about 5% of the cell surface area. Alternatively, the area of the electrode can be reduced by using a linear separation electrode. Particularly, in the case of a dot-shaped electrode pattern, the area can be significantly reduced to about 1% of the cell surface area, and the cost can be reduced. This also greatly reduces the factor that causes the electrode to increase the surface recombination rate and causes the deterioration of the characteristics, thereby providing a remarkable effect of improving the photoelectric conversion efficiency.
[0011]
In the present invention, when the pattern shape of each separation electrode of the light-receiving surface electrode portion is the above (1), the shape and size of each separation electrode may be a rectangle having a short side in a connection direction by a conducting wire at the time of modularization. In the case of a shape, a size of 0.05 to 2.0 mm × 0.5 to 3.0 mm (preferably 0.2 mm × 1.0 mm) can be mentioned. Further, the shape may be a circle, a rhombus, an ellipse, or the like, and the dimensions are desirably in the above range.
As the pitch between the separation electrodes, the electrode pitch in the connection direction (inter-row pitch) is 0.5 to 5 mm, preferably 2 mm, and the electrode pitch in a direction substantially perpendicular to the connection direction ( The optimum value is 0.5 to 5 mm, preferably 2 mm, for each dot pitch. By setting the pitch between the separation electrodes in the above range, a solar cell with high photoelectric conversion efficiency can be obtained. Note that, in either the connection direction or the direction substantially perpendicular to the connection direction, if the pitch between the separation electrodes is smaller than 0.5 mm, the space between the electrodes becomes narrow, and the electrode occupies the light receiving surface of the solar cell. The rate is increased, and it is difficult to significantly improve the photoelectric conversion efficiency. In either the connection direction or the direction substantially perpendicular to the connection direction, if the pitch between the separation electrodes is larger than 5 mm, the resistance component of the light-receiving surface side semiconductor layer (n + layer) increases. The fill factor FF is reduced. As a method of compensating for this, the sheet resistance must be extremely reduced. However, such a method requires a long diffusion time and the like, resulting in an increase in cost.
On the other hand, when the pattern shape of each separation electrode of the light receiving surface electrode portion is the above (2), the width of each linear separation electrode may be 0.05 to 0.5 mm, and the length may be substantially equal to the cell width. it can. The pitch between the separation electrodes in a direction substantially perpendicular to the connection direction can be 0.5 to 5 mm.
Note that, in the light-receiving surface electrode portion of the solar cell of the present invention, the dot-shaped separation electrode pattern has an advantage that the cell photoelectric conversion rate is higher because the electrode occupancy is smaller than the linear separation electrode pattern. The other is to reduce the electric resistance due to the short distance of the current collected to the conducting wire when it is modularized flowing through the separation electrode (printed electrode), and to obtain higher photoelectric conversion efficiency due to the higher current collection effect There is also an advantage that can be.
[0012]
Further, in the present invention, the back surface electrode portion on the back surface side is substantially orthogonal to the connecting direction of the conducting wire at the time of modularization in the same manner as (1) for the light receiving surface electrode portion, as in (1) above. Or (3) a plurality of rows extending in a direction substantially perpendicular to the direction of connection by the conducting wires when modularized, as in (2) of the light-receiving surface electrode section. It may be composed of a linear separation electrode.
In the present invention, when the pattern shape of each separation electrode of the back electrode portion is the above (1), the whole surface electrode is formed by printing and baking a paste material mainly composed of powdered aluminum on the entire back surface of the silicon substrate. Can be.
In the above cases (2) and (3), each separation electrode can be formed by a printing method or a vapor deposition method as in the case of the light receiving surface electrode portion. In the above (2) on the back electrode, the shape, size, and interelectrode pitch of the dot-shaped separation electrode can be the same as those of the light-receiving surface electrode section of (1). In the above (2) on the back electrode, the width, length and pitch between the linear separation electrodes can be the same as those of the light receiving surface electrode section of (2).
[0013]
According to the present invention, by separately forming an electrode (light receiving surface electrode portion) on one surface serving as a light receiving surface, a process of manufacturing a solar cell module by electrically connecting solar cells in series with each other is performed. It is possible to avoid stress concentration on the light-receiving surface side when electrically connecting each separation electrode of the light-receiving surface electrode portion of the solar cell to the back electrode portion of another adjacent solar cell. Cell cracking can be reduced. Further, similarly to the light-receiving surface electrode portion, if the back surface electrode portion is also composed of a plurality of rows of dot-shaped separation electrodes or a plurality of linear separation electrodes, it is possible to further reduce cracking of the solar cell when modularizing. it can. When the back electrode portion is a full-surface electrode, the back surface field effect is generated by generating an electric field inside the cell by a highly-concentrated semiconductor layer (for example, p + portion) on the back electrode portion side. There is an advantage that a high cell photoelectric conversion efficiency can be obtained by improving the carrier collection effect.
[0014]
Further, in the solar cell according to the present invention, the sheet resistance of the semiconductor layer on the light-receiving surface side of the semiconductor layer portion may be set to 50 to 150 Ω / □. With this configuration, a solar cell module with high photoelectric conversion efficiency can be obtained by modularizing the solar cell. In particular, when the sheet resistance is 60 to 120 Ω / □, higher and more stable photoelectric conversion efficiency can be obtained, which is preferable. If the sheet resistance is less than 50 Ω / □, the current generated by the solar cell is originally small, and there is no advantage of applying the present invention. On the other hand, when the sheet resistance is larger than 150 Ω / □, the light receiving surface side semiconductor layer becomes too thin, about 0.2 μm, and the printed electrode material penetrates to cause pn junction breakdown.
[0015]
According to another aspect of the present invention, a plurality of solar cells having the above-described configuration are electrically connected in series by a plurality of conductors, and the connection is performed by a light-receiving surface of one solar cell. The other end of a lead wire electrically connected across one end to a plurality of rows of dot-shaped separation electrodes of the electrode portion, or one end of a plurality of linear separation electrodes of a light-receiving surface electrode portion of one solar cell is straddled. A solar cell module is provided between the other end of the electrically connected lead wire and the back electrode portion of another adjacent solar cell.
In this modularization, it is possible to avoid the mechanical stress applied when the cells are connected in series or when the cells are attached to a glass plate, and the above-described cell cracks can be reduced.
[0016]
Further, in the solar cell module of the present invention, if the pitch between adjacent conductors is set to 0.5 to 5 mm, preferably 2 mm, a solar cell module having high photoelectric conversion efficiency as described above is obtained. Obtainable.
[0017]
According to yet another aspect, the present invention includes a cell connection step of electrically connecting the plurality of solar cells described above in series, and the cell connection step includes:
A first bobbin row in which a plurality of bobbins around which a conductor is wound is arranged, and a second bobbin row in which a plurality of bobbins around which a conductor are wound are arranged in a crossing manner substantially vertically alternately, and each of the conductors is fed out. A cell weaving step of sequentially weaving a plurality of solar cells in a plain weave shape between each conductor of the bobbin row and each conductor of the second bobbin row;
A wire connection step of electrically connecting each wire to the light receiving surface electrode portion and the back surface electrode portion of each solar cell,
And a conductor cutting step of alternately cutting each conductor of the first bobbin row and each conductor of the second bobbin row between adjacent cells between cells of the solar cells adjacent in series. A manufacturing method is provided.
[0018]
In other words, in the method for manufacturing a solar cell module according to the present invention, each conductor in the first bobbin row and each conductor in the second bobbin row are regarded as warp yarns, and a space between each conductor in the first bobbin row and each conductor in the second bobbin row is provided. A plurality of solar cells are connected in series by sequentially weaving the solar cells in a substantially orthogonal direction as if they were weft yarns. Next, each of the conductors is electrically connected to the light receiving surface and the back surface of each of the solar cells, for example, by heat welding, and then, between the cells of the solar cells adjacent in series, with each of the conductors of the first bobbin row. A plurality of solar cells are electrically connected in series by alternately cutting the conductors of the second bobbin row for each cell.
According to such a method for manufacturing a solar cell module, the time required to electrically connect a plurality of solar cells in series can be significantly reduced to about 1/5 of the conventional solar cell module. The production efficiency is greatly improved, and the cost per production capacity required for the production apparatus can be reduced to about 1/2 of the conventional level, so that the production cost of the solar cell module can be significantly reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiment.
[0020]
FIG. 1 is a perspective view of a solar cell according to an embodiment of the present invention, showing a state in which one of a plurality of solar cells connected in series is cut out, and FIG. FIG. 3 is a cross-sectional view of the battery module, FIG. 3 is a plan view of a solar cell module using the solar cells in the embodiment, and FIG. 4 is an enlarged cross-sectional view of a main part of the solar cell module in the embodiment. Thus, a state in which adjacent solar cells are electrically connected to each other by a copper wire is shown. In FIGS. 1 and 3, arrow A indicates a connection direction by a conductor when modularized, and arrow B indicates a direction substantially orthogonal to a connection direction by a conductor when modularized.
[0021]
The solar cell 10 of this embodiment includes a semiconductor layer portion 11 having a photoelectric conversion function in which a plurality of semiconductor layers are stacked, a light receiving surface electrode portion 12 provided on a light receiving surface side of the semiconductor layer portion 11, The semiconductor device includes a back electrode portion provided on a back surface side of the semiconductor layer portion, and an antireflection film formed on a light receiving surface of the semiconductor layer portion. In FIG. 1, reference numeral 26 denotes a thin metal wire as a conductive wire electrically connected to the light receiving surface electrode portion 12 and the back surface electrode portion 13.
[0022]
The rectangular-plate-shaped semiconductor layer portion 11 has an n + diffusion layer 11b on the light receiving surface side of the p-type silicon substrate 11a, and has a p + layer 11c on the back surface side of the p-type silicon substrate 11a.
The light-receiving surface electrode section 12 is composed of a plurality of rows of dot-shaped separation electrodes 12a arranged in a direction B substantially orthogonal to a connection direction A of the thin metal wires 26 when the module is formed. The shape and size of the dot-shaped separation electrode 12a are rectangular with the connection direction A being a short side, and are 0.2 mm × 0.5 mm. The separation electrode 12a has an electrode pitch (inter-dot pitch) of 2 mm in a direction B substantially orthogonal to the connection direction A. 2 , A predetermined number is arranged in a row, and a pitch between electrodes (pitch between rows) P of 2 mm in the connection direction A 1 , A plurality of predetermined rows are arranged. In FIG. 1, in order to avoid complication, the separation electrode 12a has a pitch P between dots. 2 Are arranged in one row, and this row is a pitch P between rows. 1 Although nine rows are illustrated in the figure, several tens of separation electrodes 12a are actually arranged in one row in a direction B substantially orthogonal to the connection direction A, and 10 to 60 rows are arranged in the connection direction A. (See FIG. 3).
The pitch between the dots in the A direction does not need to be a constant pitch, and may vary substantially within the above-mentioned pitch range. In other words, the pitch P 2 The directions do not have to be arranged in a line. In addition, even if there is a separation electrode that cannot be partially connected to the metal wiring 26 of the separation electrode, if the ratio is within 10%, there is no problem in practical characteristics.
[0023]
The back surface electrode portion 13 is composed of a plurality of (10 in FIG. 1) linear separation electrodes 13a extending in a direction B substantially perpendicular to the connection direction A, and each separation electrode 13a has a pitch in the connection direction A. They are arranged parallel to each other at 2 mm.
[0024]
FIGS. 2 and 3 show a solar cell module M manufactured by using eight of the solar cells 10, and in this case, two sets of cell rows 15 in which four solar cells 10 are connected in series are arranged in parallel. . One end of each of the cell rows 15, 15 is electrically connected by a conductive member 8. On the other end side opposite to the conductive member 8, one cell row 15 has the negative electrode terminal 6 and the other cell row 15 has The positive terminals 7 are electrically connected to each other.
[0025]
As shown in FIGS. 1 to 4, in the modularization, when four solar cells 10 are electrically connected in series by a plurality of thin metal wires 26, the light receiving surface electrode of one solar cell 10 The other end of the thin metal wire 26 electrically connected across one end to the dot-shaped separation electrodes 12 a in a plurality of rows of the portion 12 is connected to a plurality of linear electrodes of the back electrode portion 13 of another adjacent solar cell 10. It is electrically connected so as to straddle the separation electrode 13a. At this time, the pitch of each thin metal wire 26 electrically connected to the light receiving surface electrode portion 12 and the back surface electrode portion 13 is equal to the pitch P between the dot-shaped separation electrodes 12a of the light receiving surface electrode portion 12. 2 Is set substantially equal to In this case, the number of electrical connection points between the solar cells 10 and 10 adjacent to each other is equal to the number of the thin metal wires 26 arranged on the light receiving surface electrode portion 12 side or the back surface electrode portion 13 side. The cell rows 15, 15 each having four solar cells 10 connected in series in this manner are provided between the tempered glass 2 and the moisture-proof film 5 via the EVA sheets 3, 4, and thus, the solar cells 15 are provided. The battery module M is manufactured.
[0026]
Next, a method of manufacturing the solar cell module M using the above-described solar cell 10, particularly, a cell connection step of electrically wiring and connecting a plurality of solar cells 10 in series will be described. FIG. 5 is a schematic view for explaining the method for manufacturing a solar cell module of the present invention, showing a cell weaving step and a conductor connecting step in a cell connecting step, and FIG. 6 is a continuation of the schematic view of FIG. Represents a wire cutting step in the cell connecting step.
[0027]
In the cell connection process in the manufacture of this solar cell module, a cell connection device as shown in FIGS. 5 and 6 is used. This cell connection device has a first bobbin row L including a plurality of (at least three or more, in this case, 30) bobbins 30 arranged in parallel on the same axis. 1 And a second bobbin row L composed of a plurality of bobbins 31 (at least three in this case, 30 in this case) arranged in parallel on the same axis. 2 And each of these bobbin rows L 1 , L 2 Bobbin 30, 31 is rotatably held, and each bobbin row L 1 , L 2 And a bobbin moving means (not shown) for moving the upper and lower sides in an intersecting manner substantially vertically (in the direction of arrow C). In the initial state of the bobbin moving means, each bobbin row L 1 , L 2 Stops at the up position and the down position and waits. A thin metal wire 26 is wound around each of the bobbins 30 and 31 in advance. In addition, each bobbin row L 1 , L 2 Downstream of the bobbins 30 and 31 in the transport direction, a pair of upper and lower transport rollers 32 and 33, a heating furnace 34, a pair of upper and lower transport rollers 35 and 36, and wire cutting means 37 and 37 indicated by arrows. And a pair of upper and lower transport rollers 38 and 39 in order. In addition, each pair of transport rollers rotates at the same circumferential speed. As the conductor cutting means 37, for example, a laser cutting device is used.
[0028]
In the cell connection process using such a cell connection device, as shown in FIG. 5, first, a cell weaving process is performed. In this cell weaving process, each bobbin row L 1 , L 2 The bobbins 30 and 31 rotate at a predetermined rotation speed, and all the thin metal wires 26 are fed out at the same time. At this time, the first bobbin row L at the raised position 1 , Each thin metal wire 26 is fed obliquely downward, and the second bobbin row L 2 , Each thin metal wire 26 is fed obliquely upward. And each bobbin row L at the vertical position 1 , L 2 One solar cell 10 is inserted into the cell supply position E between the fine metal wires 26 drawn out from the above.
[0029]
Thereafter, each bobbin row L is moved by bobbin moving means. 1 , L 2 Move in a crossing manner substantially vertically alternately, and the first bobbin row L 1 Stops at the lowered position, and the second bobbin row L 2 Stops at the ascending position and the positions are switched, so that the first bobbin row L 1 Metal wire 26 and second bobbin row L 2 The solar cell 10 is woven in a plain weave shape between each of the thin metal wires 26. That is, the plurality of thin metal wires 26 become warp yarns, and the solar cells 10 are woven as if weft yarns.
[0030]
Then, each row L in which the vertical position is switched 1 , L 2 The next solar cell 10 is supplied to the cell supply position E between the thin metal wires 26 from each other, and again each bobbin row L 1 , L 2 A plurality of photovoltaic cells 10 are sequentially woven by a plurality of thin metal wires 26 in such a manner that the cells 10 are woven by moving in a cross shape substantially alternately up and down and the up and down positions are interchanged. In this cell weaving step, the first bobbin row L 1 Bobbin 30 and second bobbin row L 2 And the same number of bobbins 31 are paired, and the thin metal wires 26, 26 drawn out from the bobbins 30, 31 of each pair intersect with each other so as to be rubbed, and the metal on the cell light receiving surface side The thin line 26 is placed substantially at the center of the dot-shaped separation electrode (see FIG. 1). That is, each pair of the fine metal wires 26, 26 has a pitch P of the dot-like separation electrodes. 2 Are wired at a pitch substantially equal to.
[0031]
The solar cells 10 woven by the thin metal wires 26 are transported downstream by the transport rollers 32 and 33. Each bobbin row L 1 , L 2 The feeding speed of each thin metal wire 26 from the bobbin 30, 31 is substantially the same as the circumferential speed due to the rotation of the transport rollers 32, 33, and the pair of rollers 32, 33 are interlockingly rotating. Thereby, the tension applied to each of the thin metal wires 26 is sufficiently suppressed, so that disconnection does not occur. The transport rollers 35 and 36 and the transport rollers 38 and 39 installed downstream of the transport rollers 32 and 33 are also interlockingly rotated at a circumferential speed substantially equal to the feeding speed of each thin metal wire 26.
[0032]
In the cell row that has passed through the transport rollers 32 and 33, the thin metal wires 26 are electrically connected to the cell light receiving surface and the cell back surface in the next step, the wire connection step. That is, as the cell row passes through the heating furnace 34, the separation electrodes of the light-receiving surface electrode portion and the back surface electrode portion of the solar cell 10 and the respective thin metal wires 26 are heated and welded to be electrically connected. The cell row that has passed through the heating furnace 34 is transported downstream by the transport rollers 35 and 36.
[0033]
Thereafter, as shown in FIG. 6, in the cell row, each metal thin wire 26 is cut at a predetermined position in a conductive wire cutting step which is the next step. In this wire cutting step, the first thin bobbin row near the intersection of the thin metal wires 26 between the cells is irradiated by irradiating the thin metal wire 26 to be cut with the laser beam focused through the optical system. L 1 Side all the metal thin wires 26 or the second bobbin row L 2 All the thin metal wires 26 on the side are cut. That is, the first bobbin row L is placed between the cells of the solar cells 10 adjacent in series. 1 Metal wire 26 and second bobbin row L 2 By alternately cutting the thin metal wires 26 for each cell, the thin metal wires 26 on the front and back surfaces of the cells are changed to a state in which each cell 10 is electrically connected. In the conducting wire cutting step, the vibration of the thin metal wire 26 due to the conveyance is set to be smaller than the focal depth of the laser.
[0034]
The serially connected cell row manufactured in this way is pulled out to the downstream side by the conveying rollers 38 and 39, and thereafter cut at the portion of the thin metal wire 26 every predetermined number of cells (four in this case). Then, as described above, the solar cell module is completed by performing a normal laminating process (attaching a transparent resin to a glass plate) on each of the four solar cells 10 in this manner.
[0035]
According to such a method for manufacturing a solar cell module, the time required to electrically connect a plurality of solar cells in series can be significantly reduced to about 1/5 of the conventional solar cell module. The production efficiency is greatly improved, and the cost per production capacity required for the production apparatus can be reduced to about 1/2 of the conventional level, so that the production cost of the solar cell module can be significantly reduced.
[0036]
[Example 1]
A solar cell and a solar cell module using the solar cell were manufactured by the following manufacturing procedure. In the solar cell of Example 1, the back electrode 13 is a dot-shaped separation electrode similar to the light-receiving surface electrode 12 in the solar cell 10 described in the embodiment (FIG. 1).
[0037]
First, a P-type silicon substrate 11a having an outer shape of 125 mm × 80 mm, a thickness of 0.22 mm and a specific resistance of 2 Ω · cm is immersed in a mixed solution of hydrofluoric acid (50%) and nitric acid having a volume ratio of 1: 3 for 1 minute. Then, about 20 μm of the crushed surface layer at the time of slicing was removed. Next, a BSG film was spin-coated on one side, and then boron diffusion for forming the P + layer 11c was performed in a heat treatment furnace at 900 ° C. for 30 minutes. The sheet resistance of the P + layer 11c was 33Ω / □ and the depth was 0.4 μm. An acid-resistant tape was stuck on this surface, and unnecessary P + layers on the other surface were removed in the above-mentioned hydrofluoric-nitric acid solution. After removing and cleaning the tape with an organic solvent, the surface of the P + 2 The coating agent was applied and dried. Subsequently, after the film is densified by heating at 500 ° C., the POCl 3 Was diffused in an electric furnace at 860 ° C. for 25 minutes. Thereafter, the PSG (phosphorus glass) layer and the like are removed in an HF-based solution to obtain a junction depth of about 0.34 μm and a surface concentration of 10 μm. 19 cm -2 The light receiving surface side n + diffusion layer 11b was obtained. The sheet resistance value of this n + diffusion layer 11b was 85Ω / □. Next, a silicon nitride film (SiN) is formed on the surface of the n + diffusion layer 11b using a plasma CVD apparatus. x ) Was deposited as an anti-reflection film 14 to a thickness of about 800 °. Note that silane and ammonia were used as gas species. In the next electrode formation, first, a paste containing Ag powder and Al powder was applied to the back surface in a rectangular dod pattern (0.5 mm × 1.5 mm) at a pitch P. 1 Is 4mm, pitch P 2 Was also printed and dried at 4 mm. The back electrode portion 13 was formed by firing in a near infrared furnace. Next, SiN on n + layer 11b is formed as a light receiving surface side electrode formation. x Screen printing was performed from above the anti-reflection film 14 in the same rectangular pattern. As this electrode material, a paste material mainly composed of Ag for solar cells was used. Then, by baking at a temperature of about 650 ° C. using a near-infrared furnace, the light-receiving surface electrode portion 12 was formed to complete the solar cell of the invention. In the first embodiment, in each of the electrode portions 12 and 13 on the front and back surfaces, a total of 570 dot-shaped separation electrodes of 30 rows in a direction B substantially orthogonal to the cell connection direction A × 19 rows in the cell connection direction A are provided. Are formed, and the respective separation electrodes of the respective electrode portions 12 and 13 have a positional relationship of facing each other.
[0038]
About the produced solar cell, the measured irradiation intensity was 100 mW / cm. 2 When the current-voltage characteristics were measured under simulated sunlight, the short-circuit current density was 31.7 mA / cm2, the open-circuit voltage was 602 mV, the fill factor was 0.721, and the cell photoelectric conversion efficiency was 14.8%. At this time, a xenon lamp and a filter were used as the pseudo solar light source. A calibrated thermopile was used for measuring the irradiation intensity. The short-circuit current density was measured by using a digital variable voltage power supply and operating a solar cell under simulated sunlight. The cell photoelectric conversion efficiency was obtained by calculating the ratio of the converted electric energy to the energy incident on the cell area. In addition, a measurement probe (probe) that can electrically connect the separation electrode was used for measuring the operation characteristics of the cell.
[0039]
Next, modularization of the manufactured solar cell was performed as follows.
The copper wire is previously plated with a 10 μm-thick solder by a dipping method, and a thin metal wire 26 having a total diameter of 80 μm is formed on the first bobbin row L. 1 In the second bobbin row L 2 Was loaded with a total of 30 tubes. On the other hand, the bobbin rows L are supplied to the cell supply position E while supplying the produced cells 10 one by one so that the longitudinal direction of the cells is substantially perpendicular to the direction of supplying the fine metal wires. 1 , L 2 At the same time and in different directions, the cell 10 was woven between the thin metal wires 26. At this time, each bobbin row L 1 , L 2 Are arranged at the center position in the direction B substantially perpendicular to the cell connection direction A in each of the dot-shaped separation electrodes on the front and back sides with a positional accuracy of about + -100 μm. The distance between the cells 10 was set to be 2 mm.
[0040]
Subsequently, the cell array in which the fine metal wires 26 were in contact with each of the separation electrodes formed on the light receiving surface of the cell and the back surface of the cell was passed through a visible light lamp furnace (heating furnace 34) having a length of 1 m set at 250 ° C. . At this time, each of the separation electrodes and the fine metal wires 26 reached 230 ° C. at a solder melting point of 206 ° C. or higher for several seconds, and each of the separation electrodes on the front and back surfaces of the cell and the fine metal wires 26 were electrically connected.
[0041]
Next, YAG laser light (wavelength 1.06 μm, intensity 0.2 J / cm 2, while moving the upper and lower two laser light irradiation portions alternately at a rate of 25 cm / s in a direction substantially orthogonal to the thin metal wire 26 for each cell. Irradiation area 0.04cm 2 , A repetition frequency of 60 Hz), and the first bobbin row L 1 Metal wire 26 and second bobbin row L 2 Of each metal thin wire 26 was cut. At this time, the cell row was temporarily stopped during the movement of the laser beam irradiation unit. The speed (tact) at which the cell rows connected in series were sequentially pulled out by each pair of transport rollers was 2 seconds / cell.
[0042]
Next, this cell row was cut every four cells. The cutting method was similarly performed using another laser light source. Then, in a known laminator device (not shown), as shown in FIG. 2, the tempered glass 2, the EVA (ethylene-vinyl acetate) sheet 3, the cell rows 15 connected in series, the EVA sheet 4, and the moisture-proof film 5 After placing in order, the solar cell module M was completed by the procedure of air exhaustion, heating, and sealing. As shown in FIG. 3, the negative electrode terminal 6 and the positive electrode terminal 7 are attached to the solar cell module 39 during lamination. All the cells 10 were connected in series with the thin metal wires 26 and then electrically connected to the two module terminals 6 and 7. The completed module M was operated under the simulated sunlight described above, and the current-voltage characteristics were measured. The short-circuit current density was 38.1 mA / cm2, the open-circuit voltage was 4.81 V, the fill factor was 0.719, and the module photoelectric conversion efficiency was measured. Was 13.2%.
[0043]
[Comparative Example 1]
A silicon substrate having the same external dimensions and the same quality as that of the first embodiment is used. The difference from the first embodiment is that the thickness of the silicon substrate is 0.40 mm, which is larger than 0.22 mm of the first embodiment, and FIG. A conventional electrode structure having the grid electrode and the main grid electrode described above was used, and the other conditions were all the same as in Example 1 to form a cell. As a result of measuring the operation characteristics of the cell of Comparative Example 1 thus manufactured, a cell photoelectric conversion efficiency of 13.6% was obtained. Thereafter, the module was formed using a conventional wiring method using a conventional copper ribbon foil having a width of 2 mm and a thickness of 0.2 mm as a connection conductor, and the operating characteristics of the module were measured. 9%.
[0044]
Table 1 summarizes the measurement results of Example 1 and Comparative Example 1.
[0045]
[Table 1]
Figure 2004140024
[0046]
From Table 1, it is assumed that the improvement in the cell short-circuit current density in Example 1 is due to the decrease in the cell electrode area on the light receiving surface and the effect of reducing the recombination speed of the electrode portion. That is, since the current was improved more than the electrode area reduction ratio (the electrode occupation ratio of Example 1 was 2.5% and that of Comparative Example 1 was 4.3%), it was inferred that the effect of contributing to recombination reduction was obtained. In the module fill factor of the first embodiment, the FF is hardly reduced as compared with the first comparative example because of the feature that the series resistance in the metal wiring is reduced. A high conversion efficiency of 13.2% was obtained in Example 1 in contrast to the module conversion efficiency of 11.9% in Comparative Example 1.
Further, in Example 1, despite the use of a thin silicon substrate having a thickness of 0.22 mm, the application of the wiring method of the present invention makes it possible to maintain the cell breakage rate after modularization at the same level as the conventional one. Of 0.001% or less. Further, the wiring speed was about 2 seconds / cell in Example 1 compared to 7 seconds per cell in Comparative Example 1 (conventional).
[0047]
[Example 2]
In Example 2, when manufacturing the solar cell of the present invention described with reference to FIG. 1, the pitch between the separation electrodes was changed. The dimensions of one separation electrode are 0.3 mm in width and 2 mm in length. 1 Were produced. Pitch between electrodes P 1 , Eight types of 0.4 mm, 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, and 6.0 mm. The sheet resistance of various solar cells was unified to 60Ω / □. And the pitch P between the electrodes 1 A solar cell module as shown in FIG. 3 was produced using the same eight cells under the same conditions as in Example 1.
Among the operating characteristics of these eight types of solar cell modules under simulated sunlight, the fill factor and the conversion efficiency were measured, and the results are shown in Table 2.
[0048]
[Table 2]
Figure 2004140024
[0049]
From this result, the maximum value of the module photoelectric conversion efficiency was 11.5% when the pitch between the separation electrodes of the cell was 2.0 mm, but the pitch between the separation electrodes was 0.5 to 5 mm. Thus, a practical solar cell module was obtained. In the case of a solar cell module outside this pitch range, only a module photoelectric conversion efficiency of 9.8% or less, which is not practical, was obtained.
[0050]
[Example 3]
In Example 3, in order to clarify the effective range of the pitch between the thin metal wires, a circular electrode shape was used instead of the rectangular separation electrode shape shown in FIG. When forming a circular separation electrode, the screen electrode was formed into a circle having a diameter of 0.3 mm and the Ag electrode material was printed. Then, the pitch P between the separation electrodes in the wiring direction of the thin metal wire (the direction of arrow A in FIG. 1). 1 Was 0.5 mm. Further, the pitch P between the separation electrodes in a direction perpendicular to the wiring direction (the direction of arrow B in FIG. 1) 2 There are eight types of pitches between 0.3 mm, 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, and 6.0 mm, which are the pitches between the thin metal wires when modularized. And As described above, eight types of solar battery cells having different electrode pitches as circular dot-shaped separation electrodes were produced in the same procedure as in Example 1. The sheet resistance of the solar cells was unified to 60Ω / □. Then, the completed solar cells were wired for each type in the same manner as in Example 1 to produce a solar cell module. In addition, the conditions etc. which were not described here were all as described in Example 1.
[0051]
[Table 3]
Figure 2004140024
[0052]
From this result, the module photoelectric conversion efficiency showed the highest value of 12.1% when the pitch between the thin metal wires was 3.0 mm, but the pitch range between the thin metal wires was practically 0.5 to 5 mm. Solar cell module was obtained. In the case of a solar cell module outside this pitch range, only 9.9% or less of module photoelectric conversion efficiency, which lacks practicality, was obtained.
[0053]
[Example 4]
In Example 4, in the solar cell described with reference to FIG. 1, the separation electrode is a rectangle of 0.25 mm × 2 mm, and the pitch P in the direction perpendicular to the thin metal wire of the separation electrode (the direction of arrow B in FIG. 1). 2 Is 2 mm, and the pitch between the fine metal wires is also 2 mm. A cell is manufactured by changing the sheet resistance of the n + layer 11b in the range of 40 to 170 Ω / □. Are shown in Table 4. The other conditions were the same as in Example 1.
[0054]
[Table 4]
Figure 2004140024
[0055]
From these results, a maximum value of 11.9% was obtained as the module photoelectric conversion efficiency when the sheet resistance was 90Ω / □, but a practical solar cell module was obtained with a sheet resistance range of 50 to 150Ω / □. Was. In the case of a solar cell module outside this sheet resistance range, only 9.1% or less of module photoelectric conversion efficiency, which lacks practicality, was obtained.
[0056]
【The invention's effect】
According to the present invention, the cell thickness is temporarily reduced by temporarily weaving the cells into a plurality of conductors and connecting the cells, and then cutting and processing some unnecessary metal wiring to electrically connect the cells in series. Even if the solar cell module is thin, the module photoelectric conversion efficiency is high, the rate of breakage of the cell itself in the wiring due to the modularization is reduced, and the wiring connection can be performed at a high speed. Can be provided. Further, according to the present invention, it is possible to additionally provide a solar cell capable of achieving the above effects.
[Brief description of the drawings]
FIG. 1 is a perspective view of a solar cell according to an embodiment of the present invention, showing a state in which one of a plurality of solar cells arranged in series is cut out.
FIG. 2 is a cross-sectional view of the solar cell module according to the embodiment.
FIG. 3 is a plan view of a solar cell module using the solar cells in the embodiment.
FIG. 4 is an enlarged cross-sectional view of a main part of the solar cell module according to the embodiment, showing a state where adjacent solar cells are electrically connected to each other by a copper wire.
FIG. 5 is a schematic diagram illustrating a method for manufacturing a solar cell module according to the present invention, and illustrates a cell weaving step and a conductor connecting step in a cell connecting step.
FIG. 6 is a continuation of the schematic diagram of FIG. 5 and shows a conductor cutting step in a cell connection step.
FIG. 7 is a perspective view showing a conventional solar cell.
FIG. 8 is a cross-sectional view showing a solar cell module manufactured using a conventional solar cell.
[Explanation of symbols]
10 Solar cells
11 Semiconductor layer
12 Light-receiving surface electrode
13 Back electrode
26 conductors
A Connection direction
B Direction substantially perpendicular to connection direction
L 1 1st bobbin row
L 2 2nd bobbin row
P 1 Electrode pitch
P 2 Electrode pitch

Claims (8)

複数の半導体層が積層され、光電変換機能を有する半導体層部と、この半導体層部の受光面側に設けられる受光面電極部と、半導体層部の裏面側に設けられる裏面電極部とを備えた太陽電池セルであって、受光面電極部が、モジュール化の際の導線による接続方向と略直交する方向に並ぶドット状分離電極の複数列または前記略直交する方向に延びる複数本の線状分離電極からなることを特徴とする太陽電池セル。A semiconductor layer portion having a plurality of semiconductor layers stacked and having a photoelectric conversion function, a light receiving surface electrode portion provided on a light receiving surface side of the semiconductor layer portion, and a back surface electrode portion provided on a back surface side of the semiconductor layer portion are provided. A photovoltaic cell, wherein the light-receiving surface electrode portion has a plurality of rows of dot-shaped separation electrodes arranged in a direction substantially orthogonal to a connection direction of the conducting wires at the time of modularization or a plurality of linear lines extending in the substantially orthogonal direction. A solar cell comprising a separation electrode. 裏面電極部が、モジュール化の際の導線による接続方向と略直交する方向に並ぶドット状分離電極の複数列または前記略直交する方向に延びる複数本の線状分離電極からなる請求項1に記載の太陽電池セル。2. The back electrode portion according to claim 1, comprising a plurality of rows of dot-shaped separation electrodes arranged in a direction substantially orthogonal to a connection direction of the conducting wires at the time of modularization or a plurality of linear separation electrodes extending in the substantially orthogonal direction. Solar cells. ドット状分離電極の各ドット間ピッチが0.5〜5mmに設定され、かつドット状分離電極の各列間ピッチが0.5〜5mmに設定された請求項1または2に記載の太陽電池セル。The solar cell according to claim 1, wherein the pitch between the dots of the dot-shaped separation electrode is set to 0.5 to 5 mm, and the pitch between the rows of the dot-shaped separation electrodes is set to 0.5 to 5 mm. . 半導体層部の受光面側半導体層のシート抵抗値が50〜150Ω/□に設定された請求項1〜3の何れか1つに記載の太陽電池セル。The solar cell according to any one of claims 1 to 3, wherein a sheet resistance value of the light-receiving surface side semiconductor layer of the semiconductor layer portion is set to 50 to 150 Ω / □. 請求項1に記載の太陽電池セルの複数個を複数本の導線にて電気的に直列に接続してなり、その接続が、一の太陽電池セルの受光面電極部の複数列のドット状分離電極に一端側が跨って電気的に接続された導線の他端側、または一の太陽電池セルの受光面電極部の複数本の線状分離電極に一端側が跨って電気的に接続された導線の他端側と、隣接する他の太陽電池セルの裏面電極部との間でなされてなることを特徴とする太陽電池モジュール。A plurality of the solar cells according to claim 1 are electrically connected in series by a plurality of conductors, and the connection is performed by separating a plurality of rows of the light-receiving surface electrode portion of one solar cell into dots. The other end of a conductive wire that is electrically connected across one end of the electrode, or of a conductive wire that is electrically connected across one end to a plurality of linear separation electrodes of the light-receiving surface electrode portion of one solar cell. A solar cell module formed between the other end and a back electrode portion of another adjacent solar cell. 裏面電極部が、モジュール化の際の導線による接続方向と略直交する方向に並ぶドット状分離電極の複数列または前記略直交する方向に延びる複数本の線状分離電極からなる請求項5に記載の太陽電池モジュール。The back surface electrode part is composed of a plurality of rows of dot-shaped separation electrodes arranged in a direction substantially orthogonal to a connection direction of the conducting wires at the time of modularization or a plurality of linear separation electrodes extending in the substantially orthogonal direction. Solar module. 隣接する各導線のピッチが、0.5〜5mmに設定された請求項5または6に記載の太陽電池セル。The solar cell according to claim 5, wherein a pitch between adjacent conductive wires is set to 0.5 to 5 mm. 複数の太陽電池セルを電気的に直列に接続するセル接続工程を備え、このセル接続工程が、
導線を巻いたボビンが複数個並んだ第1ボビン列と、導線を巻いたボビンが複数個並んだ第2ボビン列とを略上下交互に交差状に移動させながら各導線を繰り出し、かつ第1ボビン列の各導線と第2ボビン列の各導線との間に複数の太陽電池セルを順次平織状に織り込むセル織り込み工程と、
各太陽電池セルの受光面電極部と裏面電極部に各導線を電気的に接続する導線接続工程と、
直列に隣接する各太陽電池セルのセル間において、第1ボビン列の各導線と第2ボビン列の各導線を隣接するセル間毎に交互に切断する導線切断工程とを備えたことを特徴とする太陽電池モジュールの製造方法。
A cell connection step of electrically connecting a plurality of solar cells in series is provided.
A first bobbin row in which a plurality of bobbins around which a conductor is wound is arranged, and a second bobbin row in which a plurality of bobbins around which a conductor are wound are arranged in a crossing manner substantially vertically alternately, and each of the conductors is fed out. A cell weaving step of sequentially weaving a plurality of solar cells in a plain weave shape between each conductor of the bobbin row and each conductor of the second bobbin row;
A wire connection step of electrically connecting each wire to the light receiving surface electrode portion and the back surface electrode portion of each solar cell,
A conductor cutting step of alternately cutting each conductor of the first bobbin row and each conductor of the second bobbin row between adjacent cells between cells of each solar cell adjacent in series; Of manufacturing solar cell module.
JP2002300784A 2002-10-15 2002-10-15 Solar cell, solar cell module using it, and its producing method Pending JP2004140024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300784A JP2004140024A (en) 2002-10-15 2002-10-15 Solar cell, solar cell module using it, and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300784A JP2004140024A (en) 2002-10-15 2002-10-15 Solar cell, solar cell module using it, and its producing method

Publications (1)

Publication Number Publication Date
JP2004140024A true JP2004140024A (en) 2004-05-13

Family

ID=32449377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300784A Pending JP2004140024A (en) 2002-10-15 2002-10-15 Solar cell, solar cell module using it, and its producing method

Country Status (1)

Country Link
JP (1) JP2004140024A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353851A (en) * 2004-06-10 2005-12-22 Kyocera Corp Solar cell module
JP2009518828A (en) * 2005-12-02 2009-05-07 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and method for electrically connecting photocells in a solar module
US20100000602A1 (en) * 2007-12-11 2010-01-07 Evergreen Solar, Inc. Photovoltaic Cell with Efficient Finger and Tab Layout
JP2010171445A (en) * 2010-03-23 2010-08-05 Kyocera Corp Solar battery element and solar battery module using the same
JP2010267990A (en) * 2010-07-20 2010-11-25 Kyocera Corp Solar cell element and solar cell module
KR101044606B1 (en) 2010-07-29 2011-06-29 엘지전자 주식회사 Solar cell panel
KR101045860B1 (en) 2010-08-11 2011-07-01 엘지전자 주식회사 Solar cell panel
CN102254970A (en) * 2010-05-17 2011-11-23 Lg电子株式会社 Solar cell module
US8975506B2 (en) 2004-03-29 2015-03-10 Kyocera Corporation Solar cell module and photovoltaic power generator using the same
TWI705578B (en) * 2018-02-09 2020-09-21 絜靜精微有限公司 Stringing-bonding solar cell packaging structure / manufacturing method and structure of stringing plate thereof
CN115377231A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN116154011A (en) * 2023-04-19 2023-05-23 金阳(泉州)新能源科技有限公司 Windable light photovoltaic module
US11742438B2 (en) 2014-11-13 2023-08-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar cell module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975506B2 (en) 2004-03-29 2015-03-10 Kyocera Corporation Solar cell module and photovoltaic power generator using the same
JP2005353851A (en) * 2004-06-10 2005-12-22 Kyocera Corp Solar cell module
JP2009518828A (en) * 2005-12-02 2009-05-07 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and method for electrically connecting photocells in a solar module
US20100000602A1 (en) * 2007-12-11 2010-01-07 Evergreen Solar, Inc. Photovoltaic Cell with Efficient Finger and Tab Layout
JP2010171445A (en) * 2010-03-23 2010-08-05 Kyocera Corp Solar battery element and solar battery module using the same
CN102254970A (en) * 2010-05-17 2011-11-23 Lg电子株式会社 Solar cell module
US8586855B2 (en) 2010-05-17 2013-11-19 Lg Electronics Inc. Solar cell module
US8835744B2 (en) 2010-05-17 2014-09-16 Lg Electronics Inc. Solar cell module
JP2010267990A (en) * 2010-07-20 2010-11-25 Kyocera Corp Solar cell element and solar cell module
KR101044606B1 (en) 2010-07-29 2011-06-29 엘지전자 주식회사 Solar cell panel
WO2012015108A1 (en) * 2010-07-29 2012-02-02 Lg Electronics Inc. Solar cell panel
CN102347387A (en) * 2010-07-29 2012-02-08 Lg电子株式会社 Solar cell panel
US9385256B2 (en) 2010-07-29 2016-07-05 Lg Electronics Inc. Solar cell panel
US9166076B2 (en) 2010-07-29 2015-10-20 Lg Electronics Inc. Solar cell panel
KR101045860B1 (en) 2010-08-11 2011-07-01 엘지전자 주식회사 Solar cell panel
US9148961B2 (en) 2010-08-11 2015-09-29 Lg Electronics Inc. Solar cell panel
WO2012020887A1 (en) * 2010-08-11 2012-02-16 Lg Electronics Inc. Solar cell panel
US9917223B2 (en) 2010-08-11 2018-03-13 Lg Electronics Inc. Solar cell panel
US11742438B2 (en) 2014-11-13 2023-08-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar cell module
TWI705578B (en) * 2018-02-09 2020-09-21 絜靜精微有限公司 Stringing-bonding solar cell packaging structure / manufacturing method and structure of stringing plate thereof
CN115377231A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN115377231B (en) * 2022-10-24 2023-10-24 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN116154011A (en) * 2023-04-19 2023-05-23 金阳(泉州)新能源科技有限公司 Windable light photovoltaic module
CN116154011B (en) * 2023-04-19 2023-06-23 金阳(泉州)新能源科技有限公司 Windable light photovoltaic module

Similar Documents

Publication Publication Date Title
TWI643351B (en) Solar cell metallisation and interconnection method
US20110174355A1 (en) Solar cell and solar cell module with one-sided connections
US9209332B2 (en) Solar cell element and solar cell module
JP2008034609A (en) Solar battery element, solar battery module using same, and manufacturing methods of both
EP3588585B1 (en) P-type perc double-sided solar cell, assembly thereof, system thereof and preparation method therefor
EP3591714B1 (en) P-type perc double-sided solar cell, assembly thereof, system thereof and preparation method therefor
JP6829680B2 (en) Solar cell module and its manufacturing method
JP2004140024A (en) Solar cell, solar cell module using it, and its producing method
EP3588581A1 (en) Back-contact solar cell string and preparation method therefor, module and system
US8859889B2 (en) Solar cell elements and solar cell module using same
JP2005353691A (en) Electrode and solar cell, and manufacturing method thereof
JP2015159276A (en) Solar battery element, and solar battery module
US20220271190A1 (en) Shingled solar cell panel and method of manufacturing the same
JP4185332B2 (en) Solar cell and solar cell module using the same
CN106816486A (en) A kind of battery strings of N-type IBC solar cells patch connection and preparation method thereof, component and system
JP4953562B2 (en) Solar cell module
KR101275576B1 (en) Solar cell and manufacturing method thereof
CN109041583B (en) Solar cell element and solar cell module
KR101193021B1 (en) Solar cell having dot type electrode and manufacturing method of the same
JP2011146678A (en) Method of manufacturing solar cell device
US20170012144A1 (en) Solar cell and solar cell module
JP2014146553A (en) Conductive paste for electrode of solar battery and method of producing the same
JP5799252B2 (en) Manufacturing method of solar cell module
CN110024136B (en) High photoelectric conversion efficiency solar cell and method for manufacturing high photoelectric conversion efficiency solar cell
EP2190017A1 (en) High voltage semiconductor based wafer